Ensemble behaviour in population processes

Phil Pollett

http://www.maths.uq.edu.au/~pkp
Motivating example

Patients in later stages of congestive heart failure.

Clinicians claimed that numbers appear to be “quasi-stationary”.
Proportions of patients

Proportions alive at $t = 110$ days ($n = 1000$ patients)

Stage

Proportion

A

B

C

D

Proportions A and B are similar, while C has the highest proportion and D has the lowest.
Proportions of patients

Proportions alive at $t = 120$ days ($n = 1000$ patients)
Proportions of patients

Proportions alive at $t = 130$ days ($n = 1000$ patients)

- Stage A: 10%
- Stage B: 20%
- Stage C: 40%
- Stage D: 20%
Proportions of patients

Proportions alive at $t = 140$ days ($n = 1000$ patients)

Stage Proportion

A 10%

B 20%

C 30%

D 40%
Proportions of patients

Proportions alive at $t = 150$ days \((n = 1000 \text{ patients})\)

- **Stage A**: 10%
- **Stage B**: 20%
- **Stage C**: 40%
- **Stage D**: 30%
Proportions of patients

Proportions alive at $t = 160$ days ($n = 1000$ patients)

<table>
<thead>
<tr>
<th>Stage</th>
<th>Proportion</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>10%</td>
</tr>
<tr>
<td>B</td>
<td>20%</td>
</tr>
<tr>
<td>C</td>
<td>30%</td>
</tr>
<tr>
<td>D</td>
<td>40%</td>
</tr>
</tbody>
</table>

MASCOS APWSPM08, February 2008 - Page 8
A discrete-time Markov chain with state space
\(S = \{0, 1, 2, 3, 4\} \) and with 1-step transition matrix \(P = (p_{ij}) \) given by

\[
p_{i,i-1} = 1 - p_{ii} = r_i \quad (i = 1, \ldots, 4) \quad (r_1, \ldots, r_4 \text{ given})
\]
\[
p_{00} = 1.
\]
Their model

A discrete-time Markov chain with state space $S = \{0, 1, 2, 3, 4\}$ and with 1-step transition matrix $P = (p_{ij})$ given by

$$p_{i,i-1} = 1 - p_{ii} = r_i \quad (i = 1, \ldots, 4) \quad (r_1, \ldots, r_4 \text{ given}).$$

$p_{00} = 1$.

Comments please.
Their model

A discrete-time Markov chain with state space $S = \{0, 1, 2, 3, 4\}$ and with 1-step transition matrix $P = (p_{ij})$ given by

$$p_{i,i-1} = 1 - p_{ii} = r_i \quad (i = 1, \ldots, 4) \quad (r_1, \ldots, r_4 \text{ given}).$$

$$p_{00} = 1.$$

Comments please.

Their method of analysis involved evaluating the conditional probability $p_j(t)/(1 - p_0(t))$ $(j = 1, \ldots, 4)$, where $p_j(t) = (P^t)_{ij}$ (i is the initial state).
Their model

A discrete-time Markov chain with state space \(S = \{0, 1, 2, 3, 4\} \) and with 1-step transition matrix \(P = (p_{ij}) \) given by

\[
p_{i,i-1} = 1 - p_{ii} = r_i \quad (i = 1, \ldots, 4) \quad (r_1, \ldots, r_4 \text{ given}).
\]

\[
p_{00} = 1. \]

Comments please.

Their method of analysis involved evaluating the conditional probability \(p_j(t)/(1 - p_0(t)) \) \((j = 1, \ldots, 4) \), where \(p_j(t) = (P^t)_{ij} \) \((i \text{ is the initial state}) \).

Correct!
Why did our clinicians propose a model for the progress of a disease in a single patient, when they were interested in the behaviour of a large group?
Why did our clinicians propose a model for the progress of a disease in a single patient, when they were interested in the behaviour of a large group?

... because the *proportion* of patients in stage s at time t should be approximately equal to $p_s(t)$, the *probability* that the *individual* patient is in stage s at time t.
Why did our clinicians propose a model for the progress of a disease in a single patient, when they were interested in the behaviour of a large group?

... because the *proportion* of patients in stage s at time t should be approximately equal to $p_s(t)$, the *probability* that the *individual* patient is in stage s at time t.

Can properties of an ensemble of individuals be deduced from a model for the behaviour of the individual?
Why did our clinicians propose a model for the progress of a disease in a single patient, when they were interested in the behaviour of a large group?

