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SPOM - Phase structure

For many species the propensity for colonization and local
extinction is markedly different in different phases of their
life cycle. Examples:

The Vernal pool fairy shrimp (Branchinecta lynchi) and

the California linderiella (Linderiella occidentalis), both

listed under the Endangered Species Act (USA)

The Jasper Ridge population of Bay checkerspot

butterfly (Euphydryas editha bayensis), now extinct



SPOM - Phase structure

Colonization and extinction happen in distinct, successive
phases.

t− 1 t t+ 1 t+ 2

We will we assume that the population is observed after
successive extinction phases (CE Model).
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patches and their areas.]



SPOM - Phase structure

Colonization and extinction happen in distinct, successive
phases, as independent trials.

Colonization: unoccupied patches become occupied
independently with probability c(n−1
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c : [0, 1] → [0, 1] is continuous, non-decreasing and concave.

Extinction: occupied patch i remains occupied
independently with probability si (fixed or random).



SPOM - example

n = 30 patches

0 0 0 0 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 0 1 0 0 0 1 0 0 0

(11 patches occupied)



SPOM - example

n = 30, c(x) = 0.7x
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c(x) = c(1130) = 0.7× 0.36̇ = 0.256̇
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SPOM - example

n = 30, c(x) = 0.7x and si ∼Beta(25.2, 19.8) (Esi = 0.56)

0 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 1 1 1 0 1 0 1 0 0 0 1 0 0 0
C 1 0 0 0 1 1 1 1 0 1 0 1 0 0 0 0 1 1 1 1 1 1 1 0 0 0 1 0 1 0

0.60 0.56 0.63 0.62 0.52 0.61 0.68 0.49 0.49 0.49 0.50
0.41 0.59 0.63 0.60 0.61

[Survival probabilities listed for occupied patches only]
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n = 30, c(x) = 0.7x and si ∼Beta(25.2, 19.8) (Esi = 0.56)

0 0 0 0 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 0 1 0 0 0 1 0 0 0
C 1 0 0 0 1 1 1 1 0 1 0 1 0 0 0 0 1 1 1 1 1 1 1 0 0 0 1 0 1 0
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.
.
.
C 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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)

,

a “Chain Bernoulli” structure.

In the homogeneous case, where si = s is the same for
each i, the number N (n)

t of occupied patches at time t is
Markovian. It has the following Chain Binomial structure:

N
(n)

t+1
d
= Bin

(

N
(n)

t + Bin
(

n−N
(n)

t , c
(

1
n
N

(n)

t

)

)

, s
)

.



A deterministic limit

Letting the initial number N (n)

0 of occupied patches grow at
the same rate as n . . .

Theorem [BP] If N (n)

0 /n
p→ x0 (a constant), then

N
(n)

t /n
p→ xt, for all t ≥ 1,

with (xt) determined by xt+1 = f(xt), where

f(x) = s(x+ (1− x)c(x)).

[BP] Buckley, F.M. and Pollett, P.K. (2010) Limit theorems for discrete-time
metapopulation models. Probability Surveys 7, 53-83.
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CE Model - Quasi stationarity
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Stability

xt+1 = f(xt), where f(x) = s(x+ (1− x)c(x)).

Stationarity : c(0) > 0. There is a unique fixed point
x∗ ∈ [0, 1]. It satisfies x∗ ∈ (0, 1) and is stable.

Evanescence: c(0) = 0 and 1 + c ′(0) ≤ 1/s. Now 0 is the
unique fixed point in [0, 1]. It is stable.

Quasi stationarity : c(0) = 0 and 1 + c ′(0) > 1/s. There are
two fixed points in [0, 1]: 0 (unstable) and x∗ ∈ (0, 1) (stable).

[Notice that c(0) = 0 implies that c ′(0) > 0.]
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A Gaussian limit

Theorem [BP] Further suppose that c(x) is twice
continuously differentiable, and let

Z
(n)
t =

√
n(N

(n)

t /n− xt).

If Z(n)
0

d→ z0, then Z
(n)
• converges weakly to the Gaussian

Markov chain Z• defined by

Zt+1 = f ′(xt)Zt + Et (Z0 = z0),

with (Et) independent and Et ∼ N(0, v(xt)), where

v(x) = s
[

(1− s)x+ (1− x)c(x)
(

1− sc(x)
)]

.
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CE Model - Gaussian approximation
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CE Model - Quasi stationarity
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CE Model - Gaussian approximation
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SPOM - general case

Returning to the general case, where patch survival
probabilities (si) are random and patch dependent , and we
keep track of which patches are occupied . . .

