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A precipitation reaction

A+B=C:a=b=0,¢c=20, ky =4, ks =5, V =10°
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A precipitation reaction
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Sheep in Tasmania

Growth of Tasmanian sheep population from 1818 to 1936
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Davidson, J. (1938) On the growth of the sheep population
in Tasmania, Trans. Roy. Soc. Sth. Austral. 62, 342—-346.
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A deterministic model

2—? =nf(n).

The net growth rate per individual is a function of the
population size n.

We want f(n) to be positive for small » and negative for
large n.
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A deterministic model

2—? =nf(n).

The net growth rate per individual is a function of the
population size n.

We want f(n) to be positive for small » and negative for
large n. Simply set f(n) = r — sn to give

dn
dt

= n(r — sn).
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A deterministic model

dn

i nf(n).

The net growth rate per individual is a function of the
population size n.

We want f(n) to be positive for small n» and negative for
large n. Simply set f(n) = r — sn to give

dn

yrie n(r — sn).

This is the classical Verhulst® model (or logistic model):

*Verhulst, P.F. (1838) Notice sur la loi que la population suit dans son accroisement,
Corr. Math. et Phys. X, 113-121.
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The Verhulst model

Pierre Francois Verhulst (1804—-1849, Brussels, Belgium)
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The Verhulst model

Soit p Ia population : représentons par dp I'accroissement in-
finiment petit qu'elle recoit pendant un terups infiniment courtd:.
3t Ia population croissait en progression géomctrique, nous au-
rions I'équation -~ 2 = mp, Mais comme- la vitesse d’accroisse-
nuent de la populmon est retardce par 'augmentation méme du
nombre des habitans, nous devrons retrancher de mp une fonc-
tion inconnue de p; de maniére que la formule a intégrer de-
viendra

dp
E; ——— ?JIP — 9(?)-

L’hypothése la plus simple que P'on puisse faire sur la forme
de la fonction ¢, est de supposcr ¢ {p)=np’, On trouve alors
pour intégrale de Péquation ci-dessus

1
== [log. p—log.(m—np)] -+ constante,

ct il suffira de trois observations pour déterminer lés deux
cocfitciens constaus m ¢t n et la constante arbitraire.
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The Verhulst model

118 CUNRESPONDANCE
Eu résolvant la dernidre équation par rapport a p, il vient

mp’ et

P—np'c”"+m-——np’ I

cn désignant par p’ Ia population qui répond & f==0,ct parela
base des logarithmes népériens. Si on faiti=co , on voit quela
valeur do p correspondante cst P==. Tello cst douc la limitc
supérieurc de la population.

Au lieu de supposer gp==np’, on peut prendre gp = np?,
z étant queleonque, ou gp=mn log. p. Toutes ces hypothéses sa-
tisfont égalcient bicn aux faits observcs ; mais clles doanent des
valeurs trés-diffdrentes pour Ja limite supéricure de la population,

J'ai supposc successivement

ep=np’, op=np’, ¢p =npt, ep=mlog. p;
et les différences entro les populations calculées et celles que
fournit 'observation ont été sensiblement les mémes.
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The Verhulst model

An alternative formulation has r being the growth rate with
unlimited resources and K being the “natural” population size
(the carrying capacity). We put f(n) = r(1 — n/K) giving

d
d—? =rn(l —n/K),

which is the original model with s = /K.
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The Verhulst model

An alternative formulation has r being the growth rate with
unlimited resources and K being the “natural” population size
(the carrying capacity). We put f(n) = r(1 — n/K) giving

d
d—? =rn(l —n/K),

which is the original model with s = /K.

Integration gives

ny —
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Verhulst-Pearl model

This formulation is due to Raymond Peatrl:

Pearl, R. and Reed, L. (1920) On the rate of growth of population of the
United States since 1790 and its mathematical representation, Proc. Nat.
Academy Sci. 6, 275-288.

Pearl, R. (1925) The biology of population growth, Alfred A. Knopf, New
York.

Pearl, R. (1927) The growth of populations, Quart. Rev. Biol. 2, 532-548.
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Verhulst-Pearl model

Raymond Pearl (1879-1940, Farmington, N.H., USA)
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Pearl was a “social drinker”

Pearl was widely known for his lust for life and his love of food,
drink, music and parties. He was a key member of the
Saturday Night Club. Prohibition made no dent in Pearl’s
drinking habits (which were legendary).
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Pearl was a “social drinker”

Pearl was widely known for his lust for life and his love of food,
drink, music and parties. He was a key member of the
Saturday Night Club. Prohibition made no dent in Pearl’s
drinking habits (which were legendary).