... because the *proportion* of patients in stage s at time t should be approximately equal to $p_s(t)$, the *probability* that the *individual* patient is in stage s at time t.

Can properties of an ensemble of individuals be deduced from a model for the behaviour of the individual?

Further examples
Example A population network, where a fixed number of individuals occupies geographically separated “patches”.

Patches may become empty, but can be recolonized through migration from other patches.

The individual spends a period of time in a given patch and might then emigrate to another patch, spend a period there, and so forth.

We could model the progress of the individual as a random walk on the patches, and thus evaluate quantities such as the probability $p_j(t)$ that the individual occupies patch j at time t. We expect that the proportion of individuals in patch j at time t should be approximately equal to $p_j(t)$.
Example A variant where we allow death or external emigration from any patch.

There are two cases: (i) the *open* network, where there is external immigration to one or more patches, and (ii) the *closed* network, where all individuals eventually disappear from the network through death or external emigration.

Now individuals (perhaps arriving from outside the network) perform a random walk on the patches but then eventually leave.

The total number of individuals is now *random*, but we would expect to be able to draw similar conclusions concerning ensemble proportions.
Butterfly life cycle

Life cycle simulation

- Egg
- Larva
- Pupa
- Adult
- Death

Time (days)
Butterfly life cycle

Egg \(\sim 4 \text{ days} \)

Larva (caterpillar) \(\sim 14 \text{ days} \)

Pupa (chrysalis) \(\sim 7 \text{ days} \)

Adult (butterfly) \(\sim 14 \text{ days} \)
Butterfly life cycle

Life cycle simulation

- Egg
- Larva
- Pupa
- Adult
- Death

Time (days)
Ensemble of organisms

Life cycle simulation ($n = 7$ butterflies)
Ensemble of organisms

Life cycle simulation ($n = 7$ butterflies)
Can properties of the ensemble, be deduced from a model for the behaviour of an individual?
Can properties of the ensemble, be deduced from a model for the behaviour of an individual?

For example, suppose we have n butterflies.

Our intuition tells us that, for the ensemble, the proportion of organisms in stage s at time t should be approximately equal to $p_s(t)$, the probability that the individual organism is in stage s at time t.
Can properties of the ensemble, be deduced from a model for the behaviour of an individual?

For example, suppose we have n butterflies.

Our intuition tells us that, for the ensemble, the *proportion* of organisms in stage s at time t should be approximately equal to $p_s(t)$, the *probability* that the *individual* organism is in stage s at time t.

So strong is this intuition that scientists frequently model population proportions using individual-level models.
State probabilities (individual)

Life cycle simulation ($n = 7$ butterflies)

- Egg
- Larva
- Pupa
- Adult
- Death
State probabilities (individual)

State probabilities ($t = 10$)

<table>
<thead>
<tr>
<th>Stage</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td>0.1</td>
</tr>
<tr>
<td>Larva</td>
<td>0.6</td>
</tr>
<tr>
<td>Pupa Stage</td>
<td>0.2</td>
</tr>
<tr>
<td>Adult</td>
<td>0.1</td>
</tr>
<tr>
<td>Death</td>
<td>0.01</td>
</tr>
</tbody>
</table>

State probabilities (individual)

State probabilities ($t = 10$)

<table>
<thead>
<tr>
<th>Stage</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td>0.1</td>
</tr>
<tr>
<td>Larva</td>
<td>0.6</td>
</tr>
<tr>
<td>Pupa Stage</td>
<td>0.2</td>
</tr>
<tr>
<td>Adult</td>
<td>0.1</td>
</tr>
<tr>
<td>Death</td>
<td>0.01</td>
</tr>
</tbody>
</table>
Proportions at \(t = 10 \text{ days} \) (\(n = 7 \text{ butterflies} \))
Simulated proportions (ensemble)

Proportions at $t = 10$ days ($n = 1000$ butterflies)

- Egg: 10%
- Larva: 20%
- Pupa Stage: 30%
- Adult: 40%
- Death: 50%
Perhaps not surprising …

If the individual organisms behave independently, we can employ the Law of Large Numbers.

Look at the ensemble at a fixed time t. Fix a stage s and let

$$X_j = \begin{cases} 1 & \text{if organism } j \text{ is in stage } s \\ 0 & \text{if organism } j \text{ is in another stage.} \end{cases}$$

Clearly X_1, X_2, \ldots are independent. So, $\frac{1}{n} \sum_{j=1}^{n} X_j$ (the proportion in stage s) converges \textit{almost surely} to $\mathbb{E}(X_1)$, being the probability that any given organism is in stage s.
Individual organism

Life cycle simulation

- Egg
- Larva
- Pupa
- Adult
- Death

Time (days)
What is the probability that the organism is in stage s of its life cycle at time t?
What is the probability that the organism is in stage s of its life cycle at time t?

