Next: About this document ...
Up: Quasi-stationary Distributions: A Bibliography
Previous: Chronological order
-
- 1
-
J. Abate and W. Whitt.
Spectral theory for skip-free Markov chains.
Probab. Eng. Inf. Sci., 3:77-88, 1989.
- 2
-
B.M. Al-Eideh.
A central limit theorem for absorbing Markov chains with
absorbing states.
J. Inform. Optim. Sci., 15:387-392, 1994.
- 3
-
B.M. Al-Eideh.
Quasi-stationary distributions in Markov chains with absorbing
subchains.
J. Inform. Optim. Sci., 16:281-286, 1995.
- 4
-
B.M. Al-Eideh and M.H. Al-Towaiq.
A problem related to quasi-stationary distributions of Markov
chains.
J. Statist. Res., 24:67-76, 1990.
- 5
-
M.H. Al-Towaiq and B.M. Al-Eideh.
An application of the McNemar test for the existence of absorbing
subchains in a given Markov chain.
J. Inform. Optim. Sci., 12:467-475, 1991.
- 6
-
M.H. Al-Towaiq and B.M. Al-Eideh.
Quasi-stationary distribution in absorbing Markov chains with
absorbing states.
J. Inform. Optim. Sci., 15:89-95, 1994.
- 7
-
E. Albert.
Markov chains and
-invariant measures.
J. Math. Anal. Appl., 6:404-418, 1963.
- 8
-
W.J. Anderson.
Continuous-Time Markov Chains: An Applications-Oriented
Approach.
Springer-Verlag, New York, 1991.
- 9
-
V.V. Anisimov and S.G. Pushkin.
Limiting conditional distribution for a homogeneous Markov chain
with a set of strongly communicating states.
Dokl. Akad. Nauk Ukrain. SSR Ser. A, 12:61-63, 1985.
- 10
-
E. Arjas and E. Nummelin.
Semi-Markov processes and
-invariant distributions.
Stochastic Process. Appl., 6:53-64, 1977.
- 11
-
E. Arjas, E. Nummelin, and R.L. Tweedie.
Semi-Markov processes on a general state space:
-theory and
quasistationarity.
J. Austral. Math. Soc. Ser. A, 30:187-200, 1980/81.
- 12
-
J. R. Artalejo, A. Economou, and M. J. Lopez-Herrero.
The maximum number of infected individuals in SIS epidemic models:
computational techniques and quasi-stationary distributions.
J. Comput. Appl. Math., 233(10):2563-2574, 2010.
- 13
-
A. Asselah and F. Castell.
Existence of quasi-stationary measures for asymmetric attractive
particle systems on
.
Ann. Appl. Probab., 13:1569-1590, 2003.
- 14
-
A. Asselah and P. Dai Pra.
Quasi-stationary measures for conservative dynamics in the infinite
lattice.
Ann. Probab., 29:1733-1754, 2001.
- 15
-
A. Asselah and P.A. Ferrari.
Regularity of quasi-stationary measures for simple exclusion in
dimension
.
Ann. Probab., 30:1913-1932, 2002.
- 16
-
A. P. F. Atman and Ronald Dickman.
Quasistationary distributions for the Domany-Kinzel stochastic
cellular automaton.
Phys. Rev. E (3), 66(4):046135, 9, 2002.
- 17
-
A.D. Barbour.
On a functional central limit theorem for Markov population
processes.
Adv. Appl. Probab., 6:21-39, 1974.
- 18
-
A.D. Barbour.
Quasi-stationary distributions in Markov population processes.
Adv. Appl. Probab., 8:296-314, 1976.
- 19
-
A.D. Barbour.
Density dependent Markov population processes.
Preprint, Gonville and Caius College, Cambridge, 1979.
- 20
-
A.D. Barbour.
Density dependent Markov population processes.
In W. Jager, H. Rost, and P. Tautu, editors, Biological growth
and spread: mathematical theories and applications (Proc. Conf., Heidelberg,
1979), Lecture Notes in Biomathematics, volume 38, pages 36-49. Springer,
Berlin, 1980.
- 21
-
A.D. Barbour.
Equilibrium distributions for Markov population processes.
Adv. Appl. Probab., 12:591-614, 1980.
- 22
-
M.S. Bartlett.
On theoretical models for competitive and predatory biological
systems.
Biometrika, 44:27-42, 1957.
- 23
-
M.S. Bartlett.
Stochastic Population Models in Ecology and Epidemiology.
Methuen, London, 1960.
- 24
-
N.G. Bean, L. Bright, G. Latouche, C.E.M. Pearce, P.K. Pollett, and P.G.
Taylor.
The quasistationary behaviour of quasi-birth-and-death processes.
Ann. Appl. Probab., 7:134-155, 1997.
- 25
-
N.G. Bean, P.K. Pollett, and P.G. Taylor.
The quasistationary distributions of homogeneous
quasi-birth-and-death processes.
In Richard J. Wilson, D.N. Pra Murthy, and Shunji Osaki, editors,
Proceedings of the 2nd Australia-Japan Workshop on Stochastic Models in
Engineering, Technology and Management, pages 44-55, The University of
Queensland, 1996. Technology Management Centre.
- 26
-
N.G. Bean, P.K. Pollett, and P.G. Taylor.
The quasistationary distributions of level-independent
quasi-birth-and-death processes. Special issue in honor of Marcel F.
Neuts.
Comm. Statist. Stochastic Models, 14:389-406, 1998.
- 27
-
N.G. Bean, P.K. Pollett, and P.G. Taylor.
The quasistationary distributions of level-dependent
quasi-birth-and-death processes.
Comm. Statist. Stochastic Models, 16:511-541, 2000.
- 28
-
M. Bebbington, P.K. Pollett, and X. Zheng.
Dual constructions for pure-jump Markov processes.
Markov Processes and Related Fields, 1:513-558, 1995.
- 29
-
M.S. Bebbington.
Evaluating quasistationary behaviour of epidemic models by means of
parallel aggregation / disaggregation.
In P. Binning, H. Bridgman, and B Williams, editors, Proceedings
of the International Congress on Modelling and Simulation 1995, volume 2,
pages 203-208, Newcastle, Australia, 1995. Modelling and Simulation Society
of Australia.
- 30
-
M.S. Bebbington.
Parallel implementation of an iterative aggregation / disaggregation
method for evaluating quasi-stationary behaviour in continuous-time Markov
chains.
Parallel Computing, 23:1545-1559, 1997.
- 31
-
M.S. Bebbington and D.E. Stewart.
An iterative aggregation / disaggregation procedure for modelling the
long-term behaviour of continuous-time evanescent random processes.
J. Statist. Comput. Simulat., 56:77-95, 1996.
- 32
-
N.G. Becker.
A stochastic model for two interacting populations.
J. Appl. Probab., 7:544-564, 1970.
- 33
-
J. Bertoin.
Exponential decay and ergodicity of completely asymmetric Lévy
processes in a finite interval.
Ann. Appl. Probab., 1:156-169, 1997.
- 34
-
J. Bertoin and R.A. Doney.
On conditioning a random walk to stay nonnegative.
Ann. Probab., 22:2152-2167, 1994.
- 35
-
J. Bertoin and R.A. Doney.
On conditioning random walks in an exponential family to stay
nonnegative.
In Séminaire de Probabilités, XXVIII, volume 1583 of Lecture Notes in Math., pages 116-121. Springer, Berlin, 1994.
- 36
-
J. Bertoin and R.A. Doney.
Some asymptotic results for transient random walks.
Adv. Appl. Probab., 28:207-226, 1996.
- 37
-
A. Bobrowski.
Quasi-stationary distributions of a pair of Markov chains related
to time evolution of a DNA locus.
Adv. Appl. Probab., 36:57-77, 2004.
- 38
-
E. Bolthausen.
On a functional central limit theorem for random walks conditioned to
stay positive.
Ann. Probability, 4:480-485, 1976.
- 39
-
R.J. Boucherie.
On the quasi-stationary distribution for queueing networks with
defective routing.
J. Austral. Math. Soc. Ser. B, 38:454-463, 1997.
- 40
-
R.J. Boucherie and E.A. van Doorn.
Uniformization for
-positive Markov chains. Special
issue in honor of Marcel F. Neuts.
Comm. Statist. Stochastic Models, 14:171-186, 1998.
- 41
-
L. Breyer, G.O. Roberts, and J.S. Rosenthal.
A note on geometric ergodicity and floating-point roundoff error.
Statist. Probab. Lett., 53:123-127, 2001.
- 42
-
L.A. Breyer.
Quasistationarity and conditioned Markov processes.
PhD thesis, Department of Mathematics, The University of Queensland,
1997.
- 43
-
L.A. Breyer and A.G. Hart.
Approximations of quasistationary distributions for Markov chains.
In Richard J. Wilson, D.N. Pra Murthy, and Shunji Osaki, editors,
Proceedings of the 2nd Australia-Japan Workshop on Stochastic Models in
Engineering, Technology and Management, pages 81-90, The University of
Queensland, 1996. Technology Management Centre.
- 44
-
L.A. Breyer and A.G. Hart.
Approximations of quasi-stationary distributions for Markov chains.
Math. Computer Modelling, 31:69-79, 2000.
- 45
-
L.A. Breyer and G.O. Roberts.
A quasi-ergodic theorem for evanescent processes.
Stochastic Process. Appl., 84:177-186, 1999.
- 46
-
P.J. Brockwell, J. Gani, and S.I. Resnick.
Birth, immigration and catastrophe processes.
Adv. Appl. Probab., 14:709-731, 1982.
- 47
-
M. Brown.
Spectral analysis, without eigenvectors, for Markov chains.