In 1926, his book, Alcohol and Longevity, demonstrated that
drinking alcohol in moderation is associated with greater
longevity than either abstaining or drinking heauvily.

Pearl, R. (1926) Alcohol and Longevity, Alfred A. Knopf, New York.
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Verhulst-Pearl model

Trajectories of the logistic model: K = 1670, » = 0.007
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Sheep in Tasmania

Growth of Tasmanian sheep population from 1818 to 1936
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Davidson, J. (1938) On the growth of the sheep population
in Tasmania, Trans. Roy. Soc. Sth. Austral. 62, 342—-346.
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Sheep in Tasmania

Growth of Tasmanian sheep population from 1818 to 1936
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(With the deterministic trajectory subtracted)
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A stochastic model

We really need to account for the variation observed.

A recent approach to stochastic modelling in Applied
Mathematics can be summarised as follows:

“| feel guilty — | should add some noise”

(promulgated by stochastic modelling “experts” and courses in
Financial Mathematics that require no background in
stochastic processes).

MASCOS APWSPMO06, February 2006 - Page 17



A stochastic model

We really need to account for the variation observed.

A recent approach to stochastic modelling in Applied
Mathematics can be summarised as follows:

“| feel guilty — | should add some noise”

(promulgated by stochastic modelling “experts” and courses in
Financial Mathematics that require no background in
stochastic processes)®.

*Zen Maxim (for survival in a modern university): Before you criticize someone, you

should walk a mile in their shoes. That way, when you criticize them, you're a mile
away and you have their shoes.
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Adding noise

In our case,
K .
ng = + something random
1+ (K_”O) et
no
or perhaps
an ( ) + o X hoise
— =mmn|l- = o :
dt
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Noise?

The usual model for “noise” is white noise (or pure Gaussian
noise).

Imagine a random process (&, t > 0) with & ~ N(0,1) for all ¢

and &, ...,&, iIndependent for all finite sequences of times
ty oot
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White noise

White noise on [0, 1] sampled 1000 times
3 T T T T T T T T T

.
1 - o . —

. L .

S ° e o ° 4 n.: .

Lry o . o .

« %o L .
. ¢ . o
L3 L4 .
. L .‘.
" ) o . -:.. -
.
I . L4 .‘..
-~ ° ce, on .
<& O t . - ] ; . -
.
. [ & °
g LY . . g (Y
‘e . ‘o ® o
o h . - ® y
° .
- %
_1 - - o o . e -
rd -
.

MASCOS APWSPMO06, February 2006 - Page 20



Brownian motion

The white noise process (&, t > 0) is formally defined as the
derivative of standard Brownian motion (B, t > 0).

Brownian motion (or Wiener process) can be constructed by
way of a random walk. A particle starts at 0 and takes small
steps of size +A or —A with equal probability p = 1/2 after

successive time steps of size h. If A ~ vk, as h — 0, then the
limit process is standard Brownian motion.
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Symmetric random walk: A = /A

Random walk simulation: A = 2.5e-005, A = 0.005
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Brownian motion

The white noise process (&, t > 0) is formally defined as the
derivative of standard Brownian motion (B, t > 0).

Brownian motion (or Wiener process) can be constructed by
way of a random walk. A particle starts at 0 and takes small
steps of size +A or —A with equal probability p = 1/2 after

successive time steps of size h. If A ~ vk, as h — 0, then the
limit process is standard Brownian motion.
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Brownian motion

The white noise process (&, t > 0) is formally defined as the
derivative of standard Brownian motion (B, t > 0).

Brownian motion (or Wiener process) can be constructed by
way of a random walk. A particle starts at 0 and takes small
steps of size +A or —A with equal probability p = 1/2 after

successive time steps of size h. If A ~ vk, as h — 0, then the
limit process is standard Brownian motion.

This construction permits us to write dB; = &+/dt, with the
Interpretation that a change in B; in time dt is a Gaussian
random variable with E(dB;) = 0, Var(dB;) = dt and
Cov(dB:,dBs) =0 (s #£ t).
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Brownian motion

The white noise process (&, t > 0) is formally defined as the
derivative of standard Brownian motion (B, t > 0).

Brownian motion (or Wiener process) can be constructed by
way of a random walk. A particle starts at 0 and takes small
steps of size +A or —A with equal probability p = 1/2 after

successive time steps of size h. If A ~ vk, as h — 0, then the
limit process is standard Brownian motion.

