
MODELLING THE LONG-TERM BEHAVIOUR OF EVANESCENT
ECOLOGICAL SYSTEMS1

P.K. Pollett

Department of Mathematics
The University of Queensland

1. INTRODUCTION

There are many ecological systems which eventually “die out”, yet over any reasonable
time scale appear to settle down to a stable equilibrium. For example, it is not unusual
for animal populations to be subject to large-scale mortality or emigration. This can
occur when disease, such as a new virus, affects the population, or when food short-
ages occur, such as those induced by overbrowsing or dramatic changes in climatic
conditions. However, although these populations may eventually become extinct, they
can survive for long periods in an apparently stable state. The notion of a quasista-
tionary distribution has proved to be a potent tool in modelling this behaviour. It
is potentially useful in wildlife management, for it allows one to predict persistence
times and the distribution of population size. Here we present simple conditions for
the existence of quasistationary distributions for a variety of evanescent processes. We
shall use these conditions to obtain quasistationary distributions for two models which
arise frequently in ecological modelling, namely the birth-death process and the linear
birth-death and catastrophe process. Additionally, we shall draw attention to a re-
cently developed computational algorithm for evaluating quasistationary distributions
for large-scale models with a sparse transition structure.

2. QUASISTATIONARY DISTRIBUTIONS

The idea can be traced back to Yaglom [19], but we shall use the definition of a
quasistationary distribution introduced by van Doorn [3]. We shall suppose that the
system in question can be modelled as a time-homogeneous Markov chain, (X(t), t ≥
0), taking values in a discrete set S. Let Q = (qij , i, j ∈ S) be the q-matrix of transition
rates (assumed to be stable and conservative), so that qij (≥ 0), for j 6= i, represents
the transition rate from state i to state j and qii = −qi, where qi =

∑
j 6=i qij (< ∞)

represents the transition rate out of state i. Additionally, we shall suppose that Q is
regular, so that X(·) is the unique chain with these rates. We shall be concerned with
evanescent chains, so, for simplicity, let us take 0 to be the sole absorbing state, that is,
q0 = 0, and suppose that S = {0}∪C, where C = {1, 2, . . . } is an irreducible transient
class. In order that there be a positive probability of ever reaching 0 starting in C, we
shall suppose that qi0 > 0 for at least one i ∈ C. Finally, let P (·) = (pij(·), i, j ∈ S)
be the transition function of the chain, so that pij(t) = Pr(X(t) = j|X(0) = i), for
t ≥ 0.
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Definition. Let m = (mj , j ∈ C) be a probability distribution and let pj(t) =∑
i∈C mipij(t), for j ∈ S and t ≥ 0. Then, m is a quasistationary distribution if,

for all t > 0 and j ∈ C, pj(t)/(
∑

i∈C pi(t)) = mj. That is, if the chain has m as its
initial distribution, then m is a quasistationary distribution if the state probabilities at
time t, conditional on the chain being in C at t, are the same for all t.

The relationship between quasistationary distributions and the transition probabilities
of the chain can be made more precise as follows:

Proposition 1 (Nair and Pollett [9]). Let m = (mj , j ∈ C) be a probability distri-
bution. Then, m is a quasistationary distribution if and only if, for some µ > 0, m is
µ-invariant for P , that is

∑

i∈C

mipij(t) = e−µtmj , j ∈ C, t ≥ 0. (1)

Thus, in a way which mirrors the familiar theory of stationary distributions, one can
interpret quasistationary distributions as eigenvectors of the transition function. How-
ever, the transition function is available explicitly in only a few simple cases, and so one
requires a means of determining quasistationary distributions directly from transition
rates of the chain. Since qij is the right-hand derivative of pij(·) near 0, an obvious
first step is to rewrite (1) as

∑

i∈C: i 6=j

mipij(t) =
(
(1− pjj(t))− (1− e−µt)

)
mj , j ∈ C, t ≥ 0,

and then divide by t and let t ↓ 0. Proceeding formally, we get
∑

i∈C: i 6=j

miqij = (qj − µ)mj , j ∈ C,

or, equivalently, ∑

i∈C

miqij = −µmj , j ∈ C. (2)

Accordingly, we shall say that m is µ-invariant for Q whenever (2) holds. The above
argument can be justified rigorously (see Proposition 2 of [18]), and so, in view of
Proposition 1, we have proved that if m is a quasistationary distribution then, for some
µ > 0, m is µ-invariant for Q. The more interesting question of when a probability
distribution, m, which satisfies (2) also satisfies (1) is answered in the statement of
our major result. It can be deduced from Theorems 3.2, 3.4 and 4.1 of [9].