Probab. Eng. Inf. Sci., 5:131-144, 1991.
- 48
-
F.M. Buckley and P.K. Pollett.
Analytical methods for a stochastic mainland-island metapopulation
model.
In R.S. Anderssen, R.D. Braddock, and L.T.H. Newham, editors, Proceedings of the 18th World IMACS Congress and MODSIM09 International
Congress on Modelling and Simulation, pages 1767-1773, Canberra, Australia,
2009. Modelling and Simulation Society of Australia and New Zealand and
International Association for Mathematics and Computers in Simulation.
- 49
-
F.M. Buckley and P.K. Pollett.
Limit theorems for discrete-time metapopulation models.
Probab. Surv., 7:53-83, 2010.
- 50
-
M. Buiculescu.
Quasi-stationary distributions for continuous-time Markov processes
with a denumerable set of states.
Rev. Roum. Math. Pures et Appl., XVII:1013-1023, 1972.
- 51
-
M. Buiculescu.
Limiting conditional probabilities for denumerable Markov chains.
In B. Bereanu, M. Iosifescu, T. Postelnicu, and P. Tautu,
editors, Proceedings of the Fourth Conference on Probability Theory
(Brasov, 1971), pages 121-128, Bucharest, 1973. Editura Academiei
Republicii Socialiste Romnia.
- 52
-
M. Buiculescu.
On quasi-stationary distributions for multi-type Galton-Watson
processes.
J. Appl. Probab., 12:60-68, 1975.
- 53
-
M. Buiculescu.
Ergodic properties of
-recurrent Markov processes.
Stud. Cerc. Mat., 41:455-460, 1989.
- 54
-
H. Callaert.
Geometric and exponential decay in derived Markov chains.
J. Appl. Probab., 11:388-393, 1974.
- 55
-
H. Callaert.
On the rate of convergence in birth-and-death processes.
Bull. Soc. Math. Belg., 26:173-184, 1974.
- 56
-
H. Callaert and J. Keilson.
On exponential ergodicity and spectral structure for birth-death
processes, I.
Stochastic Process. Appl., 1:187-216, 1973.
- 57
-
H. Callaert and J. Keilson.
On exponential ergodicity and spectral structure for birth-death
processes, II.
Stochastic Process. Appl., 1:217-235, 1973.
- 58
-
Patrick Cattiaux, Pierre Collet, Amaury Lambert, Servet Martínez, Sylvie
Méléard, and Jaime San Martín.
Quasi-stationary distributions and diffusion models in population
dynamics.
Ann. Probab., 37(5):1926-1969, 2009.
- 59
-
J.A. Cavender.
Quasistationary distributions of birth-death processes.
Adv. Appl. Probab., 10:570-586, 1978.
- 60
-
T. Chan.
Large deviations and quasi-stationarity for density-dependent
birth-death processes.
J. Austral. Math. Soc. Ser. B, 40:238-256, 1998.
- 61
-
T. Chan, P.K. Pollett, and M.C. Weinstein.
Quantitative risk stratification in markov chains with limiting
conditional distributions.
Medical Decision Making, 29:532-540, 2009.
- 62
-
M.F. Chen and D.W. Strook.
-invariant measures.
In Séminaire de Probabilités XVII, Lecture Notes in
Mathematics 986, pages 205-220. Springer-Verlag, Berlin, 1983.
- 63
-
C.K. Cheong.
Geometric convergence of semi-Markov transition probabilities.
Z. Wahrsch. Verw. Gebiete, 7:122-130, 1967.
- 64
-
C.K. Cheong.
Ergodic and ratio limit theorems for
-recurrent semi-Markov
processes.
Z. Wahrsch. Verw. Gebiete, 9:270-286, 1968.
- 65
-
C.K. Cheong.
Correction: Quasi-stationary distributions in semi-Markov
processes.
J. Appl. Probab., 7:788, 1970.
- 66
-
C.K. Cheong.
Quasi-stationary distributions in semi-Markov processes.
J. Appl. Probab., 7:388-399, 1970.
- 67
-
C.K. Cheong.
Quasi-stationary distributions for the continuous-time
Galton-Watson process.
Bull. Soc. Math. Belg., 24:343-350, 1972.
- 68
-
D. Clancy, P.D. O'Neill, and P.K. Pollett.
Approximations for the long-term behaviour of an open-population
epidemic model.
Methodology Comput. Appl. Probab., 3:75-95, 2001.
- 69
-
D. Clancy and P.K. Pollett.
A note on quasi-stationary distributions of birth-death processes and
the sis logistic epidemic.
J. Appl. Probab., 40:821-825, 2003.
- 70
-
C. Cocozza-Thivent and M. Roussignol.
Comparaison des lois stationnaire et quasi-stationnaire d'un
processus de Markov et application à la fiabilité.
In Séminaire de Probabilités, XXX, volume 1626 of Lecture Notes in Math., pages 24-39. Springer, Berlin, 1996.
- 71
-
H. Cohn.
A ratio limit theorem for the finite nonhomogeneous Markov chains.
Israel J. Math., 19:329-334, 1974.
- 72
-
P. Collet, S. Martínez, and J. San Martín.
Asymptotic laws for one-dimensional diffusions conditioned to
nonabsorption.
Ann. Probab., 23:1300-1314, 1995.
- 73
-
P. Collet, S. Martínez, and J. San Martín.
Ratio limit theorems for a Brownian motion killed at the boundary
of a Benedicks domain.
Ann. Probab., 27:1160-1182, 1999.
- 74
-
P. Collet, S. Martínez, and B. Schmitt.
Quasi-stationary distribution and Gibbs measure of expanding
systems.
Nonlinear Phenomena and Complex Systems, 1:205-219, 1996.
- 75
-
P. Coolen-Schrijner, A.G. Hart, and P.K. Pollett.
Quasistationarity of continuous-time Markov chains with positive
drift.
J. Austral. Math. Soc. Ser. B, 41:423-441, 2000.
- 76
-
P. Coolen-Schrijner and P.K. Pollett.
Quasi-stationarity of discrete-time Markov chains with drift to
infinity.
Methodology Comput. Appl. Probab., 1:81-96, 1999.
- 77
-
Pauline Coolen-Schrijner and Erik A. van Doorn.
Quasi-stationary distributions for a class of discrete-time Markov
chains.
Methodol. Comput. Appl. Probab., 8(4):449-465, 2006.
- 78
-
Pauline Coolen-Schrijner and Erik A. van Doorn.
Quasi-stationary distributions for birth-death processes with
killing.
J. Appl. Math. Stoch. Anal., pages Art. ID 84640, 15, 2006.
- 79
-
D.J. Daley.
Quasi-stationary behaviour of a left-continuous random walk.
Ann. Math. Statist., 40:532-539, 1969.
- 80
-
S. Dambrine and M. Moreau.
Note on the stochastic theory of a self-catalytic chemical reaction,
I.
Physica, 106A:559-573, 1981.
- 81
-
S. Dambrine and M. Moreau.
Note on the stochastic theory of a self-catalytic chemical reaction,
II.
Physica, 106A:574-588, 1981.
- 82
-
S.J. Darlington and P.K. Pollett.
Quasistationarity in continuous-time Markov chains where absorption
is not certain.
J. Appl. Probab., 37:598-600, 2000.
- 83
-
J.N. Darroch and E. Seneta.
On quasi-stationary distributions in absorbing discrete-time Markov
chains.
J. Appl. Probab., 2:88-100, 1965.
- 84
-
J.N. Darroch and E. Seneta.
On quasi-stationary distributions in absorbing continuous-time finite
Markov chains.
J. Appl. Probab., 4:192-196, 1967.
- 85
-
J.R. Day.
Mathematical Models of Metapopulation Dynamics.
PhD thesis, Department of Applied Mathematics, The University of
Adelaide, 1995.
- 86
-
J.R. Day and H.P. Possingham.
A stochastic metapopulation model with variable patch size and
position.
Theoret. Pop. Biol., 48:333-360, 1995.
- 87
-
Ronald Dickman and Ronaldo Vidigal.
Quasi-stationary distributions for stochastic processes with an
absorbing state.
J. Phys. A, 35(5):1147-1166, 2002.
- 88
-
R.A. Doney.
A note on conditioned random walk.
J. Appl. Probab., 20:409-412, 1983.
- 89
-
R.A. Doney.
Conditional limit theorems for asymptotically stable random walks.
Z. Wahrsch. Verw. Gebiete, 70:351-360, 1985.
- 90
-
R.A. Doney.
The Martin boundary and ratio limit theorems for killed random
walks.
J. London Math. Soc., 58:761-768, 1998.
- 91
-
M.I. Dykman, T. Horita, and J. Ross.
Statistical distribution and stochastic resonance in periodically
driven chemical-system.
J. Chem. Phys., 103:966-972, 1995.
- 92
-
S. Elmes, P. Pollett, and D. Walker.
-invariant measures and quasistationary distributions for
continuous-time Markov chains when absorption is not certain.
In Richard J. Wilson, D.N. Pra Murthy, and Shunji Osaki, editors,
Proceedings of the 2nd Australia-Japan Workshop on Stochastic Models in
Engineering, Technology and Management, pages 131-140, The University of
Queensland, 1996. Technology Management Centre.
- 93
-
S. Elmes, P. Pollett, and D. Walker.
Further results on the relationship between
-invariant measures
and quasi-stationary distributions for absorbing continuous-time Markov
chains.
Math. Computer Modelling, 31:107-113, 2000.
- 94
-
K. Enderle and H. Hering.
Ratio limit theorems for branching Orstein Uhlenbeck processes.