This construction permits us to write dB; = &+/dt, with the
Interpretation that a change in B; in time dt is a Gaussian
random variable with E(dB;) = 0, Var(dB;) = dt and
Cov(dB:,dBs) =0 (s #£ t).

The correct interpretation is by way of the Ito integral:

By = [/ dBs = [ & ds.
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Brownian motion

General Brownian motion (W,, ¢ > 0), with drift x and variance
o2, can be constructed in the same way but with A ~ ¢+/h and

p=73 (1 + (u/a)\/ﬁ), and we may write
th = /,Ldt ‘|_ O'dBt,

with the interpretation that a change in W, in time dt Is a
Gaussian random variable with E(dW;) = udt, Var(dW;) = o2dt
and Cov(dWy, dWs) = 0.
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Brownian motion

General Brownian motion (W,, ¢ > 0), with drift x and variance
o2, can be constructed in the same way but with A ~ ¢+/h and

p=73 (1 + (u/a)\/ﬁ), and we may write

AW, = udt + o dB;,

with the interpretation that a change in W, in time dt Is a
Gaussian random variable with E(dW;) = udt, Var(dW;) = o2dt
and Cov(dW;,dW) = 0. This stochastic differential equation
(SDE) can be integrated to give W; = ut + o B;.
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Brownian motion

General Brownian motion (W,, ¢ > 0), with drift x and variance
o2, can be constructed in the same way but with A ~ ¢+/h and

p=73 (1 + (u/a)\/ﬁ), and we may write
th = /,Ldt ‘|_ O'dBt,

with the interpretation that a change in W, in time dt Is a
Gaussian random variable with E(dW;) = udt, Var(dW;) = o2dt
and Cov(dW;,dW) = 0. This stochastic differential equation
(SDE) can be integrated to give W; = ut + o B;.

It does not require an enormous leap of faith for us now to
write down, and properly interpret, the SDE

dnt = TNy (1 — nt/K) dt—|— O'dBt
as a model for growth of our sheep population.
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Adding noise

The idea (indeed the very idea of an SDE) can be traced back
to Paul Langevin’s 1908 paper “On the theory of Brownian
Motion”:

Langevin, P. (1908) Sur la théorie du mouvement brownien, Comptes
Rendus 146, 530-533.

He derived a “dynamic theory” of Brownian Motion three years
after Einstein’s ground breaking paper on Brownian Motion:

Einstein, A. (1905) On the movement of small particles suspended in
stationary liquids required by the molecular-kinetic theory of heat, Ann.
Phys. 17, 549-560 [English translation by Anna Beck in The Collected
Papers of Albert Einstein, Princeton University Press, Princeton, USA,
1989, Vol. 2, pp. 123-134.]
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Langevin

Langevin introduced a “stochastic force” (his phrase
“complementary force’—complimenting the viscous drag )
pushing the Brownian particle around in velocity space
(Einstein worked in configuration space).

In modern terminology, Langevin described the Brownian
particle’s velocity as an Ornstein-Uhlenbeck (OU) process
and its position as the time integral of its velocity, while
Einstein described its position as a Wiener process.

The Langevin equation (for a particle of unit mass) is
dvy = —pve dt + odBy.

This is Newton’s law (—uv = Force = mo) plus noise. The
(strong) solution to this SDE is the OU process.
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Langevin

Langevin introduced a “stochastic force” (his phrase
“complementary force’—complimenting the viscous drag )
pushing the Brownian particle around in velocity space
(Einstein worked in configuration space).

In modern terminology, Langevin described the Brownian
particle’s velocity as an Ornstein-Uhlenbeck (OU) process
and its position as the time integral of its velocity, while
Einstein described its position as a Wiener process.

The Langevin equation (for a particle of unit mass) is
dvy = —pve dt + odBy.

This is Newton’s law (—uv = Force = mo) plus noise. The
(strong) solution to this SDE is the OU process. Warning:

f(f vs ds # By, this functional is not even Markovian.
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Langevin

Einstein said of Langevin “...
It seems to me certain that
he would have developed
the special theory of rela-
tivity if that had not been
done elsewhere, for he had
clearly recognized the es-
sential points.”

MASCOS

Paul Langevin (1872-1946, Paris, France)
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Langevin was a dark horse

In 1910 he had an affair with Marie Curie (Polish physicist).
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Langevin was a dark horse

In 1910 he had an affair with Marie Curie (Polish physicist).
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Langevin was a dark horse

In 1910 he had an affair with Marie Curie (Polish physicist).