Using a simple Markov chain model, we can evaluate this for each stage s and for all times t.
$X(t)$ - the state of an individual at time $t \geq 0$, for example, the current stage in the individual’s life cycle.

Suppose $(X(t), t \geq 0)$ is a continuous-time Markov chain taking values in a discrete set S with transition rates (q_{ij}):

q_{ij} is the rate of transition from state $i \to j$ ($j \neq i$).

$q_i (= -q_{ii}) = \sum_{j \neq i} q_{ij}$ is the total rate out of state i.
Evaluating state probabilities

$X(t)$ - the state of an individual at time $t \geq 0$, for example, the current stage in the individual’s life cycle.

Suppose $(X(t), t \geq 0)$ is a continuous-time Markov chain taking values in a discrete set S with transition rates (q_{ij}):

q_{ij} is the rate of transition from state $i \rightarrow j$ ($j \neq i$).

$q_i (= -q_{ii}) = \sum_{j \neq i} q_{ij}$ is the total rate out of state i.

Example (Butterfly life cycle) $\{4\} \rightarrow \{3\} \rightarrow \{2\} \rightarrow \{1\} \rightarrow \{0\}$

$q_4 = q_{43} = 1/4$ \hspace{1cm} ↓ Egg (≈ 4 days)

$q_3 = q_{32} = 1/14$ \hspace{1cm} ↓ Caterpillar (≈ 14 days)

$q_2 = q_{21} = 1/7$ \hspace{1cm} ↓ Chrysalis (≈ 7 days)

$q_1 = q_{10} = 1/14$ \hspace{1cm} ↓ Adult (≈ 14 days)
In matrix form

\[Q = \begin{pmatrix}
0 & 0 & 0 & 0 & 0 & 0 \\
1/14 & -1/14 & 0 & 0 & 0 \\
0 & 1/7 & -1/7 & 0 & 0 \\
0 & 0 & 1/14 & -1/14 & 0 \\
0 & 0 & 0 & 1/4 & -1/4 \\
\end{pmatrix} \]
In matrix form

\[Q = \begin{pmatrix}
0 & 0 & 0 & 0 & 0 & 0 \\
1/14 & -1/14 & 0 & 0 & 0 \\
0 & 1/7 & -1/7 & 0 & 0 \\
0 & 0 & 1/14 & -1/14 & 0 \\
0 & 0 & 0 & 1/4 & -1/4 \\
\end{pmatrix} \]

Why put minus the total rate on the diagonal?
Evaluating state probabilities

In matrix form

\[Q = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 1/14 & -1/14 & 0 & 0 & 0 & 0 \\ 0 & 1/7 & -1/7 & 0 & 0 & 0 \\ 0 & 0 & 1/14 & -1/14 & 0 & 0 \\ 0 & 0 & 0 & 1/4 & -1/4 & \end{pmatrix} \]

Why put minus the total rate on the diagonal?
For mathematical convenience \ldots the equations we must solve are then easier to write down.
The state probabilities $p(t) = (p_j(t), j \in S)$, where

$$p_j(t) = \Pr(X(t) = j),$$

can be obtained as the (unique) solution to

$$p'(t) = p(t)Q \quad \text{satisfying} \quad p(0) = \alpha,$$
Evaluating state probabilities

The state probabilities $p(t) = (p_j(t), j \in S)$, where

$$p_j(t) = \Pr(X(t) = j),$$

can be obtained as the (unique) solution to

$$p'(t) = p(t) Q \quad \text{satisfying} \quad p(0) = a,$$

where $a = (a_j, j \in S)$ is a given initial distribution.

Customary disclaimer: It will be convenient to restrict our attention to the case where S is a *finite* set, but I note that many of the arguments presented hold more generally.
% State probabilities (butterfly life cycle)

q(1)=1/14; q(2)=1/7; q(3)=1/14; q(4)=1/4;
Q=zeros(5,5);
for i=2:5
 state=i-1; % Matlab doesn't like a 0 index
 Q(i,i-1)=q(state); Q(i,i)=-q(state);
end
i=5; t=10;
P=expm(Q*t); % The solution to p'(t)=p(t)Q
p=P(i,1:5); % with p_4(0)=1
bar(0:4,p);
Individual organism

State probabilities ($t = 10$)

<table>
<thead>
<tr>
<th>Stage</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td>0.1</td>
</tr>
<tr>
<td>Larva</td>
<td>0.6</td>
</tr>
<tr>
<td>Pupa Stage</td>
<td>0.2</td>
</tr>
<tr>
<td>Adult</td>
<td>0.1</td>
</tr>
<tr>
<td>Death</td>
<td>0.0</td>
</tr>
</tbody>
</table>
The state probabilities can almost never be evaluated analytically.
The state probabilities can almost never be evaluated analytically. There are exceptions . . .

