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Abstract We consider the problem of how best to assign the service effort in a queueing
network in order to minimize the expected delay under a cost constraint. We shall study
systems with several types of customers, general service time distributions, stochastic or
deterministic routing, and a variety of service regimes. For such networks there are typically
no analytical formulae for the waiting time distributions. Thus, we shall approach the
optimal allocation problem using approximation techniques, in particular, theresidual-life
approximation(Pollett (1984)) for the distribution of queueing times. This work generalizes
results of Kleinrock (1964), who studied networks with exponentially distributed service
times.
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1 INTRODUCTION

Since their inception, queueing network models have been used to study a wide variety of
complex stochastic systems involving the flow and interaction of units. One of the most
interesting and useful applications is in the area of telecommunications networks and, in
particular, data networks. In contrast to circuit switched networks, where one or more circuits
are held simultaneously on several links connecting a source and destination node, only one
link is used at any given time by transmissions in a data network (message or packet switched
network); transmissions are received in their entirety at a given node before being transmitted
along the next link in their path through the network. If the link is busy, packets are stored
in a buffer until the link becomes available for use. Thus, the communications links are
represented by queues and the messages by customers. One of the most important measures
of performance of a data network is the total delay, the time it takes for a message to reach its
destination. We shall consider the problem of how best to allocate the link capacities (service
rates) in order to minimize the expected total delay. We shall first describe the model and
couch our description in communications network terminology.

2 THE MODEL

Suppose that there areN switching nodes, labelledn = 1, 2, . . . , N , andJ communications
links, labelledj = 1, 2, . . . , J . We shall assume that all the links are perfectly reliable and
not subject to noise, so that transmission times are determined by message length. We shall
also suppose that the time taken to switch, buffer, and (if necessary) re-assemble and ac-
knowledge, is negligible compared with the transmission times. Traffic entering the network
from external sources is assumed to be Poisson, and that which originates from nodem and
is destined for noden is offered at rateνmn. Message lengths are assumed to be mutually
independent and arbitrarily distributed with common meanµ−1 (bits, say). We shall assume
that each link operates under the the usual first-come-first-served (FCFS) discipline and that
a total effort (or capacity) ofφj (bits per second) is assigned to linkj. (We shall indicate
later how our results extend to deal with other disciplines.)

We shall allow for two possible routing procedures, that offixed routing, where there is a
unique route specified for each origin-destination pair(m,n), andrandom alternative rout-
ing, where one of a number of possible paths is chosen at random. (We do not allow for
adaptiveor dynamic routing, where routing decisions are made on the basis of the observed
traffic flow.)

For fixed routing we defineR(m,n) to be the (unique) collection of links used by a message
emanating from nodem and destined for noden. In particular, letR(m,n) = {rmn(1), . . . ,
rmn(smn)}, wheresmn is the number of links used by that message andrmn(s) is the link
used at stages along its route (note thatrmn(s), s = 1, 2, . . . , smn, are distinct).

It is perhaps surprising that random alternative routing can be accommodated within the
framework of fixed routing (see, for example, Kelly (1979), Exercise 3.1.2). If there are
a number of alternative routes for a given origin-destination pair(m,n), then one simply
provides a finer classification for messages using these routes. We label the alternative routes
as(m,n, i), i = 1, 2, . . . , N(m,n), whereN(m,n) is the number of alternatives for origin-
destination pair(m,n), and we replaceR(m,n) byR(m,n, i) = {rmni(1), . . . , rmni(smni)},
for i = 1, 2, . . . , N(m,n), where nowrmni(s) is the link used at stages along alternative



routei andsmni is the number of stages. We then replaceνmn by νmni = νmnqmni, where
qmni is the probability that alternative routei is chosen. Clearlyνmn =

∑N(m,n)
i=1 νmni, and

so the effect is to thin the Poisson stream of messages of ‘type’(m,n) into a collection of
independent Poisson streams, one for each type(m,n, i). We should think of messages as
being identified by their type, whether this be simply(m,n), for fixed routing, or the finer
classification(m,n, i), for alternative routing. For convenience, let us denote byT the set
of all types, and suppose that, for eacht in T , messages of typet arrive according to a
Poisson stream with rateνt and traverse the routeR(t) = {rt(1), . . . , rt(st)}, a collection
of st distinct links. Having established this new nomenclature, that oftype, the network
can be perceived as anetwork of queues with customers of different types(Kelly (1975))
with the queues representing the links and the customers representing the messages. Thus,
in particular, if message lengths have an exponential distribution, the model is analytically
tractable: in equilibrium, the links behaveindependently, indeed,as if they were isolated,
each with independent streams of Poisson offered traffic (independent among types). For
example, if we let

