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The Sl (Susceptible-Infective) Model

s N individuals (fixed)
» n; susceptibles (random process in continuous time)
» N — n, Infectives

Start with a few infectives. Eventually everyone gets the
disease. The per-encounter transmission rate ( is specified.

Let X; = n;/N be the proportion of susceptibles.




Simulation of the ST Model (N =20, 5 =0.3, Xy =0.9)
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SI Model (3 =0.3, X, =0.9)
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» Deterministic dynamics
» Randomness only in the initial state
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SI Model (3 =0.3, Xy =0.7995)
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SI Model (3 =0.3, X, =0.8773)
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SI Model (3 =0.3, X, =0.9946)
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SI Model (3 =0.3, X, =0.6232)
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SI Model (3 =0.3, X, =0.8065)
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SI Model (8 =0.3, Xy ~ Beta(4.1,1.5)) 30 paths
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Beta distribution (a =4.1, b =1.5)
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Distribution of susceptibles at time t =3
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Distribution of susceptibles at time ¢t =8
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Distribution of susceptibles at time ¢t =9
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Distribution of susceptibles at time ¢ =10
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Probability density

Distribution of susceptibles at time ¢ =12

20 T T

[EY
N
T

=
o
T

o]
T

0.3

0.4

0.5

0.6

0.7

0.8

0.9




Probability density

20

[EY
N

=
o

[ee]
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Distribution of susceptibles at time ¢ =15
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» |s the deterministic approximation reasonable?




» |s the deterministic approximation reasonable?
s Yes, provided N is large.
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Simulation of the SI Model (N =1000, 8 =0.3, X, =0.9)
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SI Model (3 =0.3, X, =0.9)
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» |s the deterministic approximation reasonable?
s Yes, provided N is large.
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dynamics? And, can we quantify the variation “missed”?
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We can do this (and more) for a very large class of
stochastic models called density dependent Markov chains.




» |Is the deterministic approximation reasonable?
s Yes, provided N is large.

» When N is small, what is the effect of ignoring random
dynamics? And, can we quantify the variation “missed”?

We can do this (and more) for a very large class of
stochastic models called density dependent Markov chains.

| will first explain how the Kegan and West approach

(mapping an initial distribution) can be extended: we do not
need to evaluate the trajectories explicitly.
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Our population process (ns, t > 0) iIs assumed to be a
continuous-time Markov chain taking values in a subset S
of ZP.
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g(m) =3 ,2m a(m,n) (< oo) Is the total rate out of state m.
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We suppose that the process is density dependent in the
sense of Tom Kurtz (1970): there is a parameter N (usually
a parameter of the model and often related to the size of the
population) with the property that

g(n,n+1)=Nf (%z) n,n+les,

for suitable functions f(z,!), x € E, where £ C R”,




We suppose that the process is density dependent in the
sense of Tom Kurtz (1970): there is a parameter N (usually
a parameter of the model and often related to the size of the
population) with the property that

g(n,n+1)=Nf (%z) n,n+les,

for suitable functions f(z,!), x € E, where £ C R”,

The SI model is density dependent because

q(n,n—1) = %n(N—n) :Nﬁ% (1—%),

and hence f(x,—1) =0xz(1 —x),z € E=[0,1).
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Set X; = n;/N and call (X;, ¢t > 0) the density process (of
course X; would typically be a population density).

Set F(z) = 1 40lf (z,1).

A deterministic model for X; is

dx
- = F(x) z(0) = xo.




Set X; = n;/N and call (X;, ¢t > 0) the density process (of
course X; would typically be a population density).

Set F(z) = 1 40lf (z,1).

A deterministic model for X; is

dx
- = F(x) z(0) = xo.

Theorem 1. For every ¢ > 0,

Pr(sup |X§N)—az(s)|>e)—>0 as N — oc.
0<s<t

-
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For the SI model




Think of the initial population density X, as being a random
variable with a specified probabillity density function (pdf) f;.

Write x(t, z() for the trajectory starting at .

Determining the action of the map ¢:(x) = x(t, x9) (assumed
to be injective) on f; to obtain a pdf f; that summaries the
effect of random initial conditions in our population: for any
t > 0,

fi(y) = W) fo (9 (), v € Ry,

where J; IS the Jacobian of gt_l and R; = ¢:(F) Is the image
of £/ under g;.




For the SI model, R, = £ =10,1) for all ¢, and

e_ﬁt

_ Y
0= i =g (e tem) . veoD




For one-dimensional models (D = 1) this can be done
without evaluating the trajectories explicitly.

We are given
dx

dt

Let L(u) be the primitive L(u) = [* dw/F(w). Suppose L is
injective, so that L=! is WeII deflned (it i1s sufficient that F' be

everywhere positive or everywhere negative).

= F(z) z(0) = x0.

Theorem 2.




The following result quantifies the variation not accounted
for when random dynamics are ignored.

Theorem 3. For N large,

COV(X) Vs + N fE a?() fo(CE()) dxo,

where Vi = Cov(z(s, Xp)) (variation due to initial conditions)
$.(20) = M. / MG ((u, 20)) (MY du MT

M, = exp( [y Budu), Bs = VF(z(s,x0)) and G(z) is the D x D
matrix with entries Gij (ZIZ) — Zl;é() l@-ljfl(x).




Corollary. Suppose D = 1. For N large,
Var(Xs) = Vs + « [ Xs(20) fo(zo) dzo,
where Vi = Var(xz(s, X)) (variation due to initial conditions),
Ys(wo) = M7 [y M, *G(x(u, x0)) du,
My = exp( [y Budu), Bs = F'(x(s,z0)) and G(z) = 3=, I fi(x).

For the SI model

1—x0)%e*'—(1—220—28txo(1— Ot _ g2
i = ePtag(1 — ) el G e,




Variance

Unexplained variation (5 =0.3, Xy ~ Beta(4.1,1.5))
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