Stochastic Process. Appl., 13:75-85, 1982.
- 95
-
L.S. Evans.
An upper bound for the mean of Yaglom's limit.
J. Appl. Probab., 15:199-201, 1978.
- 96
-
W.J. Ewens.
The diffusion equation and a pseudo-distribution in genetics.
J. Roy. Statist. Soc., Ser B, 25:405-412, 1963.
- 97
-
W.J. Ewens.
The pseudo-transient distribution and its uses in genetics.
J. Appl. Probab., 1:141-156, 1964.
- 98
-
I.I. Ezhov and V.N. Reshetnyak.
A modification of the branching process.
Ukranian Math. J., 35:28-33, 1983.
- 99
-
P.A. Ferrari, H. Kesten, and S. Martínez.
-positivity, quasi-stationary distributions and ratio limit
theorems for a class of probabilistic automata.
Ann. Appl. Probab., 6:577-616, 1996.
- 100
-
P.A. Ferrari, H. Kesten, S. Martínez, and P. Picco.
Existence of quasi-stationary distributions. A renewal dynamic
approach.
Ann. Probab., 23:501-521, 1995.
- 101
-
P.A. Ferrari and N. Lopes Garcia.
One-dimensional loss networks and conditioned
queues.
J. Appl. Probab., 35:963-975, 1998.
- 102
-
P.A. Ferrari and S. Martínez.
Quasi-stationary distributions: continued fraction and chain sequence
criteria for recurrence.
Resenhas, 1:321-333, 1994.
- 103
-
P.A. Ferrari, S. Martínez, and P. Picco.
Some properties of quasi-stationary distributions in the birth-death
chains: a dynamical approach.
In Instabilities and Non-Equilibrium Structures III, pages
177-187. Kluwer, Dordrecht, 1991.
- 104
-
P.A. Ferrari, S. Martínez, and P. Picco.
Existence of nontrivial quasi-stationary distributions in the
birth-death chain.
Adv. Appl. Probab., 24:795-813, 1992.
- 105
-
P.A. Ferrari, S. Martínez, and J. San Martín.
Phase transition for absorbed Brownian motion with drift.
J. Statist. Phys., 86:213-231, 1997.
- 106
-
Pablo A. Ferrari and Nevena Maric.
Quasi stationary distributions and Fleming-Viot processes in
countable spaces.
Electron. J. Probab., 12:no. 24, 684-702 (electronic), 2007.
- 107
-
R. Fierro, S. Martínez, and J. San Martín.
Limiting conditional and conditional invariant distributions for the
Poisson process with negative drift.
J. Appl. Probab., 36:1194-1209, 1999.
- 108
-
D.C. Flaspohler.
Quasi-stationary distributions for absorbing continuous-time
denumerable Markov chains.
Ann. Inst. Statist. Math., 26:351-356, 1974.
- 109
-
D.C. Flaspohler and P.T. Holmes.
Additional quasi-stationary distributions for semi-Markov
processes.
J. Appl. Probab., 9:671-676, 1972.
- 110
-
S.R. Foguel.
Ratio limit theorems for Markov processes.
Israel J. Math., 7:384-392, 1969.
- 111
-
S.R. Foguel and M. Lin.
Some ratio limit theorems for Markov operators.
Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 23:55-66,
1972.
- 112
-
J.H. Folkman and S.C. Port.
On Markov chains with the strong ratio limit property.
J. Math. Mech., 15:113-121, 1966.
- 113
-
J. Geiger.
A new proof of Yaglom's exponential limit law.
In Mathematics and computer science (Versailles, 2000), Trends
Math., pages 245-249. Birkhäuser, Basel, 2000.
- 114
-
P. Gerl.
A ratio limit theorem.
In Conference on Random Walks (Kleebach, 1979) (French),
volume 74 of Astérisque, pages 7-14. Soc. Math. France, Paris, 1980.
- 115
-
R.J. Gibbens, P.J. Hunt, and F.P. Kelly.
Bistability in communications networks.
In G.R. Grimmett and D.J.A. Welsh, editors, Disorder in Physical
Systems, pages 113-127. Oxford University Press, Oxford, 1990.
- 116
-
D. Gibson and E. Seneta.
Augmented truncations of infinite stochastic matrices.
J. Appl. Probab., 24:600-608, 1987.
- 117
-
D. Gibson and E. Seneta.
Monotone infinite stochastic matrices and their augmented
truncations.
Stochastic Process. Appl., 24:287-292, 1987.
- 118
-
M.E. Gilpin and I. Hanski.
Metapopulation Dynamics.
Academic Press, New York, 1991.
- 119
-
M.E. Gilpin and B.L. Taylor.
Reduced dimensional population transition matrices: extinction
distributions from Markovian dynamics.
Theoret. Pop. Biol., 46:121-130, 1994.
- 120
-
E. Giné, V. Koltchinskii, and J.A. Wellner.
Ratio limit theorems for empirical processes.
In Stochastic inequalities and applications, volume 56 of Progr. Probab., pages 249-278. Birkhäuser, Basel, 2003.
- 121
-
J. Glover.
Quasistationary distributions, eigenmeasures, and eigenfunctions of
Markov processes.
Progr. Probab. Statist., 9:71-98, 1986.
- 122
-
Peter W. Glynn and Hermann Thorisson.
Two-sided taboo limits for Markov processes and associated perfect
simulation.
Stochastic Process. Appl., 91(1):1-20, 2001.
- 123
-
Peter W. Glynn and Hermann Thorisson.
Structural characterization of taboo-stationarity for general
processes in two-sided time.
Stochastic Process. Appl., 102(2):311-318, 2002.
- 124
-
P. Good.
The limiting behaviour of transient birth and death processes
conditioned on survival.
J. Austral. Math. Soc. Ser. B, 8:716-722, 1968.
- 125
-
H. Göran.
On the quasi-stationary distribution of a stochastic Ricker model.
Stochastic Process. Appl., 70:243-263, 1997.
- 126
-
F. Gosselin.
Reconciling theoretical approaches to stochastic patch-occupancy
metapopulation models.
Bull. Math. Biol., 60:955-971, 1998.
- 127
-
F. Gosselin.
Asymptotic behavior of absorbing Markov chains conditional on
nonabsorption for applications in conservation biology.
Ann. Appl. Probab., 11:261-284, 2001.
- 128
-
J. Grasman.
The expected extinction time of a population within a system of
interacting biological populations.
Bull. Math. Biol., 58:555-568, 1996.
- 129
-
B. Gray, P.K. Pollett, and H.J. Zhang.
On the existence of uni-instantaneous
-processes with a given
finite
-invariant measure.
J. Appl. Probab., 42:713-725, 2005.
- 130
-
P.J. Green.
Generalizing the Yaglom limit theorems.
In Recent developments in statistics (Proc. European Meeting
Statisticians, Grenoble, 1976), pages 441-444. North-Holland, Amsterdam,
1977.
- 131
-
M. Gyllenberg and D.S. Silvestrov.
Quasi-stationary distributions of a stochastic metapopulation model.
J. Math. Biol., 33:35-70, 1994.
- 132
-
M. Gyllenberg and D.S. Silvestrov.
Quasi-stationary phenomena for semi-Markov processes.
In Semi-Markov models and applications (Compiègne, 1998),
pages 33-60. Kluwer Acad. Publ., Dordrecht, 1999.
- 133
-
M. Gyllenberg and D.S. Silvestrov.
Nonlinearly perturbed regenerative processes and pseudo-stationary
phenomena for stochastic systems.
Stochastic Process. Appl., 86:1-27, 2000.
- 134
-
I. Hanski.
Metapopulation Ecology.
Oxford University Press, Oxford, UK, 1999.
- 135
-
F.B. Hanson and H.C. Tuckwell.
Persistence times of populations with large random fluctuations.
Theoret. Pop. Biol., 14:46-61, 1978.
- 136
-
F.B. Hanson and H.C. Tuckwell.
Logistic growth with random density independent disasters.
Theoret. Pop. Biol., 19:1-18, 1981.
- 137
-
A.G. Hart.
Quasistationary distributions for continuous-time Markov
chains.
PhD thesis, Department of Mathematics, The University of Queensland,
1997.
- 138
-
A.G. Hart, S. Martínez, and J. San Martín.
The
-classification of continuous-time birth-and-death
processes.
Adv. Appl. Probab., 35:1111-1130, 2003.
- 139
-
A.G. Hart and P.K. Pollett.
Direct analytical methods for determining quasistationary
distributions for continuous-time Markov chains.
In C.C. Heyde, Yu.V. Prohorov, R. Pyke, and S.T. Rachev, editors,
Athens Conference on Applied Probability and Time Series Analysis,
Volume I: Applied Probability, In Honour of J.M. Gani, Lecture Notes in
Statistics 114, pages 116-126. Springer-Verlag, New York, 1996.
- 140
-
A.G. Hart and P.K. Pollett.
New methods for determining quasistationary distributions for
Markov chains.
In Richard J. Wilson, D.N. Pra Murthy, and Shunji Osaki, editors,
Proceedings of the 2nd Australia-Japan Workshop on Stochastic Models in
Engineering, Technology and Management, pages 177-186, The University of
Queensland, 1996. Technology Management Centre.
- 141
-
A.G. Hart and P.K. Pollett.
New methods for determining quasi-stationary distributions for
Markov chains.
Math. Computer Modelling, 31:143-150, 2000.
- 142
-
A.G. Hart and R.L Tweedie.
Convergence of invariant measures of truncation approximations to
Markov processes.
Submitted for publication, 1999.
- 143
-
G. Högnäs.
On the quasi-stationary distribution of a stochastic Ricker model.