The person on the right is not Langevin, but Langevin’s PhD
supervisor Pierre Curie.
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Solution to Langevin’s eguation

To solve dv; = —puv; dt + od By, consider the process y; = v;etl.
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Solution to Langevin’s eguation

To solve dv; = —puv; dt + od By, consider the process y; = v;etl.
Differentiation (1t6 calculus!) gives dy; = e*'dv; + pettvidt.
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Solution to Langevin’s eguation

To solve dv; = —puv; dt + od By, consider the process y; = v;etl.
Differentiation (1t6 calculus!) gives dy; = e*'dv; + pettvidt.

But, from Langevin’s equation we have that

eMdvy = —pettoy dt + oettdBy,
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Solution to Langevin’s eguation

To solve dv; = —puv; dt + od By, consider the process y; = v;etl.
Differentiation (1t6 calculus!) gives dy; = e*'dv; + pettvidt.

But, from Langevin’s equation we have that

eMdvy = —pettoy dt + oettdBy,
and hence that dy, = ce*'dB,.
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Solution to Langevin’s eguation

To solve dv; = —puv; dt + od By, consider the process y; = v;etl.
Differentiation (1t6 calculus!) gives dy; = e*'dv; + pettvidt.

But, from Langevin’s equation we have that
eMdvy = —pettoy dt + oettdBy,

and hence that dy; = ce*'dB;. Integration gives

Yt = Yo T+ fot Je'usst;
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Solution to Langevin’s eguation

To solve dv; = —puv; dt + od By, consider the process y; = v;etl.
Differentiation (1t6 calculus!) gives dy; = e*'dv; + pettvidt.

But, from Langevin’s equation we have that
eMdvy = —pettoy dt + oettdBy,
and hence that dy; = ce*'dB;. Integration gives
i = yo + [, oet*dBs,
and so (the Ornstein-Uhlenbeck process)

vy = vge M + fg oe MI=s)qdPB..
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Solution to Langevin’s eguation

To solve dv; = —puv; dt + od By, consider the process y; = v;etl.
Differentiation (1t6 calculus!) gives dy; = e*'dv; + pettvidt.

But, from Langevin’s equation we have that
eMdvy = —pettoy dt + oettdBy,
and hence that dy; = ce*'dB;. Integration gives
i = yo + [, oet*dBs,
and so (the Ornstein-Uhlenbeck process)
vy = vge M + fg oe MI=s)qdPB..

We can deduce much from this. For example, v, Is a Gaussian

process with E(v;) = vge * and Var(v;) = Z(1 — e~24t), and

21
Cov (vt Vprs) = Var(vt)e_“|5|.
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Where were we?

We had just added noise to our logistic model:
dnt:rnt( —%)dt—FO‘dBt (1)
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Where were we?

We had just added noise to our logistic model:
dnt:rnt( —%)dt—FO‘dBt (1)

So, what the hell is wrong with (1)?
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Sheep in Tasmania

Growth of Tasmanian sheep population from 1818 to 1936
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Solution to SDE (Run 1)

Solution to SDE (one sample path)

2000 -
1500 -
= = ;
1000 ;‘ = i
.z n
i"-" dny = rng (1 — ?t) dt + odB;
El K = 1670, r = 0.13125, o = 90
500 o -
nNg = 73, to = 1818
O 1820 1840 1860 1880 1900 1920 1940
t

(Solution to the deterministic model is in green)
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Solution to SDE (Run 2)

2000

Solution to SDE (one sample path)
1000 - R .
n
dny = rng (1 — —t) dt + odB;
F K = 1670, r = 0.13125, ¢ = 90
500 |- = -
1940

MASCOS
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Solution to SDE (Run 3)

Solution to SDE (one sample path)

2000 - i
1500 i
1000 - : 4
£ n
3 dng = rny (1 — ?t) dt + od By
: K =1670, r = 0.13125, ¢ = 90
500 - = i
0 | | | |
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t

(Solution to the deterministic model is in green)
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Solution to SDE (Run 4)

Solution to SDE (one sample path)

2000 b
1500 - .
1000 |- - 8
uz
dny = rng (1 — ?) dt + odB;
K =1670, »r =0.13125, 0 =90
500 - .

1820 1840 1860 1880 1900 1920 1940
t

(Solution to the deterministic model is in green)
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Solution to SDE (Run 5)

Solution to SDE (one sample path)

2000 b
1500 n
g

1000 - i -

:_—f_: iz

—, dny = rng (1 — ?) dt + odB;

K =1670, »r =0.13125, 0 =90
500 n
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t

(Solution to the deterministic model is in green)
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Solution to SDE

Mean path of SDE solution with £ 2 standard deviations (1000 runs)
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(Solution to the deterministic model is in green)
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Solution to SDE

Mean path of SDE solution with + 2 standard deviations (1000 runs)
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(With the solution to the deterministic model subtracted)
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Logistic model with noise

So, what is wrong with the model?

