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Starting point

A paper by Bonnie Kegan (US Census Bureau Washington
DC) and R. Webster West (now at Texas A&M University) ...

B. Kegan and R.W. West (2005) Modeling the simple epidemic
with deterministic differential equations and random initial
conditions. Math. Biosci. 194, 217–231.
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A simple epidemic

The SI (Susceptible-Infective) Model

N individuals (fixed)

nt susceptibles (random process in continuous time)

N − nt infectives

Start with a few infectives. Eventually everyone gets the
disease. The per-encounter transmission rate β is specified.

Let Xt = nt/N be the proportion of susceptibles.
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Kegan and West
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Kegan and West

Deterministic dynamics

Randomness only in the initial state
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Kegan and West
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Kegan and West
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Kegan and West
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Kegan and West
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Kegan and West
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Kegan and West
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Kegan and West
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Kegan and West initial distribution
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f (x) = Γ(a+b)
Γ(a)Γ(b)x

a−1(1 − x)b−1, x ∈ [0, 1]

mean = a

a+b
= 0.73214

mode = a−1
a+b−2 = 0.86111

MASCOS Complex’07, July 2007 - Page 20



Distribution at time t
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Distribution at time t

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5
Distribution of susceptibles at time t =0.1

x

P
ro

b
a
b
il
it
y

d
en

si
ty

MASCOS Complex’07, July 2007 - Page 22



Distribution at time t
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Distribution at time t
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Distribution at time t
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Distribution at time t
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Distribution at time t

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5
Distribution of susceptibles at time t =0.8

x

P
ro

b
a
b
il
it
y

d
en

si
ty

MASCOS Complex’07, July 2007 - Page 27



Distribution at time t
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Distribution at time t
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Distribution at time t
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Distribution at time t
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Distribution at time t
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Distribution at time t
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Distribution at time t
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Distribution at time t
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Distribution at time t
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Distribution at time t
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Distribution at time t

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

18

20
Distribution of susceptibles at time t =11

x

P
ro

b
a
b
il
it
y

d
en

si
ty

MASCOS Complex’07, July 2007 - Page 38



Distribution at time t
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Distribution at time t
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Distribution at time t
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Distribution at time t
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Distribution at time t
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Questions

Is the deterministic approximation reasonable?