Stochastic Process. Appl., 70:243-263, 1997.
- 144
-
C.S. Holling.
Resilience and stability of ecological systems.
Ann. Rev. Ecol. Systematics, 4:1-23, 1973.
- 145
-
L.Y. Hou.
Ratio limit for transient Markov chains.
Natur. Sci. J. Harbin Normal Univ., 19:23-25, 2003.
- 146
-
E.A. Housworth.
Escape rate for
-dimensional Brownian motion conditioned to be
transient with application to Zygmund functions.
Trans. Amer. Math. Soc., 343:843-852, 1994.
- 147
-
W. Huisinga, S. Meyn, and C. Schütte.
Phase transitions and metastability in Markovian and molecular
systems.
Ann. Appl. Probab., 14(1):419-458, 2004.
- 148
-
D.L. Iglehart.
Functional central limit theorems for random walks conditioned to
stay positive.
Ann. Probab., 2:608-619, 1974.
- 149
-
D.L. Iglehart.
Random walks with negative drift conditioned to stay positive.
J. Appl. Probab., 11:742-751, 1974.
- 150
-
R. Isaac.
On the ratio-limit theorem for Markov processes recurrent in the
sense of Harris.
Illinois J. Math., 11:608-615, 1967.
- 151
-
R. Isaac.
Asymptotic independence and individual ratio limit theorems.
Z. Wahrsch. Verw. Gebiete, 62:201-214, 1983.
- 152
-
D. Isaacson.
A characterization of geometric ergodicity.
Z. Wahrsch. Verw. Gebiete, 49:267-273, 1979.
- 153
-
S.D. Jacka and G.O. Roberts.
Conditional diffusions: their infinitesimal generators and limit
laws.
Preprint, University of Warwick, 1988.
- 154
-
S.D. Jacka and G.O. Roberts.
Weak convergence of conditioned processes on a countable state space.
J. Appl. Probab., 32:902-916, 1995.
- 155
-
S.D. Jacka and G.O. Roberts.
Conditional one-dimensional diffusions.
Preprint, University of Cambridge, 1996.
- 156
-
S. Kalpakam and M.A. Shahul Hameed.
Quasi-stationary distribution of a two-unit warm-standby redundant
system.
J. Appl. Probab., 20:429-435, 1983.
- 157
-
Seung-ho Kang and Jerome Klotz.
Limiting conditional distribution for tests of independence in the
two way table.
Comm. Statist. Theory Methods, 27(8):2075-2082, 1998.
- 158
-
P. Kao.
Limiting diffusion for random walks with drift conditioned to stay
positive.
J. Appl. Probab., 15:280-291, 1978.
- 159
-
R.W. Keener.
Limit theorems for random walks conditioned to stay positive.
Ann. Probab., 20:801-824, 1992.
- 160
-
J. Keilson and R. Ramaswamy.
Convergence of quasistationary distributions in birth-death
processes.
Stochastic Process. Appl., 18:301-312, 1984.
- 161
-
J. Keilson and R. Ramaswamy.
The bivariate maximum process and quasi-stationary structure of
birth-death processes.
Stochastic Process. Appl., 22:27-36, 1986.
- 162
-
F.P. Kelly.
Invariant measures and the
-matrix.
In J.F.C. Kingman and G.E.H. Reuter, editors, Probability,
Statistics and Analysis, London Mathematical Society Lecture Notes Series
79, pages 143-160. Cambridge University Press, Cambridge, UK, 1983.
- 163
-
F.P. Kelly.
Stochastic models of computer communication systems.
J. Roy. Statist. Soc., Ser B, 47:379-395, 415-428, 1985.
With discussion.
- 164
-
F.P. Kelly.
One-dimensional circuit-switched networks.
Ann. Probab., 15:1166-1179, 1987.
- 165
-
D.G. Kendall.
Contribution to discussion on `quasi-stationary distributions and
time-reversion in genetics' by e.seneta [with discussion].
J. Roy. Statist. Soc., Ser B, 28:253-277, 1966.
- 166
-
D.P. Kennedy.
Limiting diffusions for the conditioned M/G/1 queue.
J. Appl. Probab., 11:355-362, 1974.
- 167
-
G. Kersting.
Strong ratio limit property and
-recurrence of reversible
Markov chains.
Z. Wahrsch. Verw. Gebiete, 30:343-356, 1974.
- 168
-
H. Kesten.
A ratio limit theorem for symmetric random walk.
J. Analyse Math., 23:199-213, 1970.
- 169
-
H. Kesten.
Review of good (1968).
Math. Rev., 39:410, 1970.
- 170
-
H. Kesten.
A ratio limit theorem for (sub) Markov chains on
with bounded jumps.
Adv. Appl. Probab., 27:652-691, 1995.
- 171
-
R.Z. Khasminskii, G. Yin, and Q. Zhang.
Singularly perturbed Markov chains: quasi-stationary distribution
and asymptotic expansion.
In G.S. Ladde and M. Sambandham, editors, Proceedings of Dynamic
Systems and Applications, pages 301-308, Atlanta Georgia, USA, 1996.
Dynamic Publishers, Inc.
- 172
-
A.A. Kibkalo.
Quasistationary regime in queueing systems of type
.
Vestnik Moskov. Univ. Ser. I Mat. Mekh., 5:41-44, 96, 1985.
- 173
-
M. Kijima.
Correction: On the existence of quasi-stationary distributions in
denumerable
-transient Markov chains.
J. Appl. Probab., 30:496, 1992.
- 174
-
M. Kijima.
Evaluation of the decay parameter for some specialized birth-death
processes.
J. Appl. Probab., 29:781-791, 1992.
- 175
-
M. Kijima.
On the existence of quasi-stationary distributions in denumerable
-transient Markov chains.
J. Appl. Probab., 29:21-36, 1992.
- 176
-
M. Kijima.
Bounds for the quasi-stationary distribution of some specialized
Markov chains.
In S. Osaki and D.N.P. Murthy, editors, Proceedings of the
Australia-Japan Workshop on Stochastic Models in Engineering, Technology and
Management, pages 262-268, Singapore, 1993. World Scientific.
- 177
-
M. Kijima.
Quasi-limiting distributions of Markov chains that are skip-free to
the left in continuous-time.
J. Appl. Probab., 30:509-517, 1993.
- 178
-
M. Kijima.
Quasi-stationary distributions of single-server phase-type queues.
Math. Operat. Res., 18:423-437, 1993.
- 179
-
M. Kijima.
Bounds for the quasi-stationary distribution of some specialized
Markov chains.
Math. Computer Modelling, 22:141-147, 1995.
- 180
-
M. Kijima.
Markov Processes for Stochastic Modeling.
Chapman & Hall, London, 1997.
- 181
-
M. Kijima and N. Makimoto.
Quasi-stationary distributions of Markov chains arising from
queueing processes: a survey.
In Applied probability and stochastic processes, volume 19 of
Internat. Ser. Oper. Res. Management Sci., pages 277-311. Kluwer Acad.
Publ., Boston, MA, 1999.
- 182
-
M. Kijima and Makimoto. N.
Computation of the quasi-stationary distributions in M(n)/GI/1/K
and GI/M(n)/1/K queues.
Queuing Systems Theory Appl., 11:255-272, 1992.
- 183
-
M. Kijima and Makimoto. N.
Computation of quasi-stationary distributions in Markovian queues.
In HELP, editor, Proceedings of the 16th International
Conference on Computers and Industrial Engineering, pages 849-852, HELP,
1994. HELP.
- 184
-
M. Kijima and Makimoto. N.
Quasi-stationary distributions of Markov chains arising from
queueing processes: a survey.
In HELP, editor, Research Reports on Mathematical and Computer
Sciences, Series B: Operations Research. Department of Mathematical and
Computer Sciences, Tokyo Institute of Technology, 1994.
B-304.
- 185
-
M. Kijima, M.G. Nair, P.K. Pollett, and E.A. van Doorn.
Limiting conditional distributions for birth-death processes.
Adv. Appl. Probab., 29:185-204, 1997.
- 186
-
M. Kijima and E. Seneta.
Some results for quasistationary distributions of birth-death
processes.
J. Appl. Probab., 28:503-511, 1991.
- 187
-
M. Kijima and E.A. van Doorn.
Weighted sums of orthogonal polynomials with positive zeros.
J. Comput. Appl. Math., 65:195-206, 1995.
- 188
-
M. Kimmel.
Quasistationarity in a branching model of division-within-division.
In Classical and Modern Branching Processes (Minneapolis, MN,
1994), pages 157-164. Springer, New York, 1997.
- 189
-
J.F.C. Kingman.
Ergodic properties of continuous-time Markov processes and their
discrete skeletons.
Proc. London Math. Soc., 13:593-604, 1963.
- 190
-
J.F.C. Kingman.
The exponential decay of Markov transition probabilities.
Proc. London Math. Soc., 13:337-358, 1963.
- 191
-
J.F.C. Kingman and S. Orey.
Ratio limit theorems for Markov chains.
Proc. Amer. Math. Soc., 15:907-910, 1964.
- 192
-
M. Klass and J. Pitman.
Limit laws for Brownian motion conditioned to reach a high level.
Statist. Probab. Lett., 17:13-17, 1993.
- 193
-
F. Klebaner and J. Lazar.
On the quasi-stationary distribution in randomly perturbed dynamical
systems with a single attracting point.
In Richard J. Wilson, D.N. Pra Murthy, and Shunji Osaki, editors,
Proceedings of the 2nd Australia-Japan Workshop on Stochastic Models in
Engineering, Technology and Management, pages 348-354, The University of
Queensland, 1996. Technology Management Centre.