Tt

dnt:rnt (1—E) dt+UdBt
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Logistic model with noise

So, what is wrong with the model?
Uz

dnt:rnt (1—E) dt+UdBt

For a start:
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Logistic model with noise

So, what is wrong with the model?

Tt

dnt:rnt (1—E) dt+UdBt

For a start:

* Oisreflecting;
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Logistic model with noise

So, what is wrong with the model?

Tt

dnt:rnt (1—E) dt+UdBt

For a start:

* Oisreflecting;

* The mean path of the SDE solution does not follow a
logistic curve;
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Logistic model with noise

So, what is wrong with the model?

Tt

dnt:rnt (1—E) dt+UdBt

For a start:

* Oisreflecting;

* The mean path of the SDE solution does not follow a
logistic curve;

* The variance in the solution is large for the non-
equilibrium phase-is this okay?
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Logistic model with noise

So, what is wrong with the model?

Tt

dnt:rnt (1—E) dt+UdBt

For a start:

* Oisreflecting;

* The mean path of the SDE solution does not follow a
logistic curve;

* The variance in the solution is large for the non-
equilibrium phase-is this okay?

. nhot to mention the fact that n; is a continuous variable, yet
population size is an integer-valued process!

MASCOS APWSPMO06, February 2006 - Page 40



The variance!

Since the variance is not uniform over time, we should at least
have

dn; = rny ( ) dt + o(n;) d B,
If not

dnt — T (1 — %) dt -+ O'(Tlt,t) dBt
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A different approach

Let’s start from scratch specifying a stochastic model with
variation being an inherent property: a Markovian model.
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A different approach

Let’s start from scratch specifying a stochastic model with
variation being an inherent property: a Markovian model.

We will suppose that n; (integer-valued!) evolves as a
birth-death process with rates

Gnn+1 =An(l—5) and gnn1 = pn,

where X and i (both positive) are per-capita birth and death
rates (for A when the population is small). Here N is the
population ceiling (n; now takes valuesin S = {0,1,..., N}).

| will call this model the stochastic logistic (SL) model, though
It has many names, having been rediscovered several times
since Feller proposed it in 1939.
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A different approach

Let’s start from scratch specifying a stochastic model with
variation being an inherent property: a Markovian model.

We will suppose that n; (integer-valued!) evolves as a
birth-death process with rates

Gnn+1 =An(l—5) and gnn1 = pn,

where X and i (both positive) are per-capita birth and death
rates (for A when the population is small). Here N is the
population ceiling (n; now takes valuesin S = {0,1,..., N}).

| will call this model the stochastic logistic (SL) model, though
It has many names, having been rediscovered several times
since Feller proposed it in 1939.

It shares an important property with the deterministic logistic
model: that of density dependence.
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Density dependence

The Verhulst-Pearl model 2 = rp (1 — ) can be written

The rate of change of n; depends on n; only through %t.

So, letting x; = n;/N be the “population density”, we get

dx x
_ 1 —_ —) p— .
=TT ( =) where FE = K/N

This Is a convenient space scaling. We could have set
ry = ny /A, where A is habitat area, and then

dx x
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Markovian models

Let (n:, £ > 0) be a continuous-time Markov chain taking

values in S C Z* with transition rates Q = (¢um, n,m € S). We
identify a quantity NV, usually related to the size of the system
being modelled.

Definition (Kurtz*) The model is density dependent if there is
a subset E of R* and a continuous function f : Z*¥ x E — R,
such that

Gt = Nfi (%), 1#0 (leZh).

(So, the idea is the same: the rate of change of n; depends on
n: only through the “density” n;/N.)

*Kurtz, T. (1970) Solutions of ordinary differential equations as limits of pure jump

Markov processes, J. of Appl. Probab. 7, 49-58.
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Markovian models

Let (n:, £ > 0) be a continuous-time Markov chain taking

values in S C Z* with transition rates Q = (gum, n,m € S). We
identify a quantity NV, usually related to the size of the system
being modelled.

Definition (Kurtz*) The model is density dependent if there is
a subset E of R* and a continuous function f : Z¥ x E — R,
such that

Gnnr1 = Nfi (%), 1#0 (1eZb.