αj(t, s) =

{
νt, if rt(s) = j,

0, otherwise,

so that the arrival rate at linkj is given by

αj =
∑
t∈T

st∑
s=1

αj(t, s) ,

and the demand (in bits per second) byaj = αj/µ, then, provided the system is stable
(aj < φj for eachj), the expected number of messages at linkj (whose transmission is
incomplete) is given by

E(nj) =
aj

φj − aj
(1)

and the expected delay by

E(Wj) =
1

αj

(
aj

φj − aj

)
=

1

µφj − αj
.

3 APPROXIMATION TECHNIQUES

In order to make satisfactory progress in cases where message lengths have an arbitrary
distribution, we shall need to make one further assumption. It is similar to the celebrated
independence assumptionof Kleinrock (1964). We shall suppose that successive messages
requesting transmission along any given link have lengths which are independent and iden-
tically distributed, and that message lengths at different links are independent. Clearly a
message of a given type maintains its length as it passes through the network. However,
numerous simulation results (see, for example, Kleinrock (1964)) suggest that, even so, the
network behavesas if successive message lengths at a given node are independent. This
phenomenon can be explained by observing that the arrival process at a given node is the
result of the superposition of a generally large number of streams, and the approximation
can then be justified on the basis of limit theorems concerning the superposition of marked
point processes (see Brown and Pollett (1982) and the references contained therein). The
assumption that independence is apparent at the linksthemselvescan be justified on the basis



of the corresponding results on thinning of marked point processes (see, for example, Brown
(1979)). Kleinrock’s independence assumption differs from ours in that the message-length
distribution at a given linkj is assumed to be exponential with common meanµ−1, a natural
consequence of the usual teletraffic modelling assumption that the lengths of messages arriv-
ing from outside the network are independent and identically distributed exponential random
variables. However, although the exponential assumption is usually valid in circuit switched
networks, we should not expect it to be appropriate in the present context of message/packet
switching, since packets are of similar length. Thus, it is more realistic to assume, as we
do here, that message lengths are arbitrarily distributed. In order that this be reflected in
our independence assumption, we shall allow successive messages requesting transmission
along a given linkj to be arbitrarily distributed. Although this distribution might be the
same for each link, we shall find it no less convenient to assume that it differs from one to
another. Thus, we shall assume that at linkj message lengths have a distribution function
Fj(x) which has meanµ−1

j and varianceσ2
j .

Even under the independence assumption, our model is not analytically tractable. In partic-
ular, there are no analytical formulae for the delay distributions. We shall therefore adopt
one of the many approximation techniques. Consider a particular linkj and letQj(x) be the
distribution function of thequeueing time, that is, the period of time a message spends in the
buffer at link j beforeits transmission begins. Theresidual-life approximation, developed
by the author in (Pollett (1984)), provides an accurate approximation forQj(x):

Qj(x) '
∞∑
n=0

Pr(nj = n)G
(n)
j (x) , (2)

where

Gj(x) = µj

∫ φjx

0

(1− Fj(y)) dy

andG(n)
j (x) denotes then-fold convolution ofGj(x). The distribution ofnj, the number of

messages at linkj, used in (2), is that of a correspondingquasireversible network(see Kelly
(1979)); specifically, a network ofsymmetricqueues obtained by imposing a symmetry con-
dition at each linkj. In the present case, this amounts to replacing the FCFS discipline with
a preemptive-resume last-come-first-served discipline at each link in the network. The term
residual-life approximationcomes from renewal theory;Gj(x) is theresidual-life distribu-
tion corresponding to the (lifetime) distributionFj(x/φj).

One immediate consequence of (2) is that the expected queueing timeQ̄j is approximately

1 + µ2
jφ

2
j

2µjφj
E(nj) ,

whereE(nj) is the expected number of messages at linkj in the quasireversible network.
Hence, the expected delay at linkj is approximated as follows:

E(Wj) '
1

µjφj
+

1 + µ2
jφ

2
j

2µjφj
E(nj) . (3)

In the residual-life approximation, it is onlyE(nj) which changes when the service discipline
is altered. For the present FCFS discipline,E(nj) is given by (1) withaj = αj/µj.