- 194
-
F. Klebaner, J. Lazar, and O. Zeitouni.
On the quasi-stationary distribution for some randomly perturbed
transformations of an interval.
Ann. Appl. Probab., 8:300-315, 1998.
- 195
-
D.R. Klein.
The introduction, increase, and crash of reindeer on St. Matthew
Island.
J. Wildlife Man., 32:351-367, 1968.
- 196
-
S. Knoth.
Quasi-stationarity of CUSUM schemes for Erlang
distributions.
Metrika, 48:31-48, 1998.
- 197
-
V.V. Kukhtin, N.V. Kuzmenko, and O.V. Shramko.
Green light as a possible pressing factor for oceanic phytoplankton
near the base of the euphotic zone.
J. Theor. Biol., 188:319-322, 1997.
- 198
-
T.G. Kurtz.
Solutions of ordinary differential equations as limits of pure jump
Markov processes.
J. Appl. Probab., 7:49-58, 1970.
- 199
-
T.G. Kurtz.
Limit theorems for sequences of jump Markov processes approximating
ordinary differential processes.
J. Appl. Probab., 8:344-356, 1971.
- 200
-
T.G. Kurtz.
The relationship between stochastic and deterministic models in
chemical reactions.
J. Chem. Phys., 57:2976-2978, 1972.
- 201
-
T.G. Kurtz.
Limit theorems and diffusion approximations for density dependent
Markov chains.
Math. Prog. Study, 5:67-78, 1976.
- 202
-
T.G. Kurtz.
Strong approximation theorems for density dependent Markov chains.
Stochastic Process. Appl., 6:223-240, 1978.
- 203
-
T.G. Kurtz and S. Wainger.
The nonexistence of the Yaglom limit for an age dependent
subcritical branching process.
Ann. Probab., 1:857-861, 1973.
- 204
-
A. E. Kyprianou and Z. Palmowski.
Quasi-stationary distributions for Lévy processes.
Bernoulli, 12(4):571-581, 2006.
- 205
-
E.K. Kyprianou.
On the quasi-stationary distribution of the virtual waiting time in
queues with poisson arrivals.
J. Appl. Probab., 8:494-507, 1971.
- 206
-
E.K. Kyprianou.
On the quasi-stationary distributions of the GI/M/1 queues.
J. Appl. Probab., 9:117-128, 1972.
- 207
-
E.K. Kyprianou.
The quasi-stationary distributions of queues in heavy traffic.
J. Appl. Probab., 9:821-831, 1972.
- 208
-
C.W. Lamb.
A ratio limit theorem for approximate martingales.
Canad. J. Math., 25:772-779, 1973.
- 209
-
Amaury Lambert.
Quasi-stationary distributions and the continuous-state branching
process conditioned to be never extinct.
Electron. J. Probab., 12:no. 14, 420-446 (electronic), 2007.
- 210
-
J.B. Lasserre and C.E.M. Pearce.
On the existence of a quasistationary measure for a Markov chain.
Ann. Probab., 29:437-446, 2001.
- 211
-
W. Ledermann and G.E.H. Reuter.
Spectral theory for the differential equations of simple birth and
death processes.
Phil. Trans. R. Soc. London, 246:321-369, 1954.
- 212
-
J. Ledoux.
On weak lumpability of denumerable Markov-chains.
Statist. Probab. Lett., 25:329-339, 1995.
- 213
-
J. Ledoux, G. Rubino, and B. Sericola.
Exact aggregation of absorbing Markov processes using the
quasi-stationary distribution.
J. Appl. Probab., 31:626-634, 1994.
- 214
-
R. Levins.
Extinction.
In M. Gerstenhaber, editor, Some Mathematical Questions in
Biology, pages 75-107. American Mathematical Society, Providence, RI, USA,
1970.
- 215
-
M.L. Levitan.
A generalized Doeblin ratio limit theorem.
Ann. Math. Statist., 42:904-911, 1971.
- 216
-
S.X. Li and G.N. Xiao.
Determination of
-invariant measure from the
-resolvent
function.
Math. Theory Appl. (Changsha), 21:30-32, 2001.
- 217
-
X. Li, G. Yin, K. Yin, and Q. Zhang.
A numerical study of singularly perturbed Markov chains:
quasi-equilibrium distributions and scaled occupation measures.
Dynam. Contin. Discrete Impuls. Systems, 5:295-304, 1999.
- 218
-
M. Lin.
Mixed ratio limit theorems for Markov processes.
Israel J. Math., 8:357-366, 1970.
- 219
-
M. Lin.
Strong ratio limit theorems for Markov processes.
Ann. Math. Statist., 43:569-579, 1972.
- 220
-
M. Lin.
Strong ratio limit theorems for mixing Markov operators.
Ann. Inst. H. Poincaré Sect. B (N.S.), 12:181-191, 1976.
- 221
-
X. Lin, H.J. Zhang, and Z.T. Hou.
The
-invariant distribution of a
-process.
Acta Math. Appl. Sin., 25:694-703, 2002.
- 222
-
Yuanyuan Liu, Hanjun Zhang, and Yiqiang Zhao.
Computable strongly ergodic rates of convergence for continuous-time
Markov chains.
ANZIAM J., 49(4):463-478, 2008.
- 223
-
M. Lladser and J. San Martín.
Domain of attraction of the quasi-stationary distributions for the
Ornstein-Uhlenbeck process.
J. Appl. Probab., 37:511-520, 2000.
- 224
-
N. Makimoto.
Quasi-stationary distributions in a
queue.
Comm. Statist. Stochastic Models, 9:195-212, 1993.
- 225
-
M. Malek-Mansour and G. Nicolis.
A master equation description of local fluctuation.
J. Statist. Phys., 13:197-217, 1975.
- 226
-
P. Mandl.
On the asymptotic behaviour of probabilities within groups of states
of a homogeneous Markov processs (in Czech.).
Casopis Pest. Mat., 85:448-456, 1960.
- 227
-
P. Mandl.
An elementary proof of the ergodic property of birth and death
processes (in Czech.).
Casopis Pest. Mat., 89:354-358, 1964.
- 228
-
S. Martínez.
Quasi-stationary distributions for birth-death chains: convergence
radii and Yaglom limit.
NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 396:491-505,
1993.
- 229
-
S. Martínez, P. Picco, and J. San Martín.
Domain of attraction of quasi-stationary distributions for the
Brownian motion with drift.
Adv. Appl. Probab., 30:385-408, 1998.
- 230
-
S. Martínez and J. San Martín.
Quasi-stationary distributions for a Brownian motion with drift and
associated limit laws.
J. Appl. Probab., 31:911-920, 1994.
- 231
-
S. Martínez and M.E. Vares.
A Markov chain associated with the minimal quasi-stationary
distribution of birth-death chains.
J. Appl. Probab., 32:25-38, 1995.
- 232
-
Servet Martínez.
Notes and a remark on quasi-stationary distributions.
In Pyrenees International Workshop on Statistics,
Probability and Operations Research: SPO 2007, volume 34 of Monogr. Semin. Mat. García Galdeano, pages 61-80. Prensas Univ.
Zaragoza, Zaragoza, 2008.
- 233
-
R.M. May.
Stability and Complexity in Model Ecosystems.
Princeton University Press, Princeton, 2nd edition, 1974.
- 234
-
L.D. Mech.
The wolves of Ilse Royale.
Fauna of the National Parks: U.S. Fauna Series, 7, 1966.
- 235
-
Q.X. Mei and X. Lin.
The relationship between
-invariant distribution and
quasi-stationary distributions for continuous-time Markov chains.
Math. Theory Appl. (Changsha), 21:26-29, 2001.
- 236
-
J.A. Moler, F. Plo, and M. San Miguel.
Minimal quasi-stationary distributions under null
-recurrence.
Test, 9:455-470, 2000.
- 237
-
F. Móricz.
The strong laws of large numbers for quasi-stationary sequences.
Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 38:223-236,
1977.
- 238
-
F. Móricz.
Strong laws of large numbers for quasistationary random fields.
Z. Wahrsch. Verw. Gebiete, 51:249-268, 1980.
- 239
-
A.G. Mucci.
Ratio limit theorems.
Canad. J. Math., 28:403-407, 1976.
- 240
-
M.G. Nair and P.K. Pollett.
Correction: ``On the relationship between
-invariant
measures and quasi-stationary distributions for continuous-time Markov
chains''.
Adv. in Appl. Probab., 25:717-719, 1993.
- 241
-
M.G. Nair and P.K. Pollett.
On the relationship between
-invariant measures and
quasistationary distributions for continuous-time Markov chains.
Adv. Appl. Probab., 25:82-102, 1993.
- 242
-
S.M. Narimanjan.
A ratio limit theorem for random walk on groups.
Vestnik Moskov. Univ. Ser. I Mat. Meh., 30:17-24, 1975.
- 243
-
I. Nåsell.
On the quasistationary distribution of the Ross Malaria model.
Math. Biosci., 107:187-208, 1991.
- 244
-
I. Nåsell.
The quasi-stationary distribution of the closed endemic SIS model.
Adv. Appl. Probab., 28:895-932, 1996.
- 245
-
I. Nåsell.
Ross's Malaria model and qualitative theory (in Swedish).
Normat, 46:1-13, 1998.
- 246
-
I. Nåsell.
On the quasi-stationary distribution of the stochastic logistic
epidemic.
Math. Biosci., 156:21-40, 1999.
- 247
-
I. Nåsell.
On the time to extinction in recurrent epidemics.
J. Roy. Statist. Soc., Ser B, 61:309-330, 1999.
- 248
-
E. Nummelin.
Limit theorems for
-recurrent semi-Markov processes.
