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In this paper I shall consider a model for the simplest kind of dynamic routing in a circuit-
switched network, namely Random Alternative Routing: if a call cannot be carried on a first-
choice route, then a second-choice route is chosen at random from a fixed set of alternatives.
This kind of routing can give rise to several modes of behaviour. For example, the simple
model I shall consider can exhibit bistability; the system fluctuates between a low-blocking
state, where calls are accepted readily, and a high-blocking state, where the likelihood of a
call being accepted can be quite low. I shall describe a method which enables one to assess
the stability of the two states. In particular, it allows one to obtain qualitative estimates of
the time for which these states persist.
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1 INTRODUCTION

Recently, Gibbens et al. [3] introduced a simple model
which helps to explain why circuit-switched networks with
Random Alternative Routing can exhibit bistable behaviour.
Such bistability can have serious implications for the per-
formance of the network, for, in the high-blocking state, a
situation can persist where large numbers of calls use alter-
native routes, which generally demand greater link occu-
pancy than do first-choice routes and, thus, new calls are
likely to be blocked frequently. The persistence of the high-
blocking state is brought about because, even when calls
are accepted, they are allotted first-choice routes rather
rarely. It is of interest, therefore, to have a tool for deter-
mining the time it takes for the system to relax to the low-
blocking state, where new calls are accepted more readily,
and then to determine the time for which the low-blocking
state persists. In this paper I shall describe a method by
which one can model the random fluctuations of the sys-
tem about its various states, either stable or unstable. For
example, the method allows one to show that, as the num-
ber of links becomes large, the distribution of the time it
takes to leave a region containing a stable equilibrium is,
asymptotically, negative exponential.
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2 THE MODEL: A SYMMETRIC FULLY
CONNECTED NETWORK

There are N nodes connected to one another and, thus,
a total of K = 1

2N(N − 1) links (circuit groups). The
links are assumed to have the same number of circuits, C,
and calls between any two given nodes, a and b, arrive ac-
cording to a Poisson process with rate ν > 0; the arrival
streams are assumed to be independent. If a call is offered
to the link connecting a and b, and there is at least one free
circuit on that link, then the call is connected and is held
for a negative exponentially distributed period with mean
1. If there are no free circuits on the direct link, a third
node, c, is chosen at random from the remaining nodes
and an attempt is made to connect the call on the route
via c. If there is spare capacity on each of the two links
comprising the alternative route, the call is connected and
holds one circuit from each link for a period that is negative
exponentially distributed with mean 1. The call is blocked,
and then lost, if it cannot be accommodated on the al-
ternative route. Call lengths are assumed to be mutually
independent, and independent of the arrival process.

Although the usual model of this network is a finite-
state irreducible Markov chain, its state description is rather
complicated and its equilibrium behaviour cannot be anal-
ysed simply. For this reason, Gibbens et al. [3] proposed a
simplified model which does not respect the graph struc-
ture of the network, but whose behaviour for large N is
a good approximation to that of the original model. The
simplified description of the network, which I shall refer
to as the GHK (Gibbens-Hunt-Kelly) model, differs in two
ways. In cases when a call cannot be connected on a di-
rect link, two links are chosen at random from the re-
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maining K − 1 links. If there is spare capacity on each of
these links, one circuit is held on each link, but, now, the
two holding times are independent negative exponentially
distributed random variables with mean 1. Thus, in con-
trast to the original model, the two circuits are released
at different times (with probability 1). Gibbens et al. jus-
tify their approximation via simulation results based on two
summary statistics, an estimator for the link blocking prob-
ability and the total circuit utilization. They also provide
evidence which confirms that these statistics are sufficient
to summarize the behaviour of both models.

The Markovian description of the simplified model is as
follows: Since the number of links, K, shall vary, it will
be necessary to make the dependence on K explicit in the

notation. If one writes n
(K)
j (t) for the number of links with

j circuits in use at time t, then, under the above assump-

tions, (n(K)(t), t ≥ 0), where n(K) = (n(K)
0 , n

(K)
1 , . . . ,

n
(K)
C ), is a continuous-time Markov chain which takes val-

ues in

S(K) =

{
n ∈ {0, 1, . . . K}C+1 :

C∑

i=0

ni = K

}

and which has transition rates, Q(K) = (q(K)(n, n′),
n, n′ ∈ S(K)), given by

q(K)(n, n + ej+1 − ej) = νnj , 0 ≤ j ≤ C − 1,

q(K)(n, n + ej−1 − ej) = jnj , 1 ≤ j ≤ C,

and

q(K)(n, n + ei+1 − ei + ej+1 − ej) = νnC
ninj(
K

2

) ,

0 ≤ i < j ≤ C − 1,

q(K)(n, n + 2(ej+1 − ej)) = νnC

(
nj

2

)

(
K

2

) ,

0 ≤ j ≤ C − 1,

where ei is the unit vector with 1 as its ith entry.