Simulation results presented in (Pollett (1984)) justify the approximation by assessing its ac-
curacy under a variety of conditions. Even for relatively small networks with generous mix-
ing of message streams, it is accurate, and the accuracy improves as the size and complexity
of the network increases. (The approximation is very accurate in the tails of the queueing
time distributions and so it allows an accurate prediction to be made of the likelihood of ex-
treme queueing times.) For moderately large networks, the approximation becomes worse as
the coefficient of variationµjσj of the message-length distribution deviates markedly from 1,
the value which obtains in the exponential case.

4 OPTIMAL ALLOCATION OF EFFORT

We now turn our attention to the problem of how best to assign resources so that the average
network delay, or equivalently the average number of messages in the network, is minimized.
We shall suppose that there is some overall network budgetF (dollars) which cannot be
exceeded, and that the cost of operating linkj is a functionfj of its capacity. Suppose
that the cost of operating linkj is proportional toφj, that is,fj(φj) = fjφj (the units of
fj are dollars per unit of capacity (or dollar-seconds per bit)). Thus, we should choose the
capacities subject to the cost constraint

J∑
j=1

fjφj = F . (4)

We shall suppose that the average delay of messages at linkj is adequately approximated
by (3). Thus, we shall assume that

E(Wj) =
1

µjφj
+

1 + µ2
jσ

2
j

2µjπj

(
αj

µjφj − αj

)
.

Using Little’s Theorem, we can obtain an (approximate) expression for the mean numberm̄
of messages in the network. This is

m̄ =
J∑
j=1

αj

{
1

µjφj
+

αj(1 + µ2
jσ

2
j )

2µjφj(µjφj − αj)

}
=

J∑
j=1

aj

{
1

φj
+

aj(1 + cj)

2φj(φj − aj)

}
,

wherecj = µ2
jφ

2
j is the squared coefficient of variation of the message-length distribution

Fj(x). We seek to minimizēm overφ1, . . . , φJ subject to (4).

To this end, we introduce a lagrange multiplierλ−2; our problem then becomes one of mini-
mizing

L(φ1, . . . , φJ ;λ−2) = m̄+
1

λ2

(
J∑
j=1

fjφj − F

)
.

Setting∂L/∂φj = 0 for fixed j yields a quartic polynomial equation inφj, namely

2fjφ
4
j − 4ajfjφ

3
j + 2aj(ajfj − λ2)φ2

j − 2εja
2
jλ

2φj + εja
3
jλ

2 = 0, (5)

whereεj = cj − 1, and our immediate task is to find solutions such thatφj > aj (recall that
this latter condition is a requirement for stability). The task is simplified by observing that
the transformation

φjfj/F → φj, ajfj/F → aj, λ
2/F → λ2, (6)



reduces the problem to one with unit costsfj = F = 1, whence the polynomial equation (5)
becomes

2φ4
j − 4ajφ

3
j + 2aj(aj − λ2)φ2

j − 2εja
2
jλ

2φj + εja
3
jλ

2 = 0, (7)

and the constraint becomes

φ1 + φ2 + · · ·+ φJ = 1 . (8)

If transmission times are exponentially distributed (εj = 0 for eachj), it is easy to verify
that (7) has a unique solution on(aj,∞) given byφj = aj + |λ|a1/2

j . Upon application of
the constraint (8) we arrive at the optimal capacity assignment

φj = aj +

(
1−

J∑
k=1

ak

)
a

1/2
j∑J

k=1 a
1/2
k

,

for unit costs. In the case of general costs this becomes

φj = aj +
1

fj

(
F −

J∑
k=1

fkak

)
(fjaj)

1/2∑J
k=1(fkak)1/2

,

after applying the transformation (6). This is a result obtained by Kleinrock (1964) (see
also Kelly (1979)): the allocation proceeds by first assigning enough capacity to meet the
demandaj, at each linkj, and then allocating a proportion of the affordable excess capacity,

1

fj

(
F −

J∑
k=1

fkak

)

(that which could be afforded to linkj), in proportion to the square root of the costfjaj of
meeting that demand. In the case where some or all of theεj, j = 1, 2, . . . , J , deviate from
zero, (7) is difficult to solve analytically. We shall adopt a perturbation technique, assuming
that the lagrange multiplier and the optimal allocation take the following forms:

λ = λ0 +
J∑
k=1

λ1kεk +O(ε2) , φj = φ0j +
J∑
k=1

φ1jkεk +O(ε2) , j = 1, . . . , J, (9)

where byO(ε2) we mean terms of orderεiεk. The zero-th order terms come from Kleinrock’s
solution: specifically,φ0j = aj + λ0a

1/2
j , j = 1, . . . , J , where

λ0 =
1−

∑J
k=1 ak∑J

k=1 a
1/2
k

.