Adv. Appl. Probab., 8:531-547, 1976.
- 249
-
E. Nummelin.
On the concepts of
-recurrence and
-transience for
Markov renewal processes.
Stochastic Process. Appl., 5:1-19, 1977.
- 250
-
E. Nummelin.
Uniform and ratio limit theorems for Markov renewal and
semi-regenerative processes on a general state space.
Ann. Inst. H. Poincaré Sect. B (N.S.), 14:119-143, 1978.
- 251
-
E. Nummelin.
Strong ratio limit theorems for
-recurrent Markov
chains.
Ann. Probab., 7:639-650, 1979.
- 252
-
E. Nummelin and E. Arjas.
A direct construction of the
-invariant measure for a Markov
chain on a general state space.
Ann. Probab., 4:674-679, 1976.
- 253
-
E. Nummelin and Tweedie R.L.
Geometric ergodicity and
-positivity for general Markov
chains.
Ann. Probab., 6:404-420, 1978.
- 254
-
S.D. Oman.
A ratio limit theorem for subterminal times.
Ann. Probab., 5:262-277, 1977.
- 255
-
S.D. Oman.
Ratio limit theorems for hitting times and hitting places.
Indiana Univ. Math. J., 27:657-670, 1978.
- 256
-
Philip D. O'Neill.
Constructing population processes with specified quasi-stationary
distributions.
Stoch. Models, 23(3):439-449, 2007.
- 257
-
I. Oppenheim, K.K. Schuler, and G.H. Weiss.
Stochastic theory of nonlinear rate processes with multiple
stationary states.
Physica, 88A:191-214, 1977.
- 258
-
S. Orey.
Strong ratio limit property.
Bull. Amer. Math. Soc., 67:571-574, 1961.
- 259
-
Y. Oshima.
Certain ratio limit theorem for time inhomogeneous Markov chains.
In Stochastic processes, physics and geometry: new interplays,
II (Leipzig, 1999), volume 29 of CMS Conf. Proc., pages 533-537.
Amer. Math. Soc., Providence, RI, 2000.
- 260
-
O. Ovaskainen.
The quasistationary distribution of the stochastic logistic model.
J. Appl. Probab., 38:898-907, 2001.
- 261
-
A.G. Pakes.
Conditional limit theorems for a left continuous random walk.
J. Appl. Probab., 10:317-329, 1973.
- 262
-
A.G. Pakes.
On Markov branching processes with immigration.
Sankhya, A37:129-138, 1975.
- 263
-
A.G. Pakes.
Limit theorems for the population size of a birth and death process
allowing catastrophes.
J. Math. Biol., 25:307-325, 1987.
- 264
-
A.G. Pakes.
Absorbing Markov and branching processes with instantaneous
resurrection.
Stochastic Process. Appl., 48:85-106, 1993.
- 265
-
A.G. Pakes.
Explosive Markov branching processes: entrance laws and limiting
behaviour.
Adv. Appl. Probab., 25:737-756, 1993.
- 266
-
A.G. Pakes.
Quasi-stationary laws for Markov processes: examples of an always
proximate absorbing state.
Adv. Appl. Probab., 27:120-145, 1995.
- 267
-
A.G. Pakes.
Killing and resurrection of Markov processes.
Comm. Statist. Stochastic Models, 13:255-269, 1997.
- 268
-
A.G. Pakes.
On the recognition and structure of probability generating functions.
In Classical and Modern Branching Processes (Minneapolis, MN,
1994), pages 263-284. Springer, New York, 1997.
- 269
-
A.G. Pakes and P.K. Pollett.
The supercritical birth, death and catastrophe process: Limit
theorems on the set of extinction.
Stochastic Process. Appl., 32:161-170, 1989.
- 270
-
A.G. Pakes, A.C. Trajstman, and P.J. Brockwell.
A stochastic model for a replicating population subject to mass
emigration due to population pressure.
Math. Biosci., 45:137-157, 1979.
- 271
-
F. Papangelou.
Strong ratio limits,
-recurrence and mixing properties of
discrete parameter Markov processes.
Z. Wahrsch. Verw. Gebiete, 8:259-297, 1967.
- 272
-
R.W. Parsons.
Mathematical models of chemical reactions.
PhD thesis, Department of Mathematical Statistics and Operational
Research, University College of Cardiff, The University of Wales, 1985.
- 273
-
R.W. Parsons and P.K. Pollett.
Quasistationary distributions for some autocatalytic reactions.
J. Statist. Phys., 46:249-254, 1987.
- 274
-
P.R. Parthasarathy, R.B. Lenin, W. Schoutens, and W. van Assche.
A birth and death process related to the Rogers-Ramanujan
continued fraction.
J. Math. Anal. Appl., 224:297-315, 1998.
- 275
-
C.E.M. Pearce and Y.W. Shin.
An algorithmic approach to the Markov chain with transition
probability matrix of upper block-hessenberg form.
Korean Journal of Computational and Applied Mathematics,
5:403-426, 1998.
- 276
-
E. Pearce.
Determining a quasistationary distribution for a block process.
In A. Alfa and S. Chakravarthy, editors, Advances in Matrix
Analytic Methods for Stochastic Models, pages 55-66. Notable Publications,
New Jersey, USA, 1998.
- 277
-
N.F. Peng.
Spectral representations of the transition probability matrices for
continuous-time finite Markov chains.
J. Appl. Probab., 33:28-33, 1996.
- 278
-
K. Petersen and K. Schmidt.
Symmetric Gibbs measures.
Trans. Amer. Math. Soc., 349:2775-2811, 1997.
- 279
-
M. Pijnenburg and N. Ravichandran.
Quasi-stationary distribution of a two-unit dependent parallel
system.
Technical Report, Eindhoven University of Technology, 1990.
- 280
-
M. Pijnenburg, N. Ravichandran, and G. Regterschot.
Stochastic analysis of a dependent parallel system.
Technical Report, Eindhoven University of Technology, 1990.
- 281
-
R.G. Pinsky.
On the convergence of diffusion processes conditioned to remain in a
bounded region for a large time to limiting positive recurrent diffusion
processes.
Ann. Probab., 13:363-378, 1985.
- 282
-
R.G. Pinsky.
A new approach to the Martin boundary via diffusions conditioned to
hit a compact set.
Ann. Probab., 21:453-481, 1993.
- 283
-
M. Pollak and D. Siegmund.
Convergence of quasi-stationary to stationary distributions for
stochastically monotone Markov processes.
J. Appl. Probab., 23:215-220, 1986.
- 284
-
D. Pollard.
Uniform ratio limit theorems for empirical processes.
Scand. J. Statist., 22:271-278, 1995.
- 285
-
D.B. Pollard and R.L. Tweedie.
-theory for Markov chains on a topological space, i.
J. London Math. Soc., 10:389-400, 1975.
- 286
-
D.B. Pollard and R.L. Tweedie.
-theory for Markov chains on a topological space, ii.
Z. Wahrsch. Verw. Gebiete, 34:269-278, 1976.
- 287
-
P.K. Pollett.
On the equivalence of
-invariant measures for the minimal
process and its
-matrix.
Stochastic Process. Appl., 22:203-221, 1986.
- 288
-
P.K. Pollett.
On the long-term behaviour of a population that is subject to
large-scale mortality or emigration.
In S. Kumar, editor, Proceedings of the 8th National Conference
of the Australian Society for Operations Research, pages 196-207,
Melbourne, 1987. Australian Society for Operations Research.
- 289
-
P.K. Pollett.
On the problem of evaluating quasistationary distributions for open
reaction schemes.
J. Statist. Phys., 53:1207-1215, 1988.
- 290
-
P.K. Pollett.
Reversibility, invariance and
-invariance.
Adv. Appl. Probab., 20:600-621, 1988.
- 291
-
P.K. Pollett.
The generalized Kolmogorov criterion.
Stochastic Process. Appl., 33:29-44, 1989.
- 292
-
P.K. Pollett.
Diffusion approximations for a circuit switching network with random
alternative routing.
Austral. Telecom. Res., 25:45-51, 1991.
- 293
-
P.K. Pollett.
Modelling random fluctuations in a bistable telecommunications
network.
In P. Hutton, editor, Proceedings of the 11th National
Conference of the Australian Society for Operations Research, pages 11-22,
HELP, 1991. Australian Society for Operations Research.
- 294
-
P.K. Pollett.
On the construction problem for single-exit Markov chains.
Bull. Austral. Math. Soc., 43:439-450, 1991.
- 295
-
P.K. Pollett.
Modelling random fluctuations in a bistable telecommunications
network.
In W. Henderson, editor, Proceedings of the 7th Australian
Teletraffic Research Seminar, pages 335-345, Adelaide, 1992. Teletraffic
Research Centre, University of Adelaide.
- 296
-
P.K. Pollett.
Analytical and computational methods for modelling the long-term
behaviour of evanescent random processes.
In D.J. Sutton, C.E.M. Pearce, and E.A. Cousins, editors, Decision Sciences: Tools for Today, Proceedings of the 12th National
Conference of the Australian Society for Operations Research, pages
514-535, Adelaide, 1993. Australian Society for Operations Research.
- 297
-
P.K. Pollett.
Modelling the long-term behaviour of evanescent ecological systems.
In M. McAleer, editor, Proceedings of the International Congress
on Modelling and Simulation, volume 1, pages 157-162, Perth, 1993.
Modelling and Simulation Society of Australia.
- 298
-
P.K. Pollett.
Recent advances in the theory and application of quasistationary
distributions.