Proposition 2. Let m = (mj , j ∈ C) be a probability distribution and suppose that
m is µ-invariant for Q. Then, µ ≤ ∑

j∈C mjqj0, with equality if and only if m is
a quasistationary distribution. A sufficient condition for m to be a quasistationary
distribution is that

∑
j∈C mjqj < ∞.



3. APPLICATIONS

3.1 Finite-state systems
If S is a finite set, then clearly

∑
j∈C mjqj < ∞ and so every µ-invariant probability

distribution for Q is a quasistationary distribution. Indeed, classical matrix theory
can be used to show that the q-matrix restricted to C has eigenvalues with negative
real parts, that −µ is the dominant eigenvalue (it has maximal real part), that this
eigenvalue always has multiplicity 1, and, that both the corresponding left- and right-
eigenvectors have positive entries (see [2] and [7]) ; the left eigenvector is, of course, the
quasistationary distribution. Thus, for example, in closed (finite) population models,
the stationary conditional distribution of the number in the population (conditional
on non-extinction) can be obtained as the normalized dominant left-eigenvector of the
transition-rate matrix restricted to the transient states. In most cases one is forced to
evaluate the dominant eigenvector numerically. If the number of states is reasonably
small, say 100, then one can use any of the standard methods (inverse iteration, for
example) which are widely available as part of matrix packages, such as MATLAB. If
the number of states is even moderately large, these methods are ineffective, both in
respect of storage and CPU time. For example, if there are 104 states (which would
be the case in a predator-prey system with of the order of 100 individuals), Q requires
400 Mbytes of storage ! If Q is sparse, or if it possesses a banded structure that can be
usefully exploited, then moderately large systems can be handled without difficulty.
Pollett and Stewart [14] have developed an iterative version of Arnoldi’s algorithm for
dealing with sparse q-matrices, and this has been used to evaluate the quasistationary
distribution, to within a tolerance of 10−6, for a variety of systems with of the order
of 104 states, in times ranging from 7 to 15 CPU minutes on a Sun SPARC 10. If the
number of states is very large, say 108, then it is frequently the case that deterministic
approximations [13] or diffusion approximations [12] can be used to provide accurate
estimates of the quasistationary distribution.

3.2 Birth-death processes
These are widely used in modelling ecological systems. The q-matrix of an absorbing
birth-death process is of the form

qij =





λi, if j = i + 1,

−(λi + µi), if j = i,

µi, if j = i− 1,

0, otherwise,

where the birth rates, (λi, i ≥ 0), and the death rates, (µi, i ≥ 0), satisfy λi, µi > 0,
for i ≥ 1, and λ0 = µ0 = 0. Thus, 0 is an absorbing state and C = {1, 2, . . . }
is an irreducible class. The classical theory of these processes involves the recursive
construction of a sequence of orthogonal polynomials (see van Doorn [3]). Define
(φi(·), i ≥ 1), where φi : R → R, by φ1(x) = 1, λ1φ2(x) = λ1 + µ1 − x, and, for i ≥ 2,

λiφi+1(x)− (λi + µi)φi(x) + µiφi−1(x) = −xφi(x).



Now define π = (πi, i ≥ 1) by π1 = 1 and πi =
∏i

j=2 λj−1/µj , for i ≥ 2, and let
mi = πiφi(x). It can be shown [3] that φi(x) > 0 for x in the range 0 ≤ x ≤ λ,
where λ (≥ 0) is the decay parameter of C (see [5]). Since

∑
i∈S πiqij ≤ 0, j ∈ S,

it follows, from Theorem 4.1 b(ii) of [11], that, for each fixed x in the above range,
m = (mi, i ≥ 1) satisfies (2) with µ = x. Indeed, m is uniquely determined up
to constant multiples. Proposition 2 tells us that if m can be normalized, that is,∑∞

i=1 πiφi(x) < ∞, then the normalized m will be a quasistationary distribution if
and only if

∞∑

i=1

ri(x) = 1, (3)

where ri(x) = µ−1
1 πixφi(x), a conclusion reached by van Doorn using direct methods.