(So, the idea is the same: the rate of change of n; depends on
n: only through the “density” n;/N.)

*Kurtz, T. (1970) Solutions of ordinary differential equations as limits of pure jump

Markov processes, J. of Appl. Probab. 7, 49-58.
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Tom Kurtz

Thomas Kurtz (taken in 2003)
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Density dependence

Consider the forward equations for p,,(¢) := Pr(n; = n). Let
n — Zm;én dnm- Then,

Pp(t) = =qnpn(t) + 3 zp P () Gmn,

MASCOS APWSPMO06, February 2006 - Page 47



Density dependence

Consider the forward equations for p,,(¢) := Pr(n; = n). Let
n — Zm;én dnm- Then,

Pp(t) = =qnpn(t) + 3 zp P () Gmn,

and so (formally) E(n:) = > np,(t) satisfies

% E(ne) =—>_, gunon(t) + >, Pm(t) Zn#m NG
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Density dependence

Consider the forward equations for p,,(¢) := Pr(n; = n). Let
n — Zm;én dnm- Then,

Pp(t) = =qnpn(t) + 3 zp P () Gmn,

and so (formally) E(n:) = > np,(t) satisfies
% E(ne) =—>_, gunon(t) + >, Pm(t) Zn#m NG
So if gp 1 = Nfi(n/N), then

LE(ne) = — > Y10 N fi(n/N)npn (t)
+ 3 P () Syso(m 4+ DN fi(m/N)

= S PN s Lfu(m/N) = NE (5,0 Lfi(ne/N)).
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Density dependence

For an arbitrary density dependent model, define F: £ — R
by F(z) = >0l (x). Then,

n
g0~V (7 ().
or, setting X; = n;/N (the density process),

4 E(X;) = E(F(Xy)).
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Density dependence

For an arbitrary density dependent model, define F: £ — R
by F(z) = >0l (x). Then,

4500 = x5 (# ().

or, setting X; = n;/N (the density process),
SE(X,) = E(F(Xy)).

Warning: I'm not saying that % E(X;) = F (E(Xy)).
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Density dependence

For an arbitrary density dependent model, define F: £ — R
by F(z) = >0l (x). Then,

4500 = x5 (# ().

or, setting X; = n;/N (the density process),
GEX) = E(F(Xy)).
Warning: I'm not saying that % E(X;) = F (E(Xy)).

(But, | am hoping for something like that to be true!)
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Density dependence

For the SL model we have S = {0,1,..., N} and

dnn+1 = AN (1 — %) and dnn—1 = UN.

Therefore, fi1(x) =Xz (1 —x)and f_(x) = px, z € F := [0, 1],
andso F(z) =Xz (1—p—=x),x € E,where p = u/\.
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Density dependence

For the SL model we have S = {0,1,..., N} and

dn.n+1 = AT (1 — %) and n,n—1 — HUN.
Therefore, fii1(z) =Xz (1 —x) and f_(x) = px, x € E := [0, 1],
andso F(z) =Xz (1—p—=x),x € E,where p = u/\.

Now compare F'(z) with the right-hand side of the
Verhulst-Pearl model for the density process:

e — pp(1— %), where E=K/N. (2)

If K ~ OGN for N large, so that K/N — 3, then we may identify

B with 1 — p and r with \3, and discover that (2) can be
rewritten as dx/dt = F(x).
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Recall that ...

Recall that (n, t > 0) is a continuous-time Markov chain

taking values in S C Z* with transition rates
Q = (gnm, n,m € S), and we have identified a quantity N,
usually related to the size of the system being modelled.

The model is assumed to be density dependent: there is a
subset E of R* and a continuous function f : Z*¥ x £ — R,
such that

Gnnit = Nfi (%), 1#0 (1e€ZF).
We set F(z) = .0 lfi(z), z € E.

We now formally define the density process (X)) by
X" =n;/N,t>0. We hope that (X;"’) becomes more
deterministic as N gets large.
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Recall that ...

Recall that (n, t > 0) is a continuous-time Markov chain

taking values in S C Z* with transition rates
Q = (gnm, n,m € S), and we have identified a quantity N,
usually related to the size of the system being modelled.

The model is assumed to be density dependent: there is a
subset E of R* and a continuous function f : Z*¥ x £ — R,
such that

Gnnit = Nfi (%), 1#0 (1e€ZF).
We set F(z) = .0 lfi(z), z € E.
We now formally define the density process (X)) by
X" =n;/N,t>0. We hope that (X;"’) becomes more

deterministic as N gets large. To simplify the statement of
results, I'm going to assume that the state space S is finite.
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A law of large numbers

The following functional law of large numbers establishes

convergence of the family (X{") to the unique trajectory of an
appropriate approximating deterministic model.

