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OUR SETTING

A closed network of queues:

e Fixed number of nodes (queues) J

e NN customers circulating

e Usual Markovian assumptions in force
Examples:

e A job shop, where manufactured items are
fashioned by various machines in turn.

e Provision of spare parts for a collection of
machines.

e A mining operation, where coal faces are
worked in turn by a number of specialized
machines.

Can we identify regions of congestion (bottle-
necks) from the parameters of the model?
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BOTTLENECKS

Common sense:

The nodes with the smallest service effort
will be the most congested.

A formal definition:

If n; is the number of customers at node j,
then this node is a bottleneck if, for all
m >0, Pr(n; >m) — 1 as N — oo.



SIMPLE EXAMPLES

All nodes have infinitely many servers:

N _
Pr(n; =n) = (n)a?(l — ozj)N " n=20,...,N,
where a; (< 1) is proportional to the arrival
rate at node 5 divided by service rate. Clearly
Pr(n; =n) — 0 for each n as N — oo, and so

all nodes are bottlenecks.

All nodes have a single server:

The distribution of n; cannot be written down
explicitly, but we can show that if there is a
node 53 whose traffic intensity is strictly greater
than the others, it is the unique bottleneck.

Moreover, for each node k in the remainder of
the network, the distribution of n; approaches
a geometric distribution with parameter a/«;
in the limit as N — oo, and ng, for k %% 5, are
asymptotically independent.



MARKOVIAN NETWORKS

Our only assumption:

The steady-state (joint) distribution « of the
numbers of customers n = (n1,n5,...,ny) at
the various nodes has the product form
(n) = B H anj S
T™(n) = by , N &,
where S is the finite subset of Z;fr with Y n; =
N and By is a normalizing constant chosen so

that = sums to unity over S.

Here % iS proportional to the amount of ser-
vice requirement (in items per minute) com-
ing into node j (this will actually be equal to
ajBN/BN—l)- Suppose (W|Og) that Zj Qj = 1.

¢j(n) is the service effort at node j (in items
per minute) when there are n customers present.
We shall assume that ¢,;(0) =0 and ¢;(n) >0
whenever n > 1.



GENERATING FUNCTIONS

Our primary tool:

Define generating functions ®©,®5,..., P 5 by

Pi(z) =1+ Z Hn—1¢g(7“) 2"

It is easily shown that Byt = <HJ L Pi>N,
where <.>,, takes the nth coefficient of a power
series. The marginal distribution of nj can be
evaluated as

N
7r§ >(n) = BN<¢j>n <Hk7&j¢k>N—na
fornm=20,1,...,N.



SINGLE-SERVER NODES

Suppose that each node 5 has a single server
(¢pj(n) =1forn >1). Then, <P;>, = o and
SO <P>p 4 = o' <P;>p. Summing

N
71'§- )(n) = BN<P;i>n <]Ig£;Pr>N-_n

over n, and recalling that B&l =< H}'le P> N,
gives PT(RJ > m) = Oé;-nBN/BN_m.

Suppose that a1 < ax < - < ayj_1 < ay, SO
that node J has maximal traffic intensity.

If we can prove that By_1/By — aj as N —
oo, then Pr(n; > m) — 1 (node J is a bot-
tleneck) and Pr(n; > m) — (a;/ay)™ < 1 for
j < J (the others are not).



WHY DOES BN—l/BN — (XJ?

Define ©;, = ®;-.-P;, where now P;(z) =
1/(1 — ajz). Clearly ®; has radius of con-
vergence (RQC) p; = 1/aj, in particular, ©;
(: Cbl) has RC 1/041.

Claim: ©; has RC 1/«; for all i, so that

Byn <Ojr>n_1 \ 1
Bn_1 <O >N oy
Proof: Suppose ©; has RC 1/«a4 and consider

, as N — .

m
<@k—|—1>m = Z Oé?_;{%<@k>n

n=0
m
n=0

Clearly Z,,C;O:Op2+1<@k>n = @k(pk—l-l) < o0,
since pg41 < pg, and so

<@k_|_]_>m . 1

<Okt1>m+1  Ak+t1
implying that ©;47 has RC 1/ag41.

as m — oo,



THE GENERAL CASE

Message: Bottleneck behaviour depends on
the relative sizes of the radii of convergence of
the power series 1, P,, ..., P ;.

Proposition 1: Suppose &, has radius of con-
vergence p; and that p; <pj_1 <pj_ o<+ <
p1. Suppose also that
<Py Py 1>p-1 (1)
<Py Dyj_1>n
has a limit as n — oo. Then, node J is a
bottleneck.

Example: Suppose node 5 has S; servers, so
that the traffic intensity at node j is propor-
tional to «;/s;. Since ¢;(n) = min{n,s;}, we
have qb](n) — 85, and so <¢j>n—1/<¢j>n —
sj/aj. Therefore p; is proportional to the re-
ciprocal of the traffic intensity at node 5. It
can be shown that (1) holds.



COMPOUND BOTTLENECKS

What happens when the generating functions
corresponding to two or more nodes share the
same minimal RC?

Proposition 2: In the setup of Proposition 1,
suppose that pr, = pp41 = - = pj(= p) and
that p <p; fory=1,2,...,L—1. Then, nodes
L,L+1,...,J behave jointly as a bottleneck in
that Pr(/_, n; >m) — 1 as N — oo.

It might be conjectured that when the gen-
erating functions corresponding to two nodes
share the same minimal RC, they are always
bottlenecks individually. However, while this is
true when all nodes have a single server (be-
cause Pr(n; >m) — (p/p;)™), it is not true in
general.
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SOME EXAMPLES

Consider a network with J = 2 nodes and sup-
pose that a1 = ao = 1/2. In the following
examples &1 and 5 have the same RC p = 2.

Only one node is a bottleneck: Suppose
that ¢1(n) = (n 4+ 1)?/n? and ¢o(n) = 1 for
n > 1. Then, it can be shown that Pr(ny =
n) — 6/(7%(n 4+ 1)2) and Pr(no, = n) — 0 as

N — 0.

Neither node is a bottleneck: Suppose that
$1(n) = ¢po(n) = (n+ 1)2/n? for n > 1. Then,
Pr(ni =n) — 3/(n%(n+ 1)2) as N — .
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AND FINALLY ...

Proposition 3: Suppose that &1, Po,..., Py
have the same strictly minimal RC p, and that
¢;j(n) converges monotonically for some j €
{2,...,K}. Then, node 1 is a bottleneck if
and only if

Pr(anmIZf(:lnz-:N)—ﬂ as N — oo.

A sufficient condition for node 1 to be a bot-
tleneck is that ®; diverges at its RC and

<Po---Pg>p_1
<Py DPpr>p

converges as n — oo.

This latter condition is not necessary: In
the setup of the previous examples, suppose
that ¢1(n) = (n 4 1)?/n? and ¢r(n) = (n +
1)3/n3 for n > 1. Then, ®1 and ®, have com-
mon RC p = 2 and both converge at their
RC. But, it can be shown that Pr(niy = n) is
bounded above by a quantity which is O(N—1)
as N — oo, implying that node 1 is a bottle-
neck.
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