Suppose that an organism has M stages of life ($M = 4$ for the butterfly), and that the expected time spent in stage j is $1/q_j$ (q_j is the rate of departure from stage j).

Exercise (Grimmett and Stirzaker, Exercise 6.8.31): Show that if q_1, q_2, \ldots, q_M are distinct, then

\[
p_j(t) = \frac{1}{q_j} \sum_{k=j}^{M} q_k e^{-q_k t} \prod_{l=j, l \neq k}^{M} \frac{q_l}{q_l - q_k},
\]

for $j = 1, \ldots, M$, and $p_0(t) = 1 - \sum_{j=1}^{M} p_j(t)$.

Individual organism

State probabilities ($t = 0$)

<table>
<thead>
<tr>
<th>Stage</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td>1.0</td>
</tr>
<tr>
<td>Larva</td>
<td>0.0</td>
</tr>
<tr>
<td>Pupa Stage</td>
<td>0.0</td>
</tr>
<tr>
<td>Adult</td>
<td>0.0</td>
</tr>
<tr>
<td>Death</td>
<td>0.0</td>
</tr>
</tbody>
</table>
State probabilities ($t = 1$)

- Egg: 0.8
- Larva: 0.2
- Pupa: 0
- Adult: 0
- Death: 0
Individual organism

State probabilities ($t = 2$)

- Egg: 0.6
- Larva: 0.4
- Pupa Stage: 0.05
- Adult: 0.005
- Death: 0.005

MASCOS APWSPM08, February 2008 - Page 35
Individual organism

State probabilities ($t = 3$)

- Egg: 0.5
- Larva: 0.5
- Pupa Stage: 0.1
- Adult: 0.0
- Death: 0.0
Individual organism

State probabilities ($t = 5$)

- Egg
- Larva
- Pupa Stage
- Adult
- Death

Probability
Individual organism

State probabilities (t = 10)

- Egg: 0.1
- Larva: 0.6
- Pupa Stage: 0.2
- Adult: 0.1
- Death: 0.0
Individual organism

State probabilities ($t = 20$)

- Egg: 0.0
- Larva: 0.3
- Pupa Stage: 0.2
- Adult: 0.1
- Death: 0.0
Individual organism

State probabilities ($t = 30$)

<table>
<thead>
<tr>
<th>Stage</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td>0.0</td>
</tr>
<tr>
<td>Larva</td>
<td>0.1</td>
</tr>
<tr>
<td>Pupa Stage</td>
<td>0.2</td>
</tr>
<tr>
<td>Adult</td>
<td>0.3</td>
</tr>
<tr>
<td>Death</td>
<td>0.4</td>
</tr>
</tbody>
</table>
Individual organism

State probabilities ($t = 50$)

- Egg
- Larva
- Pupa Stage
- Adult
- Death

<table>
<thead>
<tr>
<th>Stage</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td>0</td>
</tr>
<tr>
<td>Larva</td>
<td>0.1</td>
</tr>
<tr>
<td>Pupa Stage</td>
<td>0.2</td>
</tr>
<tr>
<td>Adult</td>
<td>0.3</td>
</tr>
<tr>
<td>Death</td>
<td>0.7</td>
</tr>
</tbody>
</table>
Individual organism

State probabilities ($t = 100$)

- Egg: 0
- Larva: 0
- Pupa Stage: 0
- Adult: 0
- Death: 1
Ensemble of organisms
Suppose that at time $t = 0$ the individuals are assigned to the states according to some rule and then each moves independently in S as a Markov chain governed by Q.

The key assumption here is *independence*: individuals do not affect one another.
Suppose that at time $t = 0$ the individuals are assigned to the states according to some rule and then each moves independently in S as a Markov chain governed by Q.

The key assumption here is *independence*: individuals do not affect one another.

We record only the *number* of individuals in the various states, rather than their positions.