Gibbens et al. [3] proved a functional law of large num-
bers for the simplified model, and this has recently been
shown to be valid for the original model, subject to cer-
tain natural constraints on the initial state of the network
(see [2]). In particular, they considered the behaviour of

X(K) = (X(K)
0 , X

(K)
1 , . . . , X

(K)
C ), where

X
(K)
j (t) =

n
(K)
j (t)
K

is the proportion of links with j circuits in use at time t.
The process (X(K)(t), t ≥ 0) is itself a Markov chain, but

one that takes values in a lattice which, for every K, is
contained in

U =

{
X ∈ [0, 1]C+1 :

C∑

i=0

Xi = 1

}
. (1)

Gibbens et al. showed that if, in the limit as K →∞,

X(K)(0) ⇒ x0 in U,

then
X(K)(·) ⇒ X(·, x0) in DU [0,∞),

where (X(t, x0), t ≥ 0) is a deterministic process with
initial point X(0, x0) = x0; here ⇒ denotes weak conver-
gence and DU [0,∞) is the space of all sample paths on
[0,∞). By studying the behaviour of X(t, x0) in the limit
as t → ∞, they were able to demonstrate the remarkable
fact that the model can exhibit bistable behaviour for C
large enough and for a narrow range of values of the ratio
ν/C.

The law of large numbers establishes that, when K is
large, the sample behaviour of the model can be approxi-
mated by the deterministic trajectory X(·, x0). However, it
does not provide information concerning the random fluc-
tuations about this trajectory. For this reason, I shall pro-
pose an analogous functional central limit theorem that
establishes a diffusion approximation for X(K)(·) which is
valid over finite intervals of time. This will be made pos-
sible by observing that the GHK model is asymptotically
density dependent , a notion which I introduced earlier in
connection with a study of Markovian models for a popu-
lation of searching insect parasites ([6]). I shall first recall
this notion and then state two functional limit laws for
asymptotically density dependent Markov chains which are
appropriate for analysing the GHK model.

3 ASYMPTOTIC DENSITY DEPEN-
DENCE

In the present context we can restrict our attention to
Markov chains over a finite state space, though all of the
results presented in this section hold more generally. Fur-
ther technical conditions are required to deal with infinite-
state processes; details of this can be found in [6].

Let {n(K)(·)} be a family of continuous-time Markov
chains, indexed by K > 0, and suppose that n(K)(·) takes
values in S(K), a finite subset of ZJ , and has transition
rates Q(K) = (q(K)(n, n′), n, n′ ∈ S(K)).

Definition. Suppose that there exists an open set U ⊆
RJ and a family, {f (K), K > 0}, of continuous functions,
with f (K) : U × ZJ → R, such that

q(K)(n, n + l) = Kf (K)
( n

K
, l

)
, l 6= 0. (2)
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Then, the family of Markov chains is asymptotically den-
sity dependent if, in addition, there exists a function, F :
U → RJ , such that {F (K)}, given by

F (K)(x) =
∑

l

lf (K)(x, l), x ∈ U,

converges to F on U .

This definition of density dependence differs from that in-
troduced by Kurtz [5]. His definition requires only that
there exists a continuous function, f : RJ × ZJ → R,
such that

q(K)(n, n + l) = Kf
( n

K
, l

)
, l 6= 0.

Thus, an asymptotically density dependent family of Markov
chains is density dependent if f (K) (and hence F (K)) does
not depend on K. Roughly speaking, a family is den-
sity dependent if the transition rates of the corresponding
“density process”, X(K)(·), defined by

X(K)(t) =
n(K)(t)

K
, t ≥ 0,

depend on the present state, n, only through the density
n/K; an asymptotically density dependent family is one
which exhibits this property in the limit as K →∞. Thus,
there is a natural way to associate with this process a den-
sity dependent deterministic process which, for large K,
is “tracked” by the process. Indeed, a straightforward for-
mal argument based on the Kolmogorov forward differential
equations for the state probabilities, shows that, for large
K,

d

dt
EX(K)(t) ' EF (K)(X(K)(t)), t > 0.

Thus one might expect this deterministic process, call it
X(·), to satisfy

d

dt
X(t) = F (X(t)), t > 0.

The following “law of large numbers” establishes that, un-
der appropriate conditions, the density process does track
a deterministic process; see [6] for details.

Theorem 3.1. Suppose that f (K)(·, l) is bounded on U ,
for each l and K, that F is Lipschitz continuous on U and
that {F (K)} converges uniformly to F on U . Then, if

lim
K→∞

X(K)(0) = x0, (3)

we have that

lim
K→∞

Pr
(

sup
s≤t

∣∣∣X(K)(s)−X(s, x0)
∣∣∣ > ε

)
= 0,

for all t > 0 and for all ε > 0, where X(·, x) is the unique
trajectory satisfying

X(0, x) = x,

X(s, x) ∈ U, 0 ≤ s ≤ t,

∂

∂s
X(s, x) = F (X(s, x)).

Remark. The technical conditions are usually satisfied in
most practical situations. Condition (3) stipulates that the
density process should begin close to the initial value, x0, of
the deterministic trajectory and, then, the conclusion of the
theorem is that the density process converges (uniformly in
probability) over any finite time interval, to that trajectory.

The following “central limit law” establishes that, for
large K, the fluctuations about the deterministic path fol-
low a Gaussian diffusion, provided that certain “second-
order” conditions are satisfied; again see [6] for details.

Theorem 3.2. Suppose that f (K)(·, l) is bounded on U ,
for each l and K, that F is Lipschitz continuous on U and
has uniformly continuous first partial derivatives, and that

lim
K→∞

sup
x∈U

√
K|F (K)(x)− F (x)| = 0. (4)

Suppose, also, that the sequence {G(K)}, where G(K) is
a J × J matrix with elements

g
(K)
ij (x) =

∑

l

liljf
(K)(x, l), x ∈ U,

converges uniformly to G, where G is uniformly continuous
on U . Then, provided

lim
K→∞

√
K

(
X(K)(0)− x0

)
= z, (5)

the family of processes {Z(K)(·)}, defined by

Z(K)(s) =
√

K
(
X(K)(s)−X(s, x0)

)
, 0 ≤ s ≤ t,

converges weakly in DU [0, t] to a Gaussian diffusion, Z(·),
with initial value Z(0) = z and with characteristic function,
ψ = ψ(s, θ), which satisfies

∂ψ

∂s
(s, θ) = −1

2

∑

j,k

θjgjk(X(s, x0))θkψ(s, θ)

+
∑

j,k

θj
∂Fj

∂xk
(X(s, x0))

∂ψ

∂θk
(s, θ). (6)

Remark. Condition (4) strengthens the condition that
{F (K)} converges uniformly to F to ensure this happens
at the correct rate, while Condition (5) provides the initial
value of the diffusion.

4 A FUNCTIONAL CENTRAL LIMIT
THEOREM FOR THE GHK MODEL

The GHK model is clearly asymptotically density depen-
dent, for one can define U by (1) and f (K) : U×Z(C+1) →
R, K ≥ 1, by

f (K)(x, ej+1 − ej) = νxj , 0 ≤ j ≤ C − 1,
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f (K)(x, ej−1 − ej) = jxj , 1 ≤ j ≤ C,

f (K)(x, ei+1 − ei + ej+1 − ej) = 2ν

(
K

K − 1

)
xCxixj ,

i > j, 0 ≤ i, j ≤ C − 1,

f (K)(x, 2(ej+1 − ej)) = ν

(
K

K − 1

)
xCxj

(
xj − 1

K

)
,

0 ≤ j ≤ C − 1,

so that (2) is satisfied. It is clear that f (K)(·, l) is bounded
on U , for each l and K, and that, as K → ∞, f (K)

converges uniformly on U to f , given by

f(x, ej+1 − ej) = νxj , 0 ≤ j ≤ C − 1,

f(x, ej−1 − ej) = jxj , 1 ≤ j ≤ C,

f(x, ei+1 − ei + ej+1 − ej) = 2νxCxixj ,

i > j, 0 ≤ i, j ≤ C − 1,

f(x, 2(ej+1 − ej)) = νxCx2
j , 0 ≤ j ≤ C − 1,

and so the corresponding sequence {F (K)}, defined by
F (K)(x) =

∑
l lf

(K)(x, l), x ∈ U , converges uniformly
on U to F , given by F (x) =

∑
l lf(x, l), x ∈ U . On

evaluating this latter summation, one finds that

F (x) = (HT + λ(x)V T )x,

where λ(x) = 2νxC(1− xC), and H and R are (C + 1)×
(C + 1) matrices, given by

H =




−ν ν 0 · · · 0 0
1 −(ν + 1) 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · −(ν + C − 1) ν
0 0 0 · · · −C C




and

V =




−1 1 0 0 · · · 0 0
0 −1 1 0 · · · 0 0
0 0 −1 1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · −1 1
0 0 0 0 · · · 0 0




.

Thus, the appropriate deterministic model to consider is

d

dt
X0(t) = X1(t)− (ν + λ(t))X0(t),

d

dt
Xj(t) = (ν + λ(t))Xj−1(t)− (ν + λ(t) + j)Xj(t)

+(j + 1)Xj+1(t), 1 ≤ j ≤ C − 1, (7)

d

dt
XC(t) = (ν + λ(t))XC−1(t)− CXC(t),

where λ(t) = λ(X(t)). One might have expected this
kind of law of motion to govern the limit proportions, for
notice that H is the transition-rate matrix of an Erlang loss
system with C circuits and with Poisson traffic offered at
rate ν, and so if λ were identically zero, (7) would comprise
the forward equations for the state probabilities of such a
system. As it is, λ(t) gives the additional arrival rate at
time t due to overflowing calls. As Gibbens et al. point
out, (7) admits a unique solution, X(·, x0), for each given
initial point, X(0, x0) = x0; this follows from the fact that
F is Lipschitz continuous on U .

Using Theorem 3.1, we have the following version of
the law of large numbers for the GHK model:

Theorem 4.1. In the GHK model, let X
(K)
j (t) be the

proportion of links with j circuits in use at time t and define

(X(K)(t), t ≥ 0) by X(K) = (X(K)
0 , X

(K)
1 , . . . , X

(K)
C ).

Then, if
lim

K→∞
X(K)(0) = x0,

we have that

lim
K→∞

Pr
(

sup
s≤t

∣∣∣X(K)(s)−X(s, x0)
∣∣∣ > ε

)
= 0,

for all t > 0 and for all ε > 0, where X(·, x0) is the unique
solution to (7) such that X(0, x0) = x0.

The theorem allows us to conclude, for example, that
{X(K)(s)} converges in probability to X(s, x0) and, since
for each s, X(K)(s) is uniformly bounded, dominated con-
vergence implies that

lim
K→∞

EX(K)(s) = X(s, x0),

over all finite time intervals.

The additional conditions of Theorem 3.2 are also sat-
isfied, and so one can establish an analogous central limit
law. We have already seen that f (K)(·, l) is bounded on
U , for each l and K, and that {F (K)} converges uniformly
to F . Now, it is easy to show that the matrix of first par-
tial derivatives, ∇F = [∂Fi/∂xj ], is uniformly continuous.
Further, the second-order condition (4) is satisfied because

|F (K)
j (x)− Fj(x)| = 1

K − 1
(2ν − λ(x))∆xj ,

where

∆xj =




−x0, j = 0,
xj−1 − xj , j = 1, 2, . . . , C − 1,
xC−1, j = C.

Also, a suitable sequence of covariance matrices, {G(K)},
can be constructed from {f (K)} and it is easy to see that
this sequence converges uniformly to the matrix G with
elements

gij(x) =
∑

l

liljf(x, l), x ∈ U.
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Although the precise arithmetical evaluation of G is te-
dious, it is clear that G is uniformly continuous on U . This
follows from the definition of G and the fact that, for each
l, f(·, l) is uniformly continuous on U . Thus, provided (5)
holds, a diffusion approximation is justified. Using expres-
sion (6), one can obtain the mean and variance of Z(s)
and, thus, an approximate formula for the mean and vari-
ance of X(K)(s) which is valid for large K. If one puts
Bs = ∇F (X(s, x0)), then

EZ(s) = Msz,

where

Ms = exp
(∫ s

0

Budu

)
.

On the other hand, the covariance matrix, Σs, of Z(s) is
given by

Σs = Ms

(∫ s

0

M−1
u G(X(u, x0))(M−1

u )T du

)
MT

s .