Theorem (Kurtz*) Suppose F is Lipschitz on E (that is,
|F(x) — F(y)| < Mg|r —y|). If limy_. X" = z0, then the
density process (X,"’) converges uniformly in probability on
0,t] to (z¢), the unique (deterministic) trajectory satisfying

4y =F(zs), ws€B, sel0,t.

*Kurtz, T. (1970) Solutions of ordinary differential equations as limits of pure jump
Markov processes, J. of Appl. Probab. 7, 49-58.
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A law of large numbers

The following functional law of large numbers establishes

convergence of the family (X{") to the unique trajectory of an
appropriate approximating deterministic model.

Theorem (Kurtz*) Suppose F is Lipschitz on E (that is,
|F(x) — F(y)| < Mg|r —y|). If limy_. X" = z0, then the
density process (X,"’) converges uniformly in probability on
0,t] to (z¢), the unique (deterministic) trajectory satisfying

4y =F(zs), ws€B, sel0,t.

*Kurtz, T. (1970) Solutions of ordinary differential equations as limits of pure jump
Markov processes, J. of Appl. Probab. 7, 49-58.

(If S'is an infinite set, we have the additional conditions
SUPer D0 U fi(z) < oo and limg oo )54l fi(z) =0, 2 € E.)

MASCOS APWSPMO06, February 2006 - Page 51



A law of large numbers

Convergence uniformly in probability on [0,¢] means that for
every e > 0,

limy_ o Pr (Supsgt ‘Xt(N) — a:t| > e) = 0.
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A law of large numbers

Convergence uniformly in probability on [0,¢] means that for
every e > 0,

limy_ o Pr (Supsgt ‘Xt(N) — a:t| > e) = 0.

The conditions of the theorem hold for the SL model: since
F(z) =Xx(1—p—x), we have, for all z,y € £ = |0, 1], that

F(z) - F(y)| = Az —ylll —p—(z+y)| < (1+p)Alz -yl

So, provided X" — xy as N — oo, the population density
(X)) converges (uniformly in probability on finite time
Intervals) to the solution (x;) of the deterministic model

dx

E:)\m(l—P—@ (z¢ € E).
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Simulation of the SL model

Simulation of SL Model (N =10000, A =0.78593, u =0.65468, K =1670)
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(Solution to the deterministic model is in green)
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A central imit law

In a later paper Kurtz* proved a functional central limit law
which establishes that, for large IV, the fluctuations about the
deterministic trajectory follow a Gaussian diffusion, provided
that some mild extra conditions are satisfied.

He considered the family of processes {(Z;")} defined by

Z§N>:\/N(X§N)—a:3), 0<s<t.

*Kurtz, T. (1971) Limit theorems for sequences of jump Markov processes approximat-

ing ordinary differential processes. J. Appl. Probab. 8, 344-356.
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The SL model (N = 20)

Simulation of SL Model (N =20, A =0.1625, p =0.0325)
2 T T T T T T T T T
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The SL model (N = 50)

Simulation of SL Model (N =50, A =0.1625, p =0.0325)
2 T T T T T T T T T

Z -05 .
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The SL model (N = 100)

Simulation of SL Model (N =100, A =0.1625, u =0.0325)
2 T T T T T T T T T
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The SL model (N = 200)

Simulation of SL Model (N =200, A =0.1625, u =0.0325)
2 T T T T T T T T T

> -05}
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The SL model (N = 500)

Simulation of SL Model (N =500, A =0.1625, u =0.0325)
2 T T T T T T T T T

Z -05 :
Nﬂa
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0 10 20 30 40 50 60 70 80 90 100
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The SL model (N = 1000)

Simulation of SL Model (N =1000, A =0.1625, u =0.0325)
2 T T T T T T T T T

Z -05 .
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The SL model (N = 10000)

Simulation of SL Model (N =10000, A =0.1625, 1 =0.0325)
2 T T T T T T T T T
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Z -05 .
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_1 - -
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0 10 20 30 40 50 60 70 80 90 100
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A central imit law

Theorem Suppose that F is Lipschitz and has uniformly
continuous first derivative on E, and that the £ x k£ matrix
G(z), defined for z € E by G;j(z) = >0 lil; fi(z), Is uniformly
continuous on E.

Let (z;) be the unique deterministic trajectory starting at x
and suppose that limy_,.c VN (X" —z0) = 2.