Let $N_j(t)$ be the number of individuals in state j at time t, and let $\mathbf{N} = (N_j, j \in S)$. The process $(\mathbf{N}(t), t \geq 0)$ is also a continuous-time Markov chain.
The ensemble model

Suppose that at time $t = 0$ the individuals are assigned to the states according to some rule and then each moves independently in S as a Markov chain governed by Q.

The key assumption here is *independence*: individuals do not affect one another.

We record only the *number* of individuals in the various states, rather than their positions.

Let $N_j(t)$ be the number of individuals in state j at time t, and let $N = (N_j, j \in S)$. The process $(N(t), t \geq 0)$ is also a continuous-time Markov chain.
The ensemble model

Suppose that at time $t = 0$ the individuals are assigned to the states according to some rule and then each moves independently in \mathcal{S} as a Markov chain governed by Q.

The key assumption here is *independence*: individuals do not affect one another.

We record only the *number* of individuals in the various states, rather than their positions.

Let $N_j(t)$ be the number of individuals in state j at time t, and let $\mathbf{N} = (N_j, j \in \mathcal{S})$. The process $(\mathbf{N}(t), t \geq 0)$ is also a continuous-time Markov chain.
Ensemble of organisms

Life cycle simulation ($n = 7$ butterflies)
Life cycle simulation \((n = 7 \text{ butterflies}) \)

- **Egg**
- **Larva**
- **Pupa**
- **Adult**
- **Death**

Numbers at \(t = 0 \text{ days} \) \((n = 7 \text{ butterflies}) \)
Ensemble state description

Life cycle simulation \((n = 7 \text{ butterflies})\)

Numbers at \(t = 1 \text{ days} \quad (n = 7 \text{ butterflies})\)
Life cycle simulation \((n = 7 \text{ butterflies})\)

Numbers at \(t = 2 \text{ days} \) \((n = 7 \text{ butterflies})\)

- **Egg**
- **Larva**
- **Pupa**
- **Adult**
- **Death**
Life cycle simulation \((n = 7\text{ butterflies})\)

Numbers at \(t = 3\) days \(\left(n = 7\text{ butterflies}\right)\)
Ensemble state description

Life cycle simulation \((n = 7 \text{ butterflies}) \)

- Egg
- Larva
- Pupa
- Adult
- Death

Numbers at \(t = 4 \text{ days} \) \((n = 7 \text{ butterflies}) \)

- Egg
- Larva
- Pupa Stage
- Adult
- Death

Numbers at \(t = 4 \text{ days} \) show a significant increase in the Larva stage compared to other stages.
Life cycle simulation ($n = 7$ butterflies)

- Egg
- Larva
- Pupa
- Adult
- Death

Numbers at $t = 5$ days ($n = 7$ butterflies)
Life cycle simulation ($n = 7$ butterflies)

- **Egg**
- **Larva**
- **Pupa**
- **Adult**
- **Death**

Numbers at $t = 6$ days ($n = 7$ butterflies)

- **Egg**
- **Larva**
- **Pupa Stage**
- **Adult**
- **Death**
Life cycle simulation ($n = 7$ butterflies)

Numbers at $t = 7$ days ($n = 7$ butterflies)
Life cycle simulation ($n = 7$ butterflies)

Numbers at $t = 8$ days ($n = 7$ butterflies)
Ensemble state description

Life cycle simulation \((n = 7 \text{ butterflies})\)

Numbers at \(t = 9 \text{ days} \) \((n = 7 \text{ butterflies})\)
Life cycle simulation ($n = 7$ butterflies)

Numbers at $t = 10$ days ($n = 7$ butterflies)
Life cycle simulation \((n = 7 \text{ butterflies}) \)

Numbers at \(t = 11 \text{ days} \) \((n = 7 \text{ butterflies}) \)
Life cycle simulation ($n = 7$ butterflies)

- Egg
- Larva
- Pupa
- Adult
- Death

Numbers at $t = 12$ days ($n = 7$ butterflies)

- Egg
- Larva
- Pupa
- Adult
- Death
Ensemble state description

Life cycle simulation ($n = 7$ butterflies)

Time (days)

Egg
Larva
Pupa
Adult
Death

Numbers at $t = 13$ days ($n = 7$ butterflies)

Number of butterflies

Egg
Larva
Pupa
Adult
Death

MASCOS APWSPM08, February 2008 - Page 62
Life cycle simulation \((n = 7\) butterflies\)

- Egg
- Larva
- Pupa
- Adult
- Death

Numbers at \(t = 14\) days \((n = 7\) butterflies\):