Van Doorn’s Theorem 3.2 can then be used to determine all the values of x for which
(3) holds, at least under the condition

∑∞
i=1

1
λiπi

= ∞, which ensures that absorption
occurs with probability 1. If, in addition, the series A =

∑∞
i=1

1
λiπi

∑∞
j=i+1 πj diverges,

then (3) holds for all x in (0, λ], while if it converges then (3) holds if and only if
x = λ. Proposition 2 then tells us that, in either case, r(x) = (ri(x), i ≥ 1) is a
quasistationary distribution. Indeed, because m is uniquely determined for each x,
all quasistationary distributions have been obtained; if A < ∞, then there is only
one, namely r(λ), otherwise (r(x), 0 < x ≤ λ) comprises a one-parameter family of
quasistationary distributions.

3.3 The birth-death and catastrophe process

The introduction of a catastrophe component allows one to model populations which
are subject to large-scale mortality or emigration. See, for example, [6] and [15] for
studies of populations of reindeer and moose, which, after introduction into Alaska,
suffered substantial reductions in numbers owing to overbrowsing combined with effects
of severe winters; the moose population was additionally subjected to Spruce Budworm
infestation and later fire. Further contrasting examples are described in [4] and [8].
The q-matrix of the birth-death and catastrophe process is given by

qi,i+1 = aqi, i ≥ 0,

qi,i = −qi, i ≥ 0,

qi,i−k = qibk, i ≥ 2, k = 1, 2 . . . i− 1,

qi,0 = qi

∞∑

k=i

bk, i ≥ 1,

where q0 = 0, qi > 0, for i ≥ 1, a > 0, bi > 0 for at least one value of i ≥ 1 and
a+

∑∞
i=1 bi = 1. Thus, at a jump time, a birth occurs with probability a, or otherwise

a catastrophe occurs, the size of which is determined by the probabilities bi, i ≥ 1.
Clearly, 0 is an absorbing state and C = {1, 2, . . . } is an irreducible class. It is usual
to set qi = ρi, where ρ > 0, so that jumps occur at a constant “per capita” rate ρ. It is



well known [10] that the probability of absorption, starting in state i, is 1 if and only
if D := a −∑

i∈C ibi ≤ 0. Note that the process is said to be subcritical, critical or
supercritical according as D is negative, zero or positive. An important role is played
by the probability generating function, f , given by f(s) = a +

∑
i∈C bis

i+1, |s| < 1,
and the related function, b, given by b(s) = f(s)−s. In identifying the quasistationary
distribution, we shall need the following facts from branching process theory (see [1]):
b is convex on [0, 1], b(s) = 0 has a unique solution, σ, on this interval, σ = 1 or
0 < σ < 1 according as D ≥ 0 or D < 0, and, b(s) ≥ 0 on [0, σ].
On substituting the transition rates in (2), we get

−(ρ− µ)m1 +
∞∑

k=2

kρbk−1mk = 0,

(j − 1)ρamj−1 − (jρ− µ)mj +
∞∑

k=j+1

kρbk−jmk = 0, j ≥ 2.

If we try a solution of the form mj = tj , the first equation tells us that µ = −ρb′(t), and,
on substituting both of these quantities in the second equation, we find that b(t) = 0.
Hence, we may set t = σ, thus providing a positive solution to (2) with

∑
j∈C mj < ∞

whenever σ < 1. Under this latter condition, we also have
∑

j∈C mjqj =
∑

j∈C σjjρ <
∞. Thus, using Proposition 2, we have proved that the subcritical linear birth-death
and catastrophe process has a geometric quasistationary distribution, given by mj =
(1− σ)σj−1, j ∈ C, a result which is implicit in the proof of Theorem 5.1 of [10].

3.4 Computational methods for infinite-state systems

For the two infinite-state models considered above, we were able to exhibit the qua-
sistationary distribution explicitly. In cases where it cannot be, or where the form of
the quasistationary distribution is not amenable to numerical evaluation, one is forced
to use a direct computational approach. One widely used method is to truncate the
restricted q-matrix to an n× n matrix, Q(n), and construct a sequence, {m(n)}, such
that m(n) is the left-eigenvector of Q(n) associated with the eigenvalue with maximum
real part. Then, one estimates the quasistationary distribution by taking successively
larger truncations until the difference in the normalized eigenvectors is as small as
desired. For a detailed account of these procedures, see [16] and [17]. When this ap-
proach is used, the iterative Arnoldi method, referred to above, provides an efficient
means of determining the sequence {m(n)}.
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