In S. Osaki and D.N.P. Murthy, editors, Proceedings of the
Australia-Japan Workshop on Stochastic Models in Engineering, Technology and
Management, pages 477-486, Singapore, 1993. World Scientific.
- 299
-
P.K. Pollett.
The determination of quasistationary distributions directly from the
transition rates of an absorbing Markov chain.
Math. Computer Modelling, 22:279-287, 1995.
- 300
-
P.K. Pollett.
Modelling the long-term behaviour of evanescent ecological systems.
Ecological Modelling, 86:135-139, 1996.
- 301
-
P.K. Pollett.
Limiting conditional distributions for stochastic metapopulation
models.
In A.D. McDonald and M. McAleer, editors, Proceedings of the
International Congress on Modelling and Simulation, volume 2, pages
807-812, Hobart, Australia, 1997. Modelling and Simulation Society of
Australia.
- 302
-
P.K. Pollett.
Modelling quasi-stationary behaviour in metapopulations.
Math. Computers Simulat., 48:393-405, 1999.
- 303
-
P.K. Pollett.
Quasistationarity in populations that are subject to large-scale
mortality or emigration.
In L. Oxley, F. Scrimgeour, and A. Jakeman, editors, Proceedings
of the International Congress on Modelling and Simulation, volume 3, pages
667-672, Hamilton, New Zealand, 1999. Modelling and Simulation Society of
Australia and New Zealand.
- 304
-
P.K. Pollett.
Quasistationary distributions for continuous time Markov chains
when absorption is not certain.
J. Appl. Probab., 36:268-272, 1999.
- 305
-
P.K. Pollett.
Diffusion approximations for ecological models.
In Fred Ghassemi, editor, Proceedings of the International
Congress on Modelling and Simulation, volume 2, pages 843-848, Canberra,
Australia, 2001. Modelling and Simulation Society of Australia and New
Zealand.
- 306
-
P.K. Pollett.
Identifying
-processes with a given finite
-invariant
measure.
In Zhenting Hou, Jerzy A. Filar, and Anyue Chen, editors, Markov processes and controlled Markov chains, pages 41-55. Kulwer,
2001.
- 307
-
P.K. Pollett.
Quasi-stationarity in populations that are subject to large-scale
mortality or emigration.
Environment International, 27:231-236, 2001.
- 308
-
P.K. Pollett.
Ensemble behaviour in population processes with applications to
ecological systems.
In D. Kulasiri and L. Oxley, editors, Proceedings of the 17th
Biennial Congress on Modelling and Simulation (MODSIM07), pages 2903-2909,
Christchurch, New Zealand, 2007. Modelling and Simulation Society of
Australia and New Zealand.
- 309
-
P.K. Pollett.
Ensemble behaviour in population processes with applications to
ecological systems.
Environmental Modeling & Assessment, 14:545-553, 2008.
- 310
-
P.K. Pollett and A.J Roberts.
A description of the long-term behaviour of absorbing continuous-time
Markov chains using a centre manifold.
Adv. Appl. Probab., 22:111-128, 1990.
- 311
-
P.K. Pollett and D.E. Stewart.
An efficient procedure for computing quasistationary distributions of
Markov chains with sparse transition structure.
Adv. Appl. Probab., 26:68-79, 1994.
- 312
-
P.K. Pollett and A. Vassallo.
Diffusion approximations for some simple chemical reaction schemes.
Adv. Appl. Probab., 24:875-893, 1992.
- 313
-
P.K. Pollett and D. Vere-Jones.
A note on evanescent processes.
Austral. J. Statist., 34:531-536, 1992.
- 314
-
P.K. Pollett and H.J. Zhang.
Existence and uniqueness of
-processes with a given finite
-invariant measure.
Aust. N. Z. J. Stat., 46:113-120, 2004.
Festschrift in honour of Daryl Daley.
- 315
-
S.C. Port.
Ratio limit theorems for Markov chains.
Pacific J. Math., 15:989-1017, 1965.
- 316
-
W.E. Pruitt.
Eigenvalues of non-negative matrices.
Ann. Math. Statist., 35:1797-1800, 1964.
- 317
-
W.E. Pruitt.
Strong ratio limit property for
-recurrent Markov chains.
Proc. Amer. Math. Soc., 16:196-200, 1965.
- 318
-
K. Ramanan and O. Zeitouni.
The quasi-stationary distribution for small random perturbations of
certain one-dimensional maps.
Stochastic Process. Appl., 84:25-51, 1999.
- 319
-
G.A. Ritter.
Growth of random walks conditioned to stay positive.
Ann. Probab., 9:699-704, 1981.
- 320
-
G.O. Roberts.
A comparison theorem for conditioned Markov processes.
J. Appl. Probab., 28:74-83, 1991.
- 321
-
G.O. Roberts and S.D. Jacka.
Weak convergence of conditioned birth and death processes.
J. Appl. Probab., 31:90-100, 1994.
- 322
-
G.O. Roberts, S.D. Jacka, and P.K. Pollett.
Non-explosivity of limits of conditioned birth and death processes.
J. Appl. Probab., 34:35-45, 1997.
- 323
-
H. Rootzén.
A ratio limit theorem for the tails of weighted sums.
Ann. Probab., 15:728-747, 1987.
- 324
-
P. Salminen.
A ratio limit theorem for erased branching Brownian motion.
Stochastic Process. Appl., 41:215-222, 1992.
- 325
-
A. Sani, D.P. Kroese, and P.K. Pollett.
Stochastic models for the spread of HIV in a mobile heterosexual
population.
Math. Biosci., 208:98-124, 2007.
- 326
-
V.B. Scheffer.
The rise and fall of a reindeer herd.
Sci. Monthly, 73:356-362, 1951.
- 327
-
W. Schoutens.
Birth and death processes, orthogonal polynomials and limiting
conditional distributions.
Math. Sci., 25:87-93, 2000.
- 328
-
P. Schrijner and E.A. van Doorn.
Weak convergence of conditioned birth-death processes in discrete
time.
J. Appl. Probab., 34:46-53, 1997.
- 329
-
E. Seneta.
Quasi-stationary behaviour in the random walk with continuous time.
Austral. J. Statist., 8:92-98, 1966.
- 330
-
E. Seneta.
Quasi-stationary distributions and time-reversion in genetics [with
discussion].
J. Roy. Statist. Soc., Ser B, 28:253-277, 1966.
- 331
-
E. Seneta.
Finite approximations to infinite non-negative matrices I.
Proc. Camb. Phil. Soc., 63:983-992, 1967.
- 332
-
E. Seneta.
Finite approximations to infinite non-negative matrices, II:
refinements and applications.
Proc. Camb. Phil. Soc., 64:465-470, 1968.
- 333
-
E. Seneta.
Nonnegative Matrices and Markov Chains.
Springer Series in Statistics. Springer-Verlag, New York, 2nd
edition, 1981.
- 334
-
E. Seneta and R.L. Tweedie.
Moments for stationary and quasi-stationary distributions of Markov
chains.
J. Appl. Probab., 22:148-155, 1985.
- 335
-
E. Seneta and D. Vere-Jones.
On quasi-stationary distributions in discrete-time Markov chains
with a denumerable infinity of states.
J. Appl. Probab., 3:403-434, 1966.
- 336
-
E. Seneta and D. Vere-Jones.
On the asymptotic behaviour of subcritical branching processes with
continuous state space.
Z. Wahrsch. Verw. Gebiete, 10:212-225, 1968.
- 337
-
R.J. Serfling.
On the strong law of large numbers and related results for
quasistationary sequences.
Teor. Veroyatnost. i Primenen., 25:190-194, 1980.
- 338
-
L. Serlet.
The occupation measure of super-Brownian motion conditioned to
nonextinction.
J. Theoret. Probab., 9:561-578, 1996.
- 339
-
M. Shimura.
A limit theorem for two-dimensional random walk conditioned to stay
in a cone.
Yokohama Math. J., 39:21-36, 1991.
- 340
-
M.G. Shur.
Ratio limit theorems.
Akad. Nauk Ukrain. SSR Inst. Mat. Preprint, 26:3-13, 1987.
- 341
-
M.G. Shur.
New ratio limit theorems for Markov chains.
In Analytic methods in applied probability, volume 207 of Amer. Math. Soc. Transl. Ser. 2, pages 203-212. Amer. Math. Soc.,
Providence, RI, 2002.
- 342
-
M.G. Shur.
On the Lin condition in strong ratio limit theorems.
Mat. Zametki, 75:927-940, 2004.
- 343
-
Dmitrii S. Silvestrov.
Asymptotic expansions for quasi-stationary distributions of
nonlinearly perturbed semi-Markov processes.
Theory Stoch. Process., 13(1-2):267-271, 2007.
- 344
-
David Sirl, Hanjun Zhang, and Phil Pollett.
Computable bounds for the decay parameter of a birth-death process.
J. Appl. Probab., 44(2):476-491, 2007.
- 345
-
D.R. Sirl.
On the Analysis of Absorbing Markov Processes.
PhD thesis, Department of Mathematics, The University of Queensland,
2008.
- 346
-
W. Stadje.
On a uniform random walk conditioned to stay positive.
Sankhya Ser. A, 59:324-344, 1997.
- 347
-
David Steinsaltz and Steven N. Evans.
Quasistationary distributions for one-dimensional diffusions with
killing.
Trans. Amer. Math. Soc., 359(3):1285-1324 (electronic), 2007.
- 348
-
C. Stone.
Ratio limit theorems for random walks on groups.
Trans. Amer. Math. Soc., 125:86-100, 1966.
- 349
-
C. Stone.
On local and ratio limit theorems.
