Limits of large metapopulations with patch dependent extinction probabilities

Phil Pollett

Department of Mathematics
The University of Queensland
http://www.maths.uq.edu.au/~pkp
Ross McVinish
MASCOS
University of Queensland

Metapopulations
Metapopulations

Colonization

[Diagram showing various circles with butterflies, indicating the concept of colonization within a metapopulation framework.]
Metapopulations

Local Extinction
Metapopulations
Metapopulations
Metapopulations

Total Extinction
A Stochastic Patch Occupancy Model (SPOM)
A Stochastic Patch Occupancy Model (SPOM)

Suppose that there are n patches.
A Stochastic Patch Occupancy Model (SPOM)

Suppose that there are n patches.

Let $X_t^{(n)} = (X_{1,t}^{(n)}, \ldots, X_{n,t}^{(n)})$, where $X_{i,t}^{(n)}$ is a binary variable indicating whether or not patch i is occupied.
A Stochastic Patch Occupancy Model (SPOM)

Suppose that there are n patches.

Let $X_t^{(n)} = (X_{1,t}^{(n)}, \ldots, X_{n,t}^{(n)})$, where $X_{i,t}^{(n)}$ is a binary variable indicating whether or not patch i is occupied.

For each n, $(X_t^{(n)}, t = 0, 1, \ldots, T)$ is assumed to be Markov chain.
A Stochastic Patch Occupancy Model (SPOM)

Suppose that there are n patches.

Let $X^{(n)}_t = (X^{(n)}_{1,t}, \ldots, X^{(n)}_{n,t})$, where $X^{(n)}_{i,t}$ is a binary variable indicating whether or not patch i is occupied.

For each n, $(X^{(n)}_t, t = 0, 1, \ldots, T')$ is assumed to be Markov chain.

Colonization and extinction happen in distinct, successive phases.
Colonization and extinction happen in distinct, successive phases.
Colonization and extinction happen in distinct, successive phases.

We will assume that the population is observed after successive extinction phases (CE Model).
Colonization and extinction happen in distinct, successive phases.

Colonization: unoccupied patches become occupied independently with probability \(c(n^{-1} \sum_{i=1}^{n} X_{i,t}^{(n)}) \), where \(c : [0, 1] \rightarrow [0, 1] \) is continuous, increasing and concave, and \(c'(0) > 0 \).
Colonization and extinction happen in distinct, successive phases.

Colonization: unoccupied patches become occupied independently with probability
\[c(n^{-1} \sum_{i=1}^{n} X_{i,t}^{(n)}) \], where
\[c : [0, 1] \rightarrow [0, 1] \] is continuous, increasing and concave, and
\[c'(0) > 0. \]

Extinction: occupied patch \(i \) remains occupied independently with probability \(S_i \) (random).
Thus, we have a *Chain Bernoulli* structure:

\[
X_{i,t+1}^{(n)} \overset{d}{=} Bin\left(X_{i,t}^{(n)} + Bin\left(1 - X_{i,t}^{(n)}, c\left(\frac{1}{n} \sum_{j=1}^{n} X_{j,t}^{(n)}\right)\right), S_i\right)
\]
Thus, we have a *Chain Bernoulli* structure:

\[
X_{i,t+1}^{(n)} \overset{d}{=} Bin\left(X_{i,t}^{(n)} + Bin\left(1 - X_{i,t}^{(n)}, c\left(\frac{1}{n} \sum_{j=1}^{n} X_{j,t}^{(n)}\right)\right), S_i\right)
\]

Notation: $Bin(m, p)$ is a binomial random variable with m trials and success probability p.
Thus, we have a *Chain Bernoulli* structure:

\[
X_{i,t+1}^{(n)} \overset{d}{=} Bin\left(X_{i,t}^{(n)} + Bin\left(1 - X_{i,t}^{(n)}, c\left(\frac{1}{n} \sum_{j=1}^{n} X_{j,t}^{(n)}\right)\right), S_i\right)
\]
Thus, we have a *Chain Bernoulli* structure:

$$X_{i,t+1} \overset{d}{=} Bin(X_{i,t}^{(n)} + Bin(1 - X_{i,t}^{(n)}, c(\frac{1}{n}\sum_{j=1}^{n} X_{j,t}^{(n)})), S_i)$$
Thus, we have a *Chain Bernoulli* structure:

\[
X^{(n)}_{i,t+1} \overset{d}{=} Bin\left(X^{(n)}_{i,t} + Bin\left(1 - X^{(n)}_{i,t}, c\left(\frac{1}{n} \sum_{j=1}^{n} X^{(n)}_{j,t}\right)\right), S_i\right)
\]
Thus, we have a *Chain Bernoulli* structure:

\[
X_{i,t+1}^{(n)} \overset{d}{=} Bin\left(X_{i,t}^{(n)} + Bin\left(1 - X_{i,t}^{(n)}, c\left(\frac{1}{n}\sum_{j=1}^{n}X_{j,t}^{(n)}\right)\right), S_i\right)
\]
Thus, we have a *Chain Bernoulli* structure:

\[
X_{i,t+1}^{(n)} \overset{d}{=} Bin\left(X_{i,t}^{(n)} + Bin\left(1 - X_{i,t}^{(n)}, c\left(\frac{1}{n} \sum_{j=1}^{n} X_{j,t}^{(n)}\right)\right), S_i\right)
\]
Compare this with the *homogenous case*, where $S_i = s$ (non-random) is the same for each i, and we merely count the *number* $N_t^{(n)}$ of occupied patches at time t.

We have the following *Chain Binomial* structure:

$$ N_{t+1}^{(n)} \overset{d}{=} \text{Bin} \left(N_t^{(n)} + \text{Bin} \left(n - N_t^{(n)}, c \left(\frac{1}{n} N_t^{(n)} \right) \right), s \right) $$
Compare this with the *homogenous case*, where \(S_i = s \) (non-random) is the same for each \(i \), and we merely count the *number* \(N_t^{(n)} \) of occupied patches at time \(t \).

We have the following *Chain Binomial* structure:

\[
N_{t+1}^{(n)} \overset{d}{=} \text{Bin}\left(N_t^{(n)} + \text{Bin}\left(n - N_t^{(n)}, c\left(\frac{1}{n} N_t^{(n)} \right) \right), s \right)
\]
Compare this with the *homogenous case*, where $S_i = s$ (non-random) is the same for each i, and we merely count the *number* $N_t^{(n)}$ of occupied patches at time t.

We have the following *Chain Binomial* structure:

$$N_{t+1}^{(n)} \overset{d}{=} Bin\left(N_t^{(n)} + Bin\left(n - N_t^{(n)}, c\left(\frac{1}{n}N_t^{(n)}\right)\right), s\right)$$
Compare this with the *homogenous case*, where $S_i = s$ (non-random) is the same for each i, and we merely count the *number* $N_t^{(n)}$ of occupied patches at time t.

We have the following *Chain Binomial* structure:

$$N_{t+1}^{(n)} \overset{d}{=} Bin\left(N_t^{(n)} + Bin\left(n - N_t^{(n)}, c\left(\frac{1}{n} N_t^{(n)}\right)\right), s\right)$$
Compare this with the *homogenous case*, where $S_i = s$ (non-random) is the same for each i, and we merely count the *number* $N_t^{(n)}$ of occupied patches at time t.

We have the following *Chain Binomial* structure:

$$ N_{t+1}^{(n)} \overset{d}{=} Bin\left(N_t^{(n)} + Bin\left(n - N_t^{(n)} , c\left(\frac{1}{n} N_t^{(n)} \right) \right) , s \right) $$
Compare this with the \textit{homogenous case}, where \(S_i = s \) (non-random) is the same for each \(i \), and we merely count the \textit{number} \(N_t^{(n)} \) of occupied patches at time \(t \).

We have the following \textit{Chain Binomial} structure:

\[
N_{t+1}^{(n)} \overset{d}= Bin\left(N_t^{(n)} + Bin\left(n - N_t^{(n)}, c\left(\frac{1}{n} N_t^{(n)} \right) \right), s \right)
\]
Compare this with the \textit{homogenous case}, where $S_i = s$ (non-random) is the same for each i, and we merely count the \textit{number} $N_t^{(n)}$ of occupied patches at time t.

We have the following \textit{Chain Binomial} structure:

$$N_{t+1}^{(n)} \overset{d}{=} Bin\left(N_t^{(n)} + Bin\left(n - N_t^{(n)}, c\left(\frac{1}{n}N_t^{(n)}\right)\right), s\right)$$
A deterministic limit

Theorem If \(N_0^{(n)}/n \xrightarrow{p} x_0 \) (a constant), then

\[
N_t^{(n)}/n \xrightarrow{p} x_t, \quad \text{for all } t \geq 1,
\]

with \((x_t) \) determined by \(x_{t+1} = f(x_t) \), where

\[
f(x) = s(x + (1 - x)c(x)).
\]

\[x_{t+1} = f(x_t), \text{ where } f(x) = s(x + (1 - x)c(x)). \]

- **Stationarity**: \(c(0) > 0 \). There is a unique fixed point \(x^* \in [0, 1] \). It satisfies \(x^* \in (0, 1) \) and is stable.

- **Evanescence**: \(c(0) = 0 \) and \(1 + c'(0) \leq 1/s \). Now \(0 \) is the unique fixed point in \([0, 1]\). It is stable.