On substituting (9) into (7) we obtain an expression forφ1jk in terms ofλ1k, which in turn
is calculated using the constraint (8) and by settingεk = δkj (the Kronecker delta). We find
that the optimal allocation, to first order, is

φj = aj + λ0a
1/2
j −

a
1/2
j∑J

k=1 a
1/2
k

∑
k 6=j

bkεk +

(
1−

a
1/2
j∑J

k=1 a
1/2
k

)
bjεj , (10)



where

bk =
1

4
λ0a

3/2
k

ak + 2λ0a
1/2
k

(ak + λ0a
1/2
k )2

.

For most practical applications, higher-order solutions are required. To achieve this we can
simplify matters by using a single perturbationε = max1≤j≤J |εj|. For eachj we then define
a quantityβj = εj/ε and writeφj andλ as power series inε:

λ =
∞∑
n=0

λnε
n , φj =

∞∑
n=0

φnjε
n , j = 1, . . . , J. (11)

Substituting as before into (7), and using (8), gives rise to an iterative scheme, details of
which can be found in (Pollett (1982)). The first-order approximation is useful, none-the-
less, in dealing with networks whose message-length distributions are all ‘close’ to exponen-
tial in the sense that their coefficients of variation do not differ significantly from 1. It is also
useful in providing some insight into how the allocation varies asεj, for fixed j, varies. Let
φ′j, j = 1, 2, . . . , J , be the new optimal allocation obtained after incrementingεj by a small
quantityδ > 0. We find that to first order inδ

φ′j − φj =

(
1−

a
1/2
j∑J

k=1 a
1/2
k

)
bjδ > 0

and, fori 6= j,

φ′i − φi = − a
1/2
i∑J

k=1 a
1/2
k

(φ′j − φj) < 0 .

Thus, if the coefficient of variation of the message-length distribution at a given linkj is in-
creased (respectively decreased) by a small quantityδ, then there is an increase (respectively
decrease) in the optimal allocation at linkj which is proportional toδ. All other links experi-
ence a complementary decrease (respectively increase) in their allocations and the resulting
deficit is reallocated in proportion to the square root of the demand.

In (Pollett (1982)) empirical estimates were obtained for the radii of convergence of the
power series (11) for the optimal allocation. In all cases considered there, the closest pole to
the origin was on the negative real axis outside the physical limits forεi, which are of course
−1 ≤ εj <∞. The perturbation technique is therefore useful for networks whose message-
length distributions are, for example, Erlang (gamma) (−1 < εj < 0) or, for example,
hyperexponential (0 < εj <∞) with a not too large a coefficient of variation.

So far we have assumed that the capacity does not depend on the state of the link (as a
consequence of the FCFS discipline), and, that the cost of operating a link is a linear function
of its capacity. Let us briefly consider some other possibilities. Letφj(n) be the effort
assigned to linkj when there aren messages present. If, for example,φj(n) = nφj/(n +
η − 1), whereη is a positive constant, the zero-th order allocation, optimal under (4), is
precisely the same as before (the caseη = 1). For values ofη greater than 1 the capacity
increases as the number of messages at linkj increases and levels off at a constant valueφj
as the number becomes large. If we allowη to depend onj we get a similar allocation but
with the factor

(fjaj)
1/2∑J

k=1(fkak)1/2
replaced by

(fjηjaj)
1/2∑J

k=1(fkηkak)1/2
.



See (Kelly (1979)) for further details. The higher order analysis is very nearly the same as
before. The factor1 + cj is replaced byηj(1 + cj); for the sake of brevity, we shall omit the
details.

As another example, suppose that the capacity function is linear, that isφj(n) = φjn, and
that message lengths are exponentially distributed. In this case, the total number of messages
in the system has a Poisson distribution with mean

∑J
j=1 aj/φj, and it is elementary to show

that the optimal allocation subject to (4) is given by

φj =
(fjaj)

1/2

fj
∑J

k=1(fkak)1/2
F, j = 1, . . . , J.

It is interesting to note that we get aproportional allocation,φj/φk = aj/ak, in this case
if (4) is replaced by

∑J
j=1 log φj = 1. More generally, we might use the constraint

J∑
j=1

fj log(gjφj) = F

to account for ‘decreasing costs’, when costs become less with each increase in capacity.
Under this constraint, the optimal allocation isφj = λaj/fj, where

log λ =
F −

∑J
k=1 fk log(gkak/fk)∑J

k=1 fk
.
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