In Proc. Fifth Berkeley Sympos. Math. Statist. and Probability
(Berkeley, Calif., 1965/66), Vol. II: Contributions to Probability Theory,
Part 2, pages 217-224. Univ. California Press, Berkeley, Calif., 1967.
- 350
-
T. Strunkov.
On the limiting conditional distributions for Markov chains.
In Paul Erdos and his mathematics (Budapest, 1999), pages
249-251. János Bolyai Math. Soc., Budapest, 1999.
- 351
-
M.G. Šur.
An analogue of the ratio limit theorem in the case of parts of a
recurrent chain.
Mat. Zametki, 27:129-136, 159, 1980.
- 352
-
M.G. Šur.
Strong ratio limit theorems.
In Probability theory and mathematical statistics (Tbilisi,
1982), volume 1021 of Lecture Notes in Math., pages 647-654.
Springer, Berlin, 1983.
- 353
-
A. Szubarga and D. Szynal.
Functional random central limit theorems for random walks conditioned
to stay positive.
Probab. Math. Statist., 6:29-41, 1985.
- 354
-
A. Szubarga and D. Szynal.
Random limit theorems for random walks conditioned to stay positive.
Probab. Math. Statist., 5:83-89, 1985.
- 355
-
A. Szubarga and D. Szynal.
Random walks with random indices and negative drift conditioned to
stay positive.
Probab. Math. Statist., 6:217-223, 1985.
- 356
-
J.L. Teugels.
Exponential ergodicity in derived Markov chains.
J. Appl. Probab., 5:669-678, 1968.
- 357
-
J.L. Teugels.
Exponential ergodicity in Markov renewal processes.
J. Appl. Probab., 5:387-400, 1968.
- 358
-
K. Topolski.
Conditioned limit theorem for virtual waiting time process of the
GI/G/1 queue.
Queuing Systems Theory Appl., 3:377-384, 1988.
- 359
-
A.C. Trajstman.
A bounded growth population subjected to emigrations due to
population pressure.
J. Appl. Probab., 18:571-582, 1981.
- 360
-
P. Tuominen and R.L. Tweedie.
Exponential decay and ergodicity of general Markov processes and
their discrete skeletons.
Adv. Appl. Probab., 11:784-803, 1979.
- 361
-
P. Tuominen and R.L. Tweedie.
Exponential ergodicity in Markovian queueing and dam models.
J. Appl. Probab., 16:867-880, 1979.
- 362
-
P. Tuominen and R.L. Tweedie.
Subgeometric rates of convergence of
-ergodic Markov chains.
Adv. Appl. Probab., 26:775-798, 1994.
- 363
-
K.F. Turkman and A.M. Walker.
Limit laws for the maxima of a class of quasistationary sequences.
J. Appl. Probab., 20:814-821, 1983.
- 364
-
J.W. Turner and M. Malek-Mansour.
On the absorbing zero boundary problem in birth and death processes.
Physica, 93A:517-525, 1978.
- 365
-
R.L. Tweedie.
Truncation procedures for non-negative matrices.
J. Appl. Probab., 8:311-320, 1971.
- 366
-
R.L. Tweedie.
The calculation of limit probabilities for denumerable Markov
processes from infinitesimal properties.
J. Appl. Probab., 10:84-99, 1973.
- 367
-
R.L. Tweedie.
Quasi-stationary distributions for Markov chains on a general
state-space.
J. Appl. Probab., 11:726-741, 1974.
- 368
-
R.L. Tweedie.
-theory for Markov chains on a general state-space I:
Solidarity properties and
-recurrent chains.
Ann. Probab., 2:840-864, 1974.
- 369
-
R.L. Tweedie.
-theory for Markov chains on a general state-space II:
-subinvariant measures for
-transient chains.
Ann. Probab., 2:865-878, 1974.
- 370
-
R.L. Tweedie.
Some ergodic properties of the Feller minimal process.
Quart. J. Math. Oxford, 25:485-495, 1974.
- 371
-
R.L. Tweedie.
Truncation approximation of the limit probabilities for denumerable
semi-Markov processes.
J. Appl. Probab., 12:161-163, 1975.
- 372
-
R.L. Tweedie.
Criteria for ergodicity, exponential ergodicity and strong ergodicity
of Markov processes.
J. Appl. Probab., 18:122-130, 1981.
- 373
-
R.L. Tweedie.
Truncation approximations of invariant measures for Markov chains.
J. Appl. Probab., 35, 1998.
517-536.
- 374
-
E. A. van Doorn and P. K. Pollett.
Quasi-stationary distributions for reducible absorbing Markov
chains in discrete time.
Markov Process. Related Fields, 15(2):191-204, 2009.
- 375
-
E.A. van Doorn.
Stochastic monotonicity of birth-death processes.
Adv. Appl. Probab., 12:59-80, 1980.
- 376
-
E.A. van Doorn.
Conditions for exponential ergodicity and bounds for the decay
parameter of a birth-death process.
Adv. Appl. Probab., 17:514-530, 1985.
- 377
-
E.A. van Doorn.
The indeterminate rate problem for birth-death processes.
Pacific J. Math., 130:379-393, 1987.
- 378
-
E.A. van Doorn.
Quasi-stationary distributions and convergence to quasi-stationarity
of birth-death processes.
Adv. Appl. Probab., 23:683-700, 1991.
- 379
-
E.A. van Doorn and G.J.K. Regterschot.
Conditional PASTA.
Operat. Res. Lett., 7:229-232, 1988.
- 380
-
E.A. van Doorn and P. Schrijner.
Random walk polynomials and random walk measures.
J. Comput. Appl. Math., 49:289-296, 1993.
- 381
-
E.A. van Doorn and P. Schrijner.
Geometric ergodicity and quasi-stationary distributions in
discrete-time birth-death processes.
J. Austral. Math. Soc. Ser. B, 37:121-144, 1995.
- 382
-
E.A. van Doorn and P. Schrijner.
Ratio limits and limiting conditional distributions for discrete-time
birth-death processes.
J. Math. Anal. Appl., 190:263-284, 1995.
- 383
-
E.A. van Doorn and P. Schrijner.
Limit theorems for discrete-time Markov chains on the nonnegative
integers conditioned on recurrence to zero.
Comm. Statist. Stochastic Models, 14:77-102, 1996.
- 384
-
E.A. van Doorn and P. Schrijner.
Orthogonal polynomials and Markov chains.
General Seminar of Mathematics (Department of Mathematics,
University of Patras, Greece, 18-21:67-76, 1996.
- 385
-
V. Vatutin and E. Dyakonova.
Yaglom type limit theorem for branching processes in random
environment.
In Mathematics and computer science. III, Trends Math., pages
375-385. Birkhäuser, Basel, 2004.
- 386
-
D. Vere-Jones.
Geometric ergodicity in denumerable Markov chains.
Quart. J. Math. Oxford, 13:7-28, 1962.
- 387
-
D. Vere-Jones.
Ergodic properties of non-negative matrices, I.
Pacific J. Math., 22:361-386, 1967.
- 388
-
D. Vere-Jones.
Ergodic properties of non-negative matrices, II.
Pacific J. Math., 26:601-620, 1968.
- 389
-
D. Vere-Jones.
Some limit theorems for evanescent processes.
Austral. J. Statist., 11:67-78, 1969.
- 390
-
D.M. Walker.
The expected time until absorption when absorption is not certain.
J. Appl. Probab., 35:812-823, 1998.
- 391
-
D.M. Walker.
-Invariant Vectors and Measures for Continuous Time
Markov Chains.
PhD thesis, Department of Mathematics, The University of Queensland,
1998.
- 392
-
X.B. Wang and X.M. Wang.
Limit laws for the extreme values of a class of quasistationary
sequences.
Acta Math. Appl. Sinica, 18:364-372, 1995.
- 393
-
W.A.O'N. Waugh.
Conditioned Markov processes.
Biometrika, 45:241-249, 1958.
- 394
-
Q.Y. Wu.
-invariant vectors for
-processes.
Math. Appl. (Wuhan), 14(suppl.):57-61, 2001.
- 395
-
Q.Y. Wu.
-invariant measures for
-processes.
Chinese J. Appl. Probab. Statist., 19:394-400, 2003.
- 396
-
Q.Y. Wu.
-invariant measures for
-processes--the case containing
an absorbing state.
Acta Math. Sci. Ser. A Chin. Ed., 24:16-25, 2004.
- 397
-
A.M. Yaglom.
Certain limit theorems of the theory of branching processes (in
Russian).
Dokl. Acad. Nauk SSSR, 56:795-798, 1947.
- 398
-
Jun Ye.
Quasi-stationary distributions for the radial Ornstein-Uhlenbeck
processes.
Acta Math. Sci. Ser. B Engl. Ed., 28(3):513-522, 2008.
- 399
-
P.L. Yong.
Some results related to
-bounded Markov processes.
Nanta Math., 8:34-41, 1975.
- 400
-
M. Zhao and M. Jin.
Invariant measure, ratio limits and Martin boundary.
Appl. Math. J. Chinese Univ. Ser. B, 17:465-472, 2002.
- 401
-
M. Zhao and J. Ying.
Ratio limit theorems for random walks and Lévy processes.
Potential Anal., 23:357-380, 2005.
- 402
-
I.B. Ziedins.
Quasi-stationary distributions and one-dimensional circuit-switched
networks.
J. Appl. Probab., 24:965-977, 1987.
- 403
-
T.M. Zuparov and K.B. Mamadaliev.
The strong law of large numbers for quasistationary sequences in
Hilbert space.
Izv. Akad. Nauk UzSSR Ser. Fiz.-Mat. Nauk, 1:15-19, 81, 1982.
Phil Pollett
2010-07-17