- **Quasi stationarity**: \(c(0) = 0 \) and \(1 + c'(0) > 1/s \). There are two fixed points in \([0, 1]\): 0 (unstable) and \(x^* \in (0, 1) \) (stable).
CE Model simulation ($n = 100$, $N_0^{(n)} = 95$, $s = 0.56$, $c(x) = cx$ with $c = 0.7$)
CE Model simulation ($n = 100$, $N_0^{(n)} = 5$, $s = 0.8$, $c(x) = cx$ with $c = 0.7$)
Returning to the general case, where patch survival probabilities are *random* and *patch dependent*, and we keep track of which patches are occupied . . .

\[
X_{i,t+1}^{(n)} \overset{d}{=} Bin\left(X_{i,t}^{(n)} + Bin\left(1 - X_{i,t}^{(n)}, c\left(\frac{1}{n} \sum_{j=1}^{n} X_{j,t}^{(n)}\right)\right), S_i\right)
\]
A deterministic limit

Returning to the general case, where patch survival probabilities are *random and patch dependent*, and we keep track of which patches are occupied . . .

\[
X^{(n)}_{i,t+1} \overset{d}{=} Bin\left(X^{(n)}_{i,t} + Bin\left(1 - X^{(n)}_{i,t}, c\left(\frac{1}{n} \sum_{j=1}^{n} X^{(n)}_{j,t}\right)\right), S_i\right)
\]

First, . . .

Notation: If \(\sigma \) is a probability measure on \([0, 1)\) and let \(\bar{s}_k \) denote its \(k \)-th moment, that is,

\[
\bar{s}_k = \int_0^1 \lambda^k \sigma(d\lambda).
\]
Theorem Suppose there is a probability measure σ and deterministic sequence \(\{d(0, k)\} \) such that

$$
\frac{1}{n} \sum_{i=1}^{n} S_i^k \xrightarrow{p} \bar{s}_k \quad \text{and} \quad \frac{1}{n} \sum_{i=1}^{n} S_i^k X_{i,0}^{(n)} \xrightarrow{p} d(0, k)
$$

for all $k = 0, 1, \ldots, T$. Then, there is a (deterministic) triangular array \(\{d(t, k)\} \) such that, for all $t = 0, 1, \ldots, T$ and $k = 0, 1, \ldots, T - t$,

$$
\frac{1}{n} \sum_{i=1}^{n} S_i^k X_{i,t}^{(n)} \xrightarrow{p} d(t, k),
$$

where

$$
d(t + 1, k) = d(t, k + 1) + c(d(t, 0)) (\bar{s}_{k+1} - d(t, k + 1)).
$$
Typically, we are only interested in \(d(t, 0) \), being the asymptotic proportion of occupied patches.

However, we may still interpret the ratio \(d(t, k)/d(t, 0) \) \((k \geq 1)\) as the \(k \)-th moment of the conditional distribution of the patch survival probability given that the patch is occupied. (From these moments, the conditional distribution could then be reconstructed.)
When \(\bar{s}_k = \bar{s}_1^k \) for all \(k \), that is the patch survival probabilities are the same, then it is possible to simplify

\[
d(t + 1, k) = d(t, k + 1) + c(d(t, 0)) (\bar{s}_{k+1} - d(t, k + 1))
\]

We can show by induction that \(d(t, k) = \bar{s}_1^k x_t \), where

\[
x_{t+1} = \bar{s}_1 (x_t + (1 - x_t) c(x_t))
\]

(Compare this with the earlier result.)
Theorem The fixed points are given by

\[d(k) = \int_0^1 \frac{c(\psi)\lambda^{k+1}}{1-\lambda+c(\psi)\lambda} \sigma(d\lambda), \]

where \(\psi \) solves

\[R(\psi) = \int_0^1 \frac{c(\psi)\lambda}{1-\lambda+c(\psi)\lambda} \sigma(d\lambda) = \psi. \] \hspace{1cm} (1)

If \(c(0) > 0 \), there is a unique \(\psi > 0 \). If \(c(0) = 0 \) and

\[c'(0) \int_0^1 \frac{\lambda}{1-\lambda} \sigma(d\lambda) \leq 1, \]

then \(\psi = 0 \) is the unique solution to (1). Otherwise, (1) has two solutions, one of which is \(\psi = 0 \).
Theorem If \(c(0) = 0 \) and

\[
c'(0) \int_0^1 \frac{\lambda}{1-\lambda} \sigma(d\lambda) \leq 1,
\]

then \(d(k) \equiv 0 \) is a stable fixed point. Otherwise, the non-zero solution to

\[
R(\psi) = \int_0^1 \frac{c(\psi) \lambda}{1-\lambda+c(\psi)\lambda} \sigma(d\lambda) = \psi
\]

provides the stable fixed point through

\[
d(k) = \int_0^1 \frac{c(\psi) \lambda^{k+1}}{1-\lambda+c(\psi)\lambda} \sigma(d\lambda).
\]