- Egg: 1
- Larva: 5
- Pupa: 2
- Adult: 0
- Death: 0
Life cycle simulation ($n = 7$ butterflies)

Numbers at $t = 15$ days ($n = 7$ butterflies)
Life cycle simulation ($n = 7$ butterflies)

Numbers at $t = 16$ days ($n = 7$ butterflies)
Life cycle simulation ($n = 7$ butterflies)

- **Egg**
- **Larva**
- **Pupa**
- **Adult**
- **Death**

Numbers at $t = 17$ days ($n = 7$ butterflies)

- **Egg**
- **Larva**
- **Pupa**
- **Adult**
- **Death**
Life cycle simulation \((n = 7 \text{ butterflies}) \)

Numbers at \(t = 18 \) days \((n = 7 \text{ butterflies}) \)
Life cycle simulation ($n = 7$ butterflies)

Numbers at $t = 19$ days ($n = 7$ butterflies)
Life cycle simulation \((n = 7\) butterflies\)}

Numbers at \(t = 20\) days \((n = 7\) butterflies\)}
The closed ensemble. We suppose that there is a fixed number n of individuals, each moving according to Q. The process takes values in

$$E = \{ n \in \{0, \ldots, n\}^S : \sum_{j \in S} n_j = n \},$$

and its transition rates $Q_E = (q(n, m), n, m \in E)$ are given by

$$q(n, n + e_j - e_i) = n_i q_{ij},$$

for all states $j \neq i$ in S, where $e_j = (0, \ldots, 0, 1, 0, \ldots, 0)$ is the unit vector with a 1 as its j-th entry (this transition corresponds to a single individual moving from state i to state j).
Numbers at $t = 10$ days ($n = 7$ butterflies)
Ensemble proportions (simulation)

Proportions at $t = 10$ days ($n = 7$ butterflies)

<table>
<thead>
<tr>
<th>Stage</th>
<th>Proportion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td>10%</td>
</tr>
<tr>
<td>Larva</td>
<td>60%</td>
</tr>
<tr>
<td>Pupa Stage</td>
<td>30%</td>
</tr>
<tr>
<td>Adult</td>
<td>20%</td>
</tr>
<tr>
<td>Death</td>
<td>10%</td>
</tr>
</tbody>
</table>
Ensemble proportions (simulation)

Proportions at $t = 10$ days ($n = 15$ butterflies)

<table>
<thead>
<tr>
<th>Stage</th>
<th>Proportion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td>10%</td>
</tr>
<tr>
<td>Larva</td>
<td>50%</td>
</tr>
<tr>
<td>Pupa Stage</td>
<td>30%</td>
</tr>
<tr>
<td>Adult</td>
<td>20%</td>
</tr>
<tr>
<td>Death</td>
<td>10%</td>
</tr>
</tbody>
</table>
Ensemble proportions (simulation)

Proportions at $t = 10$ days ($n = 20$ butterflies)
Ensemble proportions (simulation)

Proportions at $t = 10$ days ($n = 50$ butterflies)

- Egg: 10%
- Larva: 20%
- Pupa: 30%
- Adult: 40%
- Death: 50%
Ensemble proportions (simulation)

Proportions at $t = 10$ days ($n = 100$ butterflies)
Ensemble proportions (simulation)

Proportions at $t = 10$ days ($n = 200$ butterflies)

- Egg: 10%
- Larva: 50%
- Pupa Stage: 20%
- Adult: 10%
- Death: 70%
Ensemble proportions (simulation)

Proportions at $t = 10$ days ($n = 500$ butterflies)

<table>
<thead>
<tr>
<th>Stage</th>
<th>Proportion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td>10%</td>
</tr>
<tr>
<td>Larva</td>
<td>20%</td>
</tr>
<tr>
<td>Pupa Stage</td>
<td>30%</td>
</tr>
<tr>
<td>Adult</td>
<td>40%</td>
</tr>
<tr>
<td>Death</td>
<td>50%</td>
</tr>
</tbody>
</table>
Ensemble proportions (simulation)

Proportions at $t = 10$ days ($n = 1000$ butterflies)

- Egg: 10%
- Larva: 20%
- Pupa Stage: 30%
- Adult: 40%
- Death: 50%

Stage Proportion
Ensemble proportions (simulation)

Proportions at \(t = 10 \) days \((n = 2000\) butterflies\))