X
(n)

i,t+1
d
= Bin

(

X
(n)

i,t + Bin
(

1−X
(n)

i,t , c
(

1
n

∑n

j=1X
(n)

j,t

)

)

, si

)

.
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Our approach - Point Processes

Equivalently, we may define (σn) and (µn,t) by

∫

h(s)σn(ds) =
1

n

n
∑

i=1

h(si)

∫

h(s)µn,t(ds) =
1

n

n
∑

i=1

X
(n)

i,t h(si),

for h in C+([0, 1]), the class of continuous functions that map
[0, 1] to [0,∞). For example (h ≡ 1),

∫

µn,t(ds) =
1

n

n
∑

i=1

X
(n)

i,t (proportion occupied).



A measure-valued difference equation

Theorem [MP] Suppose that σn
d→ σ and µn,0

d→ µ0 for

some non-random measures σ and µ0. Then, µn,t
d→ µt for

all t = 1, 2, . . ., where µt is defined by the following recursion:
for h ∈ C+([0, 1]),

∫

h(s)µt+1(ds) = (1− ct)

∫

sh(s)µt(ds) + ct

∫

sh(s)σ(ds),

where ct = c (µt([0, 1])) = c
(∫

µt(ds)
)

.

[MP] McVinish, R. and Pollett, P.K. (2011) The limiting behaviour of a
mainland-island metapopulation. J. Math. Biol. 67, 693-716.
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Moments

Set h(s) = sk. Then, our recursion is
∫

skµt+1(ds) = (1− ct)
∫

sk+1µt(ds) + ct
∫

sk+1σ(ds),

where ct = c (µt([0, 1])) = c
(∫

µt(ds)
)

. So, with moments
defined by σ̄(k) :=

∫

skσ(ds) and µ̄
(k)

t :=
∫

skµt(ds),

µ̄
(k)

t+1 = (1− µ̄
(0)

t )µ̄
(k+1)

t + µ̄
(0)

t σ̄
(k+1) ,

and the theorem allows to conclude that

1
n

∑n

i=1 s
k
iX

(n)

i,t (=
∫

skµn,t(ds)) ) → µ̄
(k)

t ,

for example, 1
n

∑n

i=1X
(n)

i,t → µ̄
(0)

t .



A deterministic limit µ̄(0)
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CE Model - Evanescence
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CE Model - Quasi stationarity
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CE Model - Quasi stationarity
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CE Model - Quasi stationarity
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CE Model - Quasi stationarity
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CE Model - Quasi stationarity
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Extra - equilibria

Our recursion is
∫

h(s)µt+1(ds) = (1− ct)

∫

sh(s)µt(ds) + ct

∫

sh(s)σ(ds).



Extra - equilibria

Our recursion is
∫

h(s)µt+1(ds) = (1− ct)

∫

sh(s)µt(ds) + ct

∫

sh(s)σ(ds).

Let M be the set of measures that are absolutely
continuous with respect to σ and whose Radon-Nikodym
derivative is bounded by 1, σ − a.e.

We shall be interested in the behaviour of solutions to our
recursion starting with µ0 ∈ M.



Extra - equilibria

"Differentiating" with respect to σ, we see that our recursion
can be written

∂µt+1

∂σ
= s

∂µt
∂σ

+ sct

(

1− ∂µt
∂σ

)

.
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It will be clear that µ0 ∈ M implies that µt ∈ M for all t.



Extra - equilibria

"Differentiating" with respect to σ, we see that our recursion
can be written

∂µt+1

∂σ
= s

∂µt
∂σ

+ sct

(

1− ∂µt
∂σ

)

.

It will be clear that µ0 ∈ M implies that µt ∈ M for all t.

Furthermore, a measure µ∞ ∈ M will be an equilibrium
point of our recursion if it satisfies

∂µ∞
∂σ

= s
∂µ∞
∂σ

+ sc∞

(

1− ∂µ∞
∂σ

)

,

where c∞ = c (µ∞([0, 1])).



Extra - equilibria

Theorem [MP] Suppose that c(0) = 0 and c ′(0) <∞. Let ψ∗

be a solution to the equation

ψ = Rσ(ψ) :=
∫

sc(ψ)
1−s+sc(ψ)

σ(ds). (1)

The fixed points of our recursion are given by

µ∞(ds) =
sc(ψ∗)

1− s+ sc(ψ∗)
σ(ds).

Equation (1) has the unique solution ψ∗ = 0 if and only if

c ′(0)
∫

s
1−sσ(ds) ≤ 1.

Otherwise, there are two solutions, one of which is ψ∗ = 0.



Extra - stability

Theorem [MP] If ψ∗ = 0 is the only solution to Equation (1),
then, for all µ0 ∈ M, µt → 0. If Equation (1) has a non-zero
solution, then, for all µ0 ∈ M such that

∫

µ0,j(ds) > 0 for
some j, µt → µ∞.
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