Then, {(Z{")} converges weakly in D0, t] (the space of
right-continuous, left-hand limits functions on [0, ¢]) to a
Gaussian diffusion (Z;) with initial value Z, = z and with mean
and covariance given by u, := E(Zs) = Mz, where

M, = exp( [, Budu) and By = VF(z,), and

Vs := Cov(Z M, (fo My G (xy) (M) du) M
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A central imit law

The functional central limit theorem tells us that, for large N,

the scaled density process Z;™’ can be approximated over
finite time intervals by the Gaussian diffusion (Z;).

In particular, for all ¢t > 0, X*’ has an approximate normal
distribution with Cov(X") ~ V;/N.

We would usually take zo = X", thus giving E(X;™) ~ z;.
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A central imit law

For the SL model we have F'(z) = Ax(1 — p — x), and the
solution to dz/dt = F(x) IS

_ (1—p)zo
x(t) T x0_|_(1_p_x0)e—)\(1—p)t'

We also have F'(z) = A(1 — p — 2x) and
G(z)=>,1°fi(x) = x(1 + p —z) = F(x) + 2ux,

giving
t 1—p)2e—A(1—p)t
M; = exp (fo F’(Zl?s) ds) = (x0+E1—Z)—xo)e_>‘(1_p)t)2'

We can evaluate

Vi := Var(Z;) = M? (fg G(xs)/M? ds)
numerically, or ...
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Vi = 0 (pa + 31+ 5p) (1 = p — mo)e 1)

+ 220(1 + 2p) (1 — p — 20)2(A(1 — p)t)e 2A1=P)t
— (1= p—=0)[Bpag + (24 p)(1 — p)zo — ((1 + 2p))(1 — p)°]
4+ ,0(1 o p)3)6—2)\(1—p)t

4
—(1+p)(1—p— 330)36_3/\(1_’))15) / (330 +(1—p— xo)e_/\(l_p)t) :
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The SL model

Simulation of SL Model (N =10000, A =0.78593, u =0.65468, K =1670)
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(Deterministic trajectory plus or minus two standard deviations in green)
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The OU approximation

If the initial point =y of the deterministic trajectory is chosen to
be an equilibrium point of the deterministic model, we can be
far more precise about the approximating diffusion.

Corollary If z, satisfies F(z.q) = 0, then, under the
conditions of the theorem, the family {(Z\"")}, defined by

ZéN) — \/N(XJE*N) — xeq)y 0<s<t,

converges weakly in D|0, ¢] to an OU process (Z;) with initial
value Zy = z, local drift matrix B = VF'(z¢q) and local
covariance matrix G(x.q). In particular, Z, is normally
distributed with mean and covariance given by

s :=E(Z;) = eP%z and
Vi = Cov(Zs) = |, eB“G(a?eq)eBT“ du .
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The OU approximation

Note that
Ve, = fOS eB“G(a:eq)eBT“ du = Vo, — eB5V eB ' s,
where V., the stationary covariance matrix, satisfies

BVy + Vo BT + G(eq) = 0.
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The OU approximation

Note that
Ve, = fOS eB“G(a:eq)eBT“ du = Vo, — eB5V eB ' s,
where V., the stationary covariance matrix, satisfies
BV + Vo Bt + G(weq) = 0.

We conclude that, for N large, X"’ has an approximate
Gaussian distribution with Cov(X ") ~ V;/N.
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The OU approximation

Note that
Ve, = fOS eB“G(a:eq)eBT“ du = Vo, — eB5V eB ' s,
where V., the stationary covariance matrix, satisfies
BVao + Voo BT + G(2eq) = 0.
We conclude that, for N large, X"’ has an approximate

Gaussian distribution with Cov(X ") ~ V;/N.

For the SL model, we get Var(X") ~ p(1 — e 2X1=P0t) /N
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The OU approximation

Note that
Ve, = fOS eB“G(a:eq)eBT“ du = Vo, — eB5V eB ' s,
where V., the stationary covariance matrix, satisfies
BV + Vo Bt + G(weq) = 0.

We conclude that, for N large, X"’ has an approximate
Gaussian distribution with Cov(X ") ~ V;/N.

For the SL model, we get Var(X") ~ p(1 — e 2X1=P0t) /N
This brings us “full circle” to the approximating SDE

dny = —a(ny — K)dt + \/2NapdB;, where a = (1 — p).
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The SL model

Simulation of SL Model (N =10000, A =0.78593, u =0.65468, K =1670)
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(Deterministic equilibrium plus or minus two standard deviations is in black)
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