<table>
<thead>
<tr>
<th>Stage</th>
<th>Proportion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td>10%</td>
</tr>
<tr>
<td>Larva</td>
<td>20%</td>
</tr>
<tr>
<td>Pupa Stage</td>
<td>30%</td>
</tr>
<tr>
<td>Adult</td>
<td>40%</td>
</tr>
<tr>
<td>Death</td>
<td>50%</td>
</tr>
</tbody>
</table>

Note: The graph shows the proportions of butterflies at each life stage at the end of the 10th day.
Ensemble proportions (simulation)

Proportions at $t = 10$ days ($n = 3000$ butterflies)

<table>
<thead>
<tr>
<th>Stage</th>
<th>Proportion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td>10%</td>
</tr>
<tr>
<td>Larva</td>
<td>20%</td>
</tr>
<tr>
<td>Pupa Stage</td>
<td>30%</td>
</tr>
<tr>
<td>Adult</td>
<td>40%</td>
</tr>
<tr>
<td>Death</td>
<td>50%</td>
</tr>
</tbody>
</table>

Stage proportions at $t = 10$ days for 3000 butterflies.
Ensemble proportions (simulation)

Proportions at $t = 10$ days ($n = 5000$ butterflies)

- Egg: 10%
- Larva: 50%
- Pupa Stage: 20%
- Adult: 10%
- Death: 5%
Ensemble proportions (simulation)

Proportions at $t = 10$ days ($n = 10000$ butterflies)

- **Egg**: 10%
- **Larva**: 20%
- **Pupa Stage**: 30%
- **Adult**: 40%
- **Death**: 50%

Stage Proportion
Ensemble proportions (simulation)

Proportions at \(t = 10 \) days (\(n = 20000 \) butterflies)

<table>
<thead>
<tr>
<th>Stage</th>
<th>Proportion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td>10%</td>
</tr>
<tr>
<td>Larva</td>
<td>20%</td>
</tr>
<tr>
<td>Pupa Stage</td>
<td>30%</td>
</tr>
<tr>
<td>Adult</td>
<td>40%</td>
</tr>
<tr>
<td>Death</td>
<td>50%</td>
</tr>
<tr>
<td></td>
<td>60%</td>
</tr>
<tr>
<td></td>
<td>70%</td>
</tr>
</tbody>
</table>
Ensemble proportions (simulation)

Proportions at $t = 10$ days ($n = 50000$ butterflies)

<table>
<thead>
<tr>
<th>Stage</th>
<th>Proportion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td>10%</td>
</tr>
<tr>
<td>Larva</td>
<td>20%</td>
</tr>
<tr>
<td>Pupa Stage</td>
<td>30%</td>
</tr>
<tr>
<td>Adult</td>
<td>40%</td>
</tr>
<tr>
<td>Death</td>
<td>50%</td>
</tr>
<tr>
<td>Death</td>
<td>60%</td>
</tr>
</tbody>
</table>

Stage proportions at $t = 10$ days for $n = 50000$ butterflies.
Let $X^{(n)}(t) = \frac{N(t)}{n}$, where n is the number of individuals, so that $X^{(n)}_j(t)$ is the proportion if individuals in state j.

Theorem 1. If ..., then, for all ..., and for every ..., as ..., where is the unique solution to ..., namely ..., where is the matrix exponential.
Convergence of ensemble proportions

Let $X^{(n)}(t) = N(t)/n$, where n is the number of individuals, so that $X_j^{(n)}(t)$ is the proportion if individuals in state j.

Theorem 1. If $X^{(n)}(0) \to a$ as $n \to \infty$, then, for all $u > 0$, and for every $\epsilon > 0$,

$$\Pr \left(\sup_{0 \leq t \leq u} \left| X^{(n)}(t) - p(t) \right| > \epsilon \right) \to 0 \quad \text{as } n \to \infty,$$

where $p(t) = (p_j(t), j \in S)$ is the unique solution to $p'(t) = p(t) Q$ satisfying $p(0) = a$, namely $p(t) = a \exp(tQ)$, where $\exp(\cdot)$ is the matrix exponential.
Convergence of ensemble proportions

2-Stage life cycle (n = 100 organisms)
Convergence of ensemble proportions

2-Stage life cycle ($n = 200$ organisms)
Convergence of ensemble proportions

2-Stage life cycle \((n = 500 \text{ organisms})\)

- Proportion in Stage A
- Proportion in Stage B

- Diagram showing the relationship between the proportion in Stage A and the proportion in Stage B for a 2-stage life cycle with 500 organisms.
Convergence of ensemble proportions

2-Stage life cycle ($n = 1000$ organisms)

Proportion in Stage A vs. Proportion in Stage B

- Blue line: Ensemble proportions
- Red line: Theoretical distribution

Figure showing the convergence of ensemble proportions in a 2-stage life cycle with $n = 1000$ organisms.
Convergence of ensemble proportions

2-Stage life cycle \((n = 2000\text{ organisms})\)

Proportion in Stage A vs Proportion in Stage B
Convergence of ensemble proportions

2-Stage life cycle (\(n=5000\) organisms)
Convergence of ensemble proportions

2-Stage life cycle ($n=10000$ organisms)
Convergence of ensemble proportions

Proportions at $t = 10$ days ($n = 100$ butterflies)
Convergence of ensemble proportions

2-Stage life cycle \((n = 100 \text{ organisms})\)
Theorem 2. In the setup of Theorem 1, let

$$Z^{(n)}(t) = \sqrt{n}(X^{(n)}(t) - p(t)).$$

If $Z^{(n)}(0) \to z$ as $n \to \infty$, then $(Z^{(n)}(t))$ converges weakly in $D[0, t]$ (the space of right-continuous, left-hand limits functions on $[0, t]$) to a Gaussian diffusion $(Z(t))$ with initial value $Z(0) = z$ and with mean and covariance given by

$$\mu_s := \mathbb{E}(Z(s)) = e^{sQ^\top} z$$

and

$$V_s := \text{Cov}(Z(s)) = e^{sQ^\top} \left(\int_0^s e^{-uQ^\top} G(p(u))e^{-uQ} du \right) e^{sQ},$$
Theorem 2 (continued).

... where the matrix $G(x)$ has entries

$$G_{kk}(x) = x_k q_k + \sum_{i \neq k} x_i q_{ik} \quad \text{and} \quad G_{kl}(x) = -(x_l q_{lk} + x_k q_{kl}).$$
Theorem 2 (continued).

... where the matrix $G(x)$ has entries

$$G_{kk}(x) = x_kq_k + \sum_{i \neq k} x_iq_{ik} \quad \text{and} \quad G_{kl}(x) = -(x_lq_{lk} + x_kq_{kl}).$$

Theorem 2 has many implications. One immediate one is that the population proportions $X^{(n)}(t)$ have an approximate multivariate Gaussian (normal) distribution with known mean vector and covariance matrix.

This helps explain the observed fluctuations (now seen to be of order $1/\sqrt{n}$) of $X^{(n)}(t)$ about $p(t)$.
Proportions at $t = 10$ days ($n = 100$ butterflies)

- Egg: 10%
- Larva: 20%
- Pupa Stage: 30%
- Adult: 40%
- Death: 50%
Convergence of scaled fluctuations

2-Stage life cycle ($n = 100$ organisms)

Scaled fluctuations (Stage A)

Time

MASCOS APWSPM08, February 2008 - Page 99
Convergence of scaled fluctuations

2-Stage life cycle ($n=200$ organisms)

Scaled fluctuations (Stage A)

Time

MASCOS APWSPM08, February 2008 - Page 100
Convergence of scaled fluctuations

2-Stage life cycle \((n = 500\) organisms)
Convergence of scaled fluctuations

2-Stage life cycle ($n = 1000$ organisms)
Convergence of scaled fluctuations

2-Stage life cycle ($n = 2000$ organisms)
Convergence of scaled fluctuations

2-Stage life cycle ($n = 5000$ organisms)
Convergence of scaled fluctuations

2-Stage life cycle (n = 5000 organisms)

- Open ensembles

- Open ensembles
- Stationary behaviour
Further details

- Open ensembles
- Stationary behaviour
- Quasi-stationary behaviour

- Open ensembles
- Stationary behaviour
- Quasi-stationary behaviour
 - Quasi-stationary distributions (QSDs) for *reducible* Markov chains
 - QSDs for ensemble processes
In our general setup (with C being the set of transient states and α being the decay parameter) …

Theorem 3. Let $\pi = (\pi_j, j \in C)$ be the QSD of the individual process. If the initial numbers $N_j(0), j \in C$, are chosen independently with $N_j(0)$ having a Poisson distribution with mean π_j, then, for all $t > 0$, $N_j(t), j \in C$, are independent with $N_j(t)$ having a Poisson distribution with mean $\pi_j e^{-\alpha t}$.

For aficionados. This result holds in much greater generality; C need not be finite, Q could be explosive, $\pi = (\pi_j, j \in C)$ could be any α-subinvariant measure and, more remarkably still, π need not be finite (we could have $\sum_{j \in C} \pi_j = \infty$).