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dX

dt
= k1(c −X)2 − k2X

Xt =
x1(c − x2)− x2(c − x1)e

−λt

c − x2 − (c − x1)e−λt

λ = k1(x2 − x1) x2 = c2/x1 x1 = 15.5861

Na+ + Cl− ⇋ NaCl
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Sheep in Tasmania
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Davidson, J. (1938) On the growth of the sheep population
in Tasmania, Trans. Roy. Soc. Sth. Austral. 62, 342–346.
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A deterministic model

dn

dt
= nf(n).

The net growth rate per individual is a function of the
population size n.

We want f(n) to be positive for small n and negative for
large n.
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A deterministic model

dn

dt
= nf(n).

The net growth rate per individual is a function of the
population size n.

We want f(n) to be positive for small n and negative for
large n. Simply set f(n) = r − sn to give

dn

dt
= n(r − sn).
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A deterministic model

dn

dt
= nf(n).

The net growth rate per individual is a function of the
population size n.

We want f(n) to be positive for small n and negative for
large n. Simply set f(n) = r − sn to give

dn

dt
= n(r − sn).

This is the classical Verhulst∗ model (or logistic model):

∗Verhulst, P.F. (1838) Notice sur la loi que la population suit dans son accroisement,

Corr. Math. et Phys. X, 113–121.
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The Verhulst model

Pierre Francois Verhulst (1804–1849, Brussels, Belgium)
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The Verhulst model
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The Verhulst model

An alternative formulation has r being the growth rate with
unlimited resources and K being the “natural” population size
(the carrying capacity). We put f(n) = r(1 − n/K) giving

dn

dt
= rn(1 − n/K),

which is the original model with s = r/K.
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The Verhulst model

An alternative formulation has r being the growth rate with
unlimited resources and K being the “natural” population size
(the carrying capacity). We put f(n) = r(1 − n/K) giving

dn

dt
= rn(1 − n/K),

which is the original model with s = r/K.

Integration gives

nt =
K

1 +
(

K−n0
n0

)

e−rt
(t ≥ 0).
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Verhulst-Pearl model

This formulation is due to Raymond Pearl:

Pearl, R. and Reed, L. (1920) On the rate of growth of population of the

United States since 1790 and its mathematical representation, Proc. Nat.

Academy Sci. 6, 275–288.

Pearl, R. (1925) The biology of population growth, Alfred A. Knopf, New

York.

Pearl, R. (1927) The growth of populations, Quart. Rev. Biol. 2, 532–548.
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Verhulst-Pearl model

Raymond Pearl (1879–1940, Farmington, N.H., USA)
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Pearl was a “social drinker”

Pearl was widely known for his lust for life and his love of food,
drink, music and parties. He was a key member of the
Saturday Night Club. Prohibition made no dent in Pearl’s
drinking habits (which were legendary).
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Pearl was a “social drinker”

Pearl was widely known for his lust for life and his love of food,
drink, music and parties. He was a key member of the
Saturday Night Club. Prohibition made no dent in Pearl’s
drinking habits (which were legendary).

In 1926, his book, Alcohol and Longevity, demonstrated that
drinking alcohol in moderation is associated with greater
longevity than either abstaining or drinking heavily.

Pearl, R. (1926) Alcohol and Longevity , Alfred A. Knopf, New York.
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Verhulst-Pearl model
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Sheep in Tasmania
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(With the deterministic trajectory subtracted)
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A stochastic model

We really need to account for the variation observed.

A recent approach to stochastic modelling in Applied
Mathematics can be summarised as follows:

“I feel guilty – I should add some noise”

(promulgated by stochastic modelling “experts” and courses in
Financial Mathematics that require no background in
stochastic processes).
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A stochastic model

We really need to account for the variation observed.

A recent approach to stochastic modelling in Applied
Mathematics can be summarised as follows:

“I feel guilty – I should add some noise”

(promulgated by stochastic modelling “experts” and courses in
Financial Mathematics that require no background in
stochastic processes)∗.

∗Zen Maxim (for survival in a modern university): Before you criticize someone, you

should walk a mile in their shoes. That way, when you criticize them, you’re a mile

away and you have their shoes.

MASCOS APWSPM06, February 2006 - Page 17



Adding noise

In our case,

nt =
K

1 +
(

K−n0
n0

)

e−rt
+ something random

or perhaps
dn

dt
= rn

(

1 − n

K

)

+ σ × noise.
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Noise?