It follows that X(K)(s) has an approximate normal distri-
bution with

Cov X(K)(s) ' K−1Σs,

and, a “working” approximation for the mean, obtained by
setting z equal to

√
K

(
X(K)(0)− x0

)
(c.f. (5)), is given

by

EX(K)(s) ' X(s, x0) + Ms(X(K)(0)− x0).

Observe that the mean and variance of the numbers of
circuits in use at time s are both of order K.

In the important special case where x0 is chosen as an
equilibrium point of the deterministic model, one can be
far more precise in specifying the approximating diffusion.
The equilibrium points of (7) have been studied extensively
in [3]. Gibbens et al. showed that if x0 = (p0, p1, . . . pC)
is an equilibrium point it must be of the form given by

pj =
ξj

j!

(
C∑

i=0

ξi

i!

)−1

, 0 ≤ j ≤ C,

where ξ solves

ξ = ν + 2νE(ξ, C) (1− E(ξ, C)) . (8)

The quantity E(ξ, C), given by

E(ξ, C) =
ξC

C!

(
C∑

i=0

ξi

i!

)−1

,

is Erlang’s formula for the loss probability of a single link
with C circuits and with Poisson traffic offered at rate ξ.
It is usually more convenient to calculate the solutions to
(8) by setting b = E(ξ, C) and solving the equation

b = E (ν + 2νb(1− b), C) ; (9)

this transformation of (8) shows that b could have been
obtained as the celebrated Erlang Fixed Point of the model
(see, for example, [4]). For C sufficiently small, equation
(9) has a unique solution and the corresponding equilibrium
point is stable. However, if C is large enough, there can
be two or even three solutions depending, then, on the
magnitude of the ratio ν/C, and these give rise to two,
respectively three, equilibrium points. In the case of two
equilibrium points, one is stable and the other unstable,
while in the case of three, two are stable and the other is
unstable.

The following central limit law shows that the random
fluctuations about any given equilibrium point, x0, can be
approximated by an Ornstein-Uhlenbeck process. It should
be emphasised that x0 need not be stable. Indeed, the
approximation is appropriate for describing the fluctuations
about the unstable equilibria.

Theorem 4.2. Let x0 be an equilibrium point of (7).
Then, if

lim
K→∞

√
K

(
X(K)(0)− x0

)
= z,

the family of processes {Z(K)(·)}, defined by

Z(K)(s) =
√

K
(
X(K)(s)− x0

)
, 0 ≤ s ≤ t,

converges weakly in DU [0, t] to an Ornstein-Uhlenbeck
process, Z(·), with local drift matrix B = ∇F (x0), lo-
cal covariance matrix G = G(x0), and with initial value
Z(0) = z. In particular, Z(s) is normally distributed with
mean

µs = eBsz

and covariance matrix

Σs =
∫ s

0

eBuGeBT udu = Σ− eBsΣeBT s,

where Σ, the stationary covariance matrix, satisfies

BΣ + ΣBT + G = 0.

One can conclude that, for K large, X(K)(s) has an ap-
proximate normal distribution and an approximation for the
mean and the covariance matrix of X(K)(s) is given by

EX(K)(s) ' x0 + eBs(X(K)(0)− x0)

and
Cov X(K)(s) ' K−1

(
Σ− eBsΣeBT s

)
.

Although the diffusion approximation obtained using The-
orem 3.2 is likely to provide a more accurate estimate of
the distribution of X(K)(s), for s small, the Ornstein-
Uhlenbeck approximation has the advantage that the ap-
proximate formulae for the mean and covariance are speci-
fied explicitly. Further, as we shall see, this approximation
allows one to estimate the times for which the two stable
states persist.
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The special case C = 1, where there is only one circuit
available on each link, is exceedingly simple to analyse. Set

F (x) = 1− (ν + 1)x− 2ν(1− x)x2, x ∈ (0, 1),

and

G(x) = 1 + (ν − 1)x + 4ν(1− x)x2 x ∈ (0, 1).

Then, it can be shown that F has a unique zero, x0, on
(0, 1), for all values of ν > 0, this being a stable equilib-
rium point of the deterministic model, dx/dt = F (x). If
X(K)(s) is the proportion of links with no circuits in use at
time s, then by virtue of the Ornstein-Uhlenbeck approx-
imation, X(K)(s) has an approximate normal distribution
with

EX(K)(s) ' x0 + eBs(X(K)(0)− x0),

where B = F ′(x0) = 6νx2
0 − 4νx0 − (ν + 1)(< 0), and

Var X(K)(s) ' K−1 G(x0)
2B

(e2Bs − 1).

The magnitude of B, and hence the stability of x0, in-
creases as ν becomes large, but the stationary variance,
G(x0)/(−2B), increases from 0 to a maximum around
ν = 0.5 and then decreases to 0.

In cases where C > 1, it is convenient (see [1]) to
employ a change of coordinates. If, as is the case envis-
aged here, the eigenvalues of B = ∇F (x0) are real, an
appropriate transformation is given by

W (K)(s) = AZ(K)(s),

where the rows of A are the left-eigenvectors of B. Since
the column sums of B are all equal to 0, B has a zero eigen-

value, and so one of the components of W (K), say W
(K)
0 ,

is identically zero, since because
∑C

i=0 X
(K)
i = 1, we have

that
∑C

i=0 Z
(K)
i = 0. The sequence {W (K)(·)}, where for

convenience W (K) = (W (K)
1 , W

(K)
2 , . . . W

(K)
C ), converges

weakly to an Ornstein-Uhlenbeck process, W (·), whose in-
dividual components are, themselves, Ornstein-Uhlenbeck
processes. Its local drift matrix is D = diag (η1, η2, . . . ηC),
where η1, η2, . . . ηC are the non-zero eigenvalues of B, and
its local covariance matrix, S, is obtained from the matrix
AGAT by deleting the zeroth row and column. In particu-
lar, W (s) has a properly C-dimensional normal distribution
with

EWi(s) = wie
ηis,

Var Wi(s) =
Sii

2ηi
(e2ηis − 1)

and

Cov (Wi(s), Wj(s)) =
Sij

ηi + ηj
(e(ηi+ηj)s − 1),

for i = 1, 2 . . . , C, where w = Az.

The change of coordinates allows us to use some pow-
erful results of Barbour [1], which establish asymptotic re-
sults on the time of first exit of X(K)(·) from a region
containing x0. For example, suppose that x0 is a sta-
ble equilibrium point and let τ(K, cK) be the time when
W (K)(·) first crosses the contour

{
w ∈ RC :

C∑

i=1

√
2Tii

w2
i

exp
(

w2
i

2Tii

)
=

exp(c2
K)

cK

}
, (10)

where T , the stationary covariance matrix of W (·), has
elements Tij = −Sij/(ηi + ηj) and {cK} is a sequence of
real numbers such that cK → ∞ as K → ∞; as Barbour
notes, to order c−1

K , this contour delimits the rectangle

{
w ∈ RC : |wi| ≤ cK

√
(2Tii), i = 1, 2, . . . , C

}
.

Then, Theorem 3 of [1] states that if cK = o(K
1
8 ), the

random variable

−τ(K, cK)
2√
π

ηcK exp(−c2
K),

where η =
∑C

i=1 ηi, converges weakly to a unit-mean neg-
ative exponential random variable as K →∞. Thus, pro-
vided cK = o(K

1
8 ), the time at which W (K)(·) first crosses

the contour (10) is of order c−1
K exp(c2

K).

The result for the C = 1 case is more straightforward.
Using Theorem 1(iii) of [1], one can see that the time that
X(K)(·) first leaves the interval

{
x : |x− x0| ≤ K− 1

2 cK

}

is of order

1
−2BcK

√
πG(x0)
−B

e−Bc2
K/G(x0),

whenever cK = o(K
1
8 ). Hence, it is asymptotically larger

than any power of K if, for example, cK = O(K
1
8 / log K).

5 SUMMARY

I have established a law of large numbers and a central
limit law for a simple model of a circuit-switching network
with random alternative routing. The law of large num-
bers dictates that the state probabilities, in particular, the
blocking probabilities (or, indeed, any other performance
measure), can be accurately approximated by a specified
deterministic process, when the number of switching nodes
is reasonably large. The central limit law allows one to as-
sess the degree of random fluctuation about the determinis-
tic process. I have demonstrated that the fluctuations have
an approximate (multivariate) normal distribution whose
parameters are determined explicitly. Both approximations
are valid over any given time period. For example, they
are valid during periods, well before equilibrium is reached,
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where explicit analytical formulae for the state probabilities
are unavailable.

In addition, I have provided some qualitative results
concerning the distribution of the time taken for the pro-
cess to escape from a region containing a deterministic
equilibrium state. These results are useful in instances
where the system possesses multiple stable states, for ex-
ample, a high and a low blocking state “separated” by an
unstable state; I have demonstrated that the two stable
states persist for an exponentially distributed amount of
time.
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