The usual model for “noise” is white noise (or pure Gaussian
noise).

Imagine a random process (ξt, t ≥ 0) with ξt ∼ N(0, 1) for all t
and ξt1 , . . . , ξtn independent for all finite sequences of times
t1, . . . , tn.
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White noise
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Brownian motion

The white noise process (ξt, t ≥ 0) is formally defined as the
derivative of standard Brownian motion (Bt, t ≥ 0).

Brownian motion (or Wiener process) can be constructed by
way of a random walk. A particle starts at 0 and takes small
steps of size +∆ or −∆ with equal probability p = 1/2 after
successive time steps of size h. If ∆ ∼

√
h, as h → 0, then the

limit process is standard Brownian motion.
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Symmetric random walk: ∆ =
√

h
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Brownian motion

The white noise process (ξt, t ≥ 0) is formally defined as the
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Brownian motion

The white noise process (ξt, t ≥ 0) is formally defined as the
derivative of standard Brownian motion (Bt, t ≥ 0).

Brownian motion (or Wiener process) can be constructed by
way of a random walk. A particle starts at 0 and takes small
steps of size +∆ or −∆ with equal probability p = 1/2 after
successive time steps of size h. If ∆ ∼

√
h, as h → 0, then the

limit process is standard Brownian motion.

This construction permits us to write dBt = ξt

√
dt, with the

interpretation that a change in Bt in time dt is a Gaussian
random variable with E(dBt) = 0, Var(dBt) = dt and
Cov(dBt, dBs) = 0 (s 6= t).
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Brownian motion

The white noise process (ξt, t ≥ 0) is formally defined as the
derivative of standard Brownian motion (Bt, t ≥ 0).

Brownian motion (or Wiener process) can be constructed by
way of a random walk. A particle starts at 0 and takes small
steps of size +∆ or −∆ with equal probability p = 1/2 after
successive time steps of size h. If ∆ ∼

√
h, as h → 0, then the

limit process is standard Brownian motion.

This construction permits us to write dBt = ξt

√
dt, with the

interpretation that a change in Bt in time dt is a Gaussian
random variable with E(dBt) = 0, Var(dBt) = dt and
Cov(dBt, dBs) = 0 (s 6= t).

The correct interpretation is by way of the Itô integral:

Bt =
∫ t

0 dBs =
∫ t

0 ξs ds.
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Brownian motion

General Brownian motion (Wt, t ≥ 0), with drift µ and variance
σ2, can be constructed in the same way but with ∆ ∼ σ

√
h and

p = 1
2

(

1 + (µ/σ)
√

h
)

, and we may write

dWt = µ dt + σ dBt,

with the interpretation that a change in Wt in time dt is a
Gaussian random variable with E(dWt) = µdt, Var(dWt) = σ2dt
and Cov(dWt, dWs) = 0.
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Brownian motion

General Brownian motion (Wt, t ≥ 0), with drift µ and variance
σ2, can be constructed in the same way but with ∆ ∼ σ

√
h and

p = 1
2

(

1 + (µ/σ)
√

h
)

, and we may write

dWt = µ dt + σ dBt,

with the interpretation that a change in Wt in time dt is a
Gaussian random variable with E(dWt) = µdt, Var(dWt) = σ2dt
and Cov(dWt, dWs) = 0. This stochastic differential equation
(SDE) can be integrated to give Wt = µt + σBt.
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Brownian motion

General Brownian motion (Wt, t ≥ 0), with drift µ and variance
σ2, can be constructed in the same way but with ∆ ∼ σ

√
h and

p = 1
2

(

1 + (µ/σ)
√

h
)

, and we may write

dWt = µ dt + σ dBt,

with the interpretation that a change in Wt in time dt is a
Gaussian random variable with E(dWt) = µdt, Var(dWt) = σ2dt
and Cov(dWt, dWs) = 0. This stochastic differential equation
(SDE) can be integrated to give Wt = µt + σBt.

It does not require an enormous leap of faith for us now to
write down, and properly interpret, the SDE

dnt = rnt (1 − nt/K) dt + σdBt

as a model for growth of our sheep population.
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Adding noise

The idea (indeed the very idea of an SDE) can be traced back
to Paul Langevin’s 1908 paper “On the theory of Brownian
Motion”:

Langevin, P. (1908) Sur la théorie du mouvement brownien, Comptes

Rendus 146, 530–533.

He derived a “dynamic theory” of Brownian Motion three years
after Einstein’s ground breaking paper on Brownian Motion:

Einstein, A. (1905) On the movement of small particles suspended in

stationary liquids required by the molecular-kinetic theory of heat, Ann.

Phys. 17, 549–560 [English translation by Anna Beck in The Collected

Papers of Albert Einstein, Princeton University Press, Princeton, USA,

1989, Vol. 2, pp. 123–134.]

MASCOS APWSPM06, February 2006 - Page 25



Langevin

Langevin introduced a “stochastic force” (his phrase
“complementary force”–complimenting the viscous drag µ)
pushing the Brownian particle around in velocity space
(Einstein worked in configuration space).

In modern terminology, Langevin described the Brownian
particle’s velocity as an Ornstein-Uhlenbeck (OU) process
and its position as the time integral of its velocity, while
Einstein described its position as a Wiener process.

The Langevin equation (for a particle of unit mass) is

dvt = −µvt dt + σdBt.

This is Newton’s law (−µv = Force = mv̇) plus noise. The
(strong) solution to this SDE is the OU process.
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Langevin

Langevin introduced a “stochastic force” (his phrase
“complementary force”–complimenting the viscous drag µ)
pushing the Brownian particle around in velocity space
(Einstein worked in configuration space).

In modern terminology, Langevin described the Brownian
particle’s velocity as an Ornstein-Uhlenbeck (OU) process
and its position as the time integral of its velocity, while
Einstein described its position as a Wiener process.

The Langevin equation (for a particle of unit mass) is

dvt = −µvt dt + σdBt.

This is Newton’s law (−µv = Force = mv̇) plus noise. The
(strong) solution to this SDE is the OU process. Warning:
∫ t

0 vs ds 6= Bt; this functional is not even Markovian.

MASCOS APWSPM06, February 2006 - Page 27



Langevin

Einstein said of Langevin “...
It seems to me certain that
he would have developed
the special theory of rela-
tivity if that had not been
done elsewhere, for he had
clearly recognized the es-
sential points.”

Paul Langevin (1872-1946, Paris, France)
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Langevin was a dark horse

In 1910 he had an affair with Marie Curie (Polish physicist).
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Langevin was a dark horse

In 1910 he had an affair with Marie Curie (Polish physicist).
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Langevin was a dark horse

In 1910 he had an affair with Marie Curie (Polish physicist).

The person on the right is not Langevin, but Langevin’s PhD
supervisor Pierre Curie.
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Solution to Langevin’s equation

To solve dvt = −µvt dt + σdBt, consider the process yt = vte
µt.
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Solution to Langevin’s equation

To solve dvt = −µvt dt + σdBt, consider the process yt = vte
µt.

Differentiation (Itô calculus!) gives dyt = eµtdvt + µeµtvtdt.
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Solution to Langevin’s equation

To solve dvt = −µvt dt + σdBt, consider the process yt = vte
µt.

Differentiation (Itô calculus!) gives dyt = eµtdvt + µeµtvtdt.

But, from Langevin’s equation we have that

eµtdvt = −µeµtvt dt + σeµtdBt,
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Solution to Langevin’s equation

To solve dvt = −µvt dt + σdBt, consider the process yt = vte
µt.

Differentiation (Itô calculus!) gives dyt = eµtdvt + µeµtvtdt.

But, from Langevin’s equation we have that

eµtdvt = −µeµtvt dt + σeµtdBt,

and hence that dyt = σeµtdBt.
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Solution to Langevin’s equation

To solve dvt = −µvt dt + σdBt, consider the process yt = vte
µt.

Differentiation (Itô calculus!) gives dyt = eµtdvt + µeµtvtdt.

But, from Langevin’s equation we have that

eµtdvt = −µeµtvt dt + σeµtdBt,

and hence that dyt = σeµtdBt. Integration gives

yt = y0 +
∫ t

0 σeµsdBs,
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Solution to Langevin’s equation

To solve dvt = −µvt dt + σdBt, consider the process yt = vte
µt.

Differentiation (Itô calculus!) gives dyt = eµtdvt + µeµtvtdt.

But, from Langevin’s equation we have that

eµtdvt = −µeµtvt dt + σeµtdBt,

and hence that dyt = σeµtdBt. Integration gives

yt = y0 +
∫ t

0 σeµsdBs,

and so (the Ornstein-Uhlenbeck process)

vt = v0e
−µt +

∫ t

0 σe−µ(t−s)dBs.
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Solution to Langevin’s equation

To solve dvt = −µvt dt + σdBt, consider the process yt = vte
µt.

Differentiation (Itô calculus!) gives dyt = eµtdvt + µeµtvtdt.

But, from Langevin’s equation we have that

eµtdvt = −µeµtvt dt + σeµtdBt,

and hence that dyt = σeµtdBt. Integration gives

yt = y0 +
∫ t

0 σeµsdBs,

and so (the Ornstein-Uhlenbeck process)

vt = v0e
−µt +

∫ t

0 σe−µ(t−s)dBs.

We can deduce much from this. For example, vt is a Gaussian
process with E(vt) = v0e

−µt and Var(vt) = σ2

2µ
(1 − e−2µt), and

Cov(vt, vt+s) = Var(vt)e
−µ|s|.
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Where were we?

We had just added noise to our logistic model:

dnt = rnt

(

1 − nt

K

)

dt + σ dBt. (1)
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Where were we?

We had just added noise to our logistic model:

dnt = rnt

(

1 − nt

K

)

dt + σ dBt. (1)

So, what the hell is wrong with (1)?
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Sheep in Tasmania
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Solution to SDE (Run 1)
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Solution to SDE (one sample path)

dnt = rnt

(

1 − nt

K

)

dt + σdBt

K = 1670, r = 0.13125, σ = 90

n0 = 73, t0 = 1818

(Solution to the deterministic model is in green)
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Solution to SDE (Run 2)
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(Solution to the deterministic model is in green)
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Solution to SDE (Run 3)
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(Solution to the deterministic model is in green)
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Solution to SDE (Run 4)
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dt + σdBt

K = 1670, r = 0.13125, σ = 90

n0 = 73, t0 = 1818

(Solution to the deterministic model is in green)
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Solution to SDE (Run 5)
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Solution to SDE (one sample path)

dnt = rnt
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dt + σdBt

K = 1670, r = 0.13125, σ = 90

n0 = 73, t0 = 1818

(Solution to the deterministic model is in green)
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Solution to SDE
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dnt = rnt

(

1 − nt

K

)

dt + σdBt

K = 1670, r = 0.13125, σ = 90

n0 = 73, t0 = 1818

(Solution to the deterministic model is in green)

MASCOS APWSPM06, February 2006 - Page 38



Solution to SDE
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(With the solution to the deterministic model subtracted)
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Logistic model with noise

So, what is wrong with the model?

dnt = rnt

(

1 − nt

K

)

dt + σ dBt.
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Logistic model with noise

So, what is wrong with the model?
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Logistic model with noise

So, what is wrong with the model?

dnt = rnt

(

1 − nt

K

)

dt + σ dBt.

For a start:

• 0 is reflecting;
• The mean path of the SDE solution does not follow a

logistic curve;
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Logistic model with noise

So, what is wrong with the model?

dnt = rnt

(

1 − nt

K

)

dt + σ dBt.

For a start:

• 0 is reflecting;
• The mean path of the SDE solution does not follow a

logistic curve;
• The variance in the solution is large for the non-

equilibrium phase–is this okay?
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Logistic model with noise

So, what is wrong with the model?

dnt = rnt

(

1 − nt

K

)

dt + σ dBt.

For a start:

• 0 is reflecting;
• The mean path of the SDE solution does not follow a

logistic curve;
• The variance in the solution is large for the non-

equilibrium phase–is this okay?

. . . not to mention the fact that nt is a continuous variable, yet
population size is an integer-valued process!
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The variance!

Since the variance is not uniform over time, we should at least
have

dnt = rnt

(

1 − nt

K

)

dt + σ(nt) dBt,
if not

dnt = rnt

(

1 − nt

K

)

dt + σ(nt, t) dBt.
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A different approach

Let’s start from scratch specifying a stochastic model with
variation being an inherent property: a Markovian model .
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A different approach

Let’s start from scratch specifying a stochastic model with
variation being an inherent property: a Markovian model .

We will suppose that nt (integer-valued!) evolves as a
birth-death process with rates

qn,n+1 = λn
(

1 − n
N

)

and qn,n−1 = µn,

where λ and µ (both positive) are per-capita birth and death
rates (for λ when the population is small). Here N is the
population ceiling (nt now takes values in S = {0, 1, . . . , N}).

I will call this model the stochastic logistic (SL) model , though
it has many names, having been rediscovered several times
since Feller proposed it in 1939.
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A different approach

Let’s start from scratch specifying a stochastic model with
variation being an inherent property: a Markovian model .

We will suppose that nt (integer-valued!) evolves as a
birth-death process with rates

qn,n+1 = λn
(

1 − n
N

)

and qn,n−1 = µn,

where λ and µ (both positive) are per-capita birth and death
rates (for λ when the population is small). Here N is the
population ceiling (nt now takes values in S = {0, 1, . . . , N}).

I will call this model the stochastic logistic (SL) model , though
it has many names, having been rediscovered several times
since Feller proposed it in 1939.

It shares an important property with the deterministic logistic
model: that of density dependence.
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Density dependence

The Verhulst-Pearl model dn
dt

= rn
(

1 − n
K

)

can be written

1

N

dn

dt
= r

n

N

(

1 − N

K

n

N

)

.

The rate of change of nt depends on nt only through nt

N
.

So, letting xt = nt/N be the “population density”, we get

dx

dt
= rx

(

1 − x

E

)

, where E = K/N.

This is a convenient space scaling. We could have set
xt = nt/A, where A is habitat area, and then

dx

dt
= rx

(

1 − x

DE

)

, where D = N/A.
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Markovian models

Let (nt, t ≥ 0) be a continuous-time Markov chain taking
values in S ⊆ Zk with transition rates Q = (qnm, n, m ∈ S). We
identify a quantity N , usually related to the size of the system
being modelled.

Definition (Kurtz∗) The model is density dependent if there is
a subset E of Rk and a continuous function f : Zk × E → R,
such that

qn,n+l = Nfl

(

n
N

)

, l 6= 0 (l ∈ Zk).

(So, the idea is the same: the rate of change of nt depends on
nt only through the “density” nt/N .)

∗Kurtz, T. (1970) Solutions of ordinary differential equations as limits of pure jump

Markov processes, J. of Appl. Probab. 7, 49–58.
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Markovian models

Let (nt, t ≥ 0) be a continuous-time Markov chain taking
values in S ⊆ Zk with transition rates Q = (qnm, n, m ∈ S). We
identify a quantity N , usually related to the size of the system
being modelled.

Definition (Kurtz∗) The model is density dependent if there is
a subset E of Rk and a continuous function f : Zk × E → R,
such that

qn,n+l = Nfl

(

n
N

)

, l 6= 0 (l ∈ Zk).

(So, the idea is the same: the rate of change of nt depends on
nt only through the “density” nt/N .)

∗Kurtz, T. (1970) Solutions of ordinary differential equations as limits of pure jump

Markov processes, J. of Appl. Probab. 7, 49–58.
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Tom Kurtz

Thomas Kurtz (taken in 2003)
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Density dependence

Consider the forward equations for pn(t) := Pr(nt = n). Let
qn =

∑

m6=n qnm. Then,

p ′
n(t) = −qnpn(t) +

∑

m6=n pm(t)qmn,

MASCOS APWSPM06, February 2006 - Page 47



Density dependence

Consider the forward equations for pn(t) := Pr(nt = n). Let
qn =

∑

m6=n qnm. Then,

p ′
n(t) = −qnpn(t) +

∑

m6=n pm(t)qmn,

and so (formally) E(nt) =
∑

n npn(t) satisfies

d
dt

E(nt) = −
∑

n qnnpn(t) +
∑

m pm(t)
∑

n6=m nqmn.
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Density dependence

Consider the forward equations for pn(t) := Pr(nt = n). Let
qn =

∑

m6=n qnm. Then,

p ′
n(t) = −qnpn(t) +

∑

m6=n pm(t)qmn,

and so (formally) E(nt) =
∑

n npn(t) satisfies

d
dt

E(nt) = −
∑

n qnnpn(t) +
∑

m pm(t)
∑

n6=m nqmn.

So if qn,n+l = Nfl(n/N), then

d
dt

E(nt) = −
∑

n

∑

l 6=0 Nfl(n/N)npn(t)

+
∑

m pm(t)
∑

l 6=0(m + l)Nfl(m/N)

=
∑

m pm(t)N
∑

l 6=0 lfl(m/N) = NE

(

∑

l 6=0 lfl(nt/N)
)

.
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Density dependence

For an arbitrary density dependent model, define F : E → R
by F (x) =

∑

l 6=0 lfl (x). Then,

d
dt

E(nt) = N E

(

F
(nt

N

))

,

or, setting Xt = nt/N (the density process),

d
dt

E(Xt) = E (F (Xt)) .
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Density dependence

For an arbitrary density dependent model, define F : E → R
by F (x) =

∑

l 6=0 lfl (x). Then,

d
dt

E(nt) = N E

(

F
(nt

N

))

,

or, setting Xt = nt/N (the density process),

d
dt

E(Xt) = E (F (Xt)) .

Warning: I’m not saying that d
dt

E(Xt) = F (E(Xt)).
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Density dependence

For an arbitrary density dependent model, define F : E → R
by F (x) =

∑

l 6=0 lfl (x). Then,

d
dt

E(nt) = N E

(

F
(nt

N

))

,

or, setting Xt = nt/N (the density process),

d
dt

E(Xt) = E (F (Xt)) .

Warning: I’m not saying that d
dt

E(Xt) = F (E(Xt)).

(But, I am hoping for something like that to be true!)
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Density dependence

For the SL model we have S = {0, 1, . . . , N} and

qn,n+1 = λn
(

1 − n
N

)

and qn,n−1 = µn.

Therefore, f+1(x) = λx (1 − x) and f−1(x) = µx, x ∈ E := [0, 1],
and so F (x) = λx (1 − ρ − x), x ∈ E, where ρ = µ/λ.
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Density dependence

For the SL model we have S = {0, 1, . . . , N} and

qn,n+1 = λn
(

1 − n
N

)

and qn,n−1 = µn.

Therefore, f+1(x) = λx (1 − x) and f−1(x) = µx, x ∈ E := [0, 1],
and so F (x) = λx (1 − ρ − x), x ∈ E, where ρ = µ/λ.

Now compare F (x) with the right-hand side of the
Verhulst-Pearl model for the density process:

dx
dt

= rx
(

1 − x
E

)

, where E = K/N . (2)

If K ∼ βN for N large, so that K/N → β, then we may identify
β with 1 − ρ and r with λβ, and discover that (2) can be
rewritten as dx/dt = F (x).
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Recall that ...

Recall that (nt, t ≥ 0) is a continuous-time Markov chain
taking values in S ⊆ Zk with transition rates
Q = (qnm, n, m ∈ S), and we have identified a quantity N ,
usually related to the size of the system being modelled.

The model is assumed to be density dependent : there is a
subset E of Rk and a continuous function f : Zk × E → R,
such that

qn,n+l = Nfl

(

n
N

)

, l 6= 0 (l ∈ Zk).

We set F (x) =
∑

l 6=0 lfl (x), x ∈ E.

We now formally define the density process (X(N)

t ) by
X(N)

t = nt/N , t ≥ 0. We hope that (X (N)

t ) becomes more
deterministic as N gets large.

MASCOS APWSPM06, February 2006 - Page 50



Recall that ...

Recall that (nt, t ≥ 0) is a continuous-time Markov chain
taking values in S ⊆ Zk with transition rates
Q = (qnm, n, m ∈ S), and we have identified a quantity N ,
usually related to the size of the system being modelled.

The model is assumed to be density dependent : there is a
subset E of Rk and a continuous function f : Zk × E → R,
such that

qn,n+l = Nfl

(

n
N

)

, l 6= 0 (l ∈ Zk).

We set F (x) =
∑

l 6=0 lfl (x), x ∈ E.

We now formally define the density process (X(N)

t ) by
X(N)

t = nt/N , t ≥ 0. We hope that (X (N)

t ) becomes more
deterministic as N gets large. To simplify the statement of
results, I’m going to assume that the state space S is finite.
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A law of large numbers

The following functional law of large numbers establishes
convergence of the family (X(N)

t ) to the unique trajectory of an
appropriate approximating deterministic model.

Theorem (Kurtz∗) Suppose F is Lipschitz on E (that is,
|F (x) − F (y)| < ME |x − y|). If limN→∞ X(N)

0 = x0, then the
density process (X(N)

t ) converges uniformly in probability on
[0, t] to (xt), the unique (deterministic) trajectory satisfying

d
ds

xs = F (xs), xs ∈ E, s ∈ [0, t].

∗Kurtz, T. (1970) Solutions of ordinary differential equations as limits of pure jump

Markov processes, J. of Appl. Probab. 7, 49–58.
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A law of large numbers

The following functional law of large numbers establishes
convergence of the family (X(N)

t ) to the unique trajectory of an
appropriate approximating deterministic model.

Theorem (Kurtz∗) Suppose F is Lipschitz on E (that is,
|F (x) − F (y)| < ME |x − y|). If limN→∞ X(N)

0 = x0, then the
density process (X(N)

t ) converges uniformly in probability on
[0, t] to (xt), the unique (deterministic) trajectory satisfying

d
ds

xs = F (xs), xs ∈ E, s ∈ [0, t].

∗Kurtz, T. (1970) Solutions of ordinary differential equations as limits of pure jump

Markov processes, J. of Appl. Probab. 7, 49–58.

(If S is an infinite set, we have the additional conditions
supx∈E

∑

l 6=0 |l|fl(x) < ∞ and limd→∞
∑

|l|>d |l|fl(x) = 0, x ∈ E.)
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A law of large numbers

Convergence uniformly in probability on [0, t] means that for
every ǫ > 0,

limN→∞ Pr
(

sups≤t

∣

∣X(N)

t − xt

∣

∣ > ǫ
)

= 0.
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A law of large numbers

Convergence uniformly in probability on [0, t] means that for
every ǫ > 0,

limN→∞ Pr
(

sups≤t

∣

∣X(N)

t − xt

∣

∣ > ǫ
)

= 0.

The conditions of the theorem hold for the SL model: since
F (x) = λx(1 − ρ − x), we have, for all x, y ∈ E = [0, 1], that

|F (x) − F (y)| = λ|x − y||1 − ρ − (x + y)| ≤ (1 + ρ)λ|x − y|.

So, provided X(N)

0 → x0 as N → ∞, the population density
(X(N)

t ) converges (uniformly in probability on finite time
intervals) to the solution (xt) of the deterministic model

dx

dt
= λx(1 − ρ − x) (xt ∈ E).
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Simulation of the SL model
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Simulation of SL Model (N =10000, λ =0.78593, µ =0.65468, K =1670)
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(Solution to the deterministic model is in green)
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A central limit law

In a later paper Kurtz∗ proved a functional central limit law
which establishes that, for large N , the fluctuations about the
deterministic trajectory follow a Gaussian diffusion, provided
that some mild extra conditions are satisfied.

He considered the family of processes {(Z(N)

t )} defined by

Z(N)
s =

√
N

(

X(N)
s − xs

)

, 0 ≤ s ≤ t.

∗Kurtz, T. (1971) Limit theorems for sequences of jump Markov processes approximat-

ing ordinary differential processes. J. Appl. Probab. 8, 344–356.
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The SL model (N = 20)
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The SL model (N = 50)

0 10 20 30 40 50 60 70 80 90 100
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Simulation of SL Model (N =50, λ =0.1625, µ =0.0325)

t

Z
(N

)
t

=
√

N
(X

(N
)

t
−

x
t
)

MASCOS APWSPM06, February 2006 - Page 56



The SL model (N = 100)
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The SL model (N = 200)
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The SL model (N = 500)
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The SL model (N = 1 000)
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The SL model (N = 10 000)
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A central limit law

Theorem Suppose that F is Lipschitz and has uniformly
continuous first derivative on E, and that the k × k matrix
G(x), defined for x ∈ E by Gij(x) =

∑

l 6=0 liljfl(x), is uniformly
continuous on E.

Let (xt) be the unique deterministic trajectory starting at x0

and suppose that limN→∞

√
N

(

X(N)

0 − x0

)

= z.

Then, {(Z(N)

t )} converges weakly in D[0, t] (the space of
right-continuous, left-hand limits functions on [0, t]) to a
Gaussian diffusion (Zt) with initial value Z0 = z and with mean
and covariance given by µs := E(Zs) = Msz, where
Ms = exp(

∫ s

0 Bu du) and Bs = ∇F (xs), and

Vs := Cov(Zs) = Ms

(∫ s

0 M−1
u G(xu)(M−1

u )T du
)

MT
s .
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A central limit law

The functional central limit theorem tells us that, for large N ,
the scaled density process Z(N)

t can be approximated over
finite time intervals by the Gaussian diffusion (Zt).

In particular, for all t > 0, X(N)

t has an approximate normal
distribution with Cov(X(N)

t ) ≃ Vt/N .

We would usually take x0 = X(N)

0 , thus giving E(X(N)

t ) ≃ xt.
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A central limit law

For the SL model we have F (x) = λx(1 − ρ − x), and the
solution to dx/dt = F (x) is

x(t) = (1−ρ)x0

x0+(1−ρ−x0)e−λ(1−ρ)t .

We also have F ′(x) = λ(1 − ρ − 2x) and

G(x) =
∑

l l
2fl(x) = λx(1 + ρ − x) = F (x) + 2µx,

giving

Mt = exp
(

∫ t

0 F ′(xs) ds
)

= (1−ρ)2e−λ(1−ρ)t

(x0+(1−ρ−x0)e−λ(1−ρ)t)2
.

We can evaluate

Vt := Var(Zt) = M2
t

(

∫ t

0 G(xs)/M
2
s ds

)

numerically, or ...
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Or ....

Vt = x0

(

ρx3
0 + x2

0(1 + 5ρ)(1 − ρ − x0)e
−λ(1−ρ)t

+ 2x0(1 + 2ρ)(1 − ρ − x0)
2(λ(1 − ρ)t)e−2λ(1−ρ)t

−
(

(1 − ρ − x0)[3ρx2
0 + (2 + ρ)(1 − ρ)x0 − ((1 + 2ρ))(1 − ρ)2]

+ ρ(1 − ρ)3
)

e−2λ(1−ρ)t

− (1+ρ)(1−ρ−x0)
3e−3λ(1−ρ)t

)/(

x0 +(1−ρ−x0)e
−λ(1−ρ)t

)4
.
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The SL model
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(Deterministic trajectory plus or minus two standard deviations in green)
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The OU approximation

If the initial point x0 of the deterministic trajectory is chosen to
be an equilibrium point of the deterministic model, we can be
far more precise about the approximating diffusion.

Corollary If xeq satisfies F (xeq) = 0, then, under the
conditions of the theorem, the family {(Z(N)

t )}, defined by

Z(N)
s =

√
N(X(N)

s − xeq), 0 ≤ s ≤ t,

converges weakly in D[0, t] to an OU process (Zt) with initial
value Z0 = z, local drift matrix B = ∇F (xeq) and local
covariance matrix G(xeq). In particular, Zs is normally
distributed with mean and covariance given by
µs := E(Zs) = eBsz and

Vs := Cov(Zs) =
∫ s

0 eBuG(xeq)e
BT u du .
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The OU approximation

Note that

Vs =
∫ s

0 eBuG(xeq)e
BT u du = V∞ − eBsV∞eBT s,

where V∞, the stationary covariance matrix, satisfies

BV∞ + V∞BT + G(xeq) = 0.
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The OU approximation

Note that

Vs =
∫ s

0 eBuG(xeq)e
BT u du = V∞ − eBsV∞eBT s,

where V∞, the stationary covariance matrix, satisfies

BV∞ + V∞BT + G(xeq) = 0.

We conclude that, for N large, X(N)

t has an approximate
Gaussian distribution with Cov(X(N)

t ) ≃ Vt/N .
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The OU approximation

Note that

Vs =
∫ s

0 eBuG(xeq)e
BT u du = V∞ − eBsV∞eBT s,

where V∞, the stationary covariance matrix, satisfies

BV∞ + V∞BT + G(xeq) = 0.

We conclude that, for N large, X(N)

t has an approximate
Gaussian distribution with Cov(X(N)

t ) ≃ Vt/N .

For the SL model, we get Var(X(N)

t ) ≃ ρ(1 − e−2λ(1−ρ)t)/N .
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The OU approximation

Note that

Vs =
∫ s

0 eBuG(xeq)e
BT u du = V∞ − eBsV∞eBT s,

where V∞, the stationary covariance matrix, satisfies

BV∞ + V∞BT + G(xeq) = 0.

We conclude that, for N large, X(N)

t has an approximate
Gaussian distribution with Cov(X(N)

t ) ≃ Vt/N .

For the SL model, we get Var(X(N)

t ) ≃ ρ(1 − e−2λ(1−ρ)t)/N .

This brings us “full circle” to the approximating SDE

dnt = −α(nt − K) dt +
√

2Nαρ dBt, where α = λ(1 − ρ).
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The SL model
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(Deterministic equilibrium plus or minus two standard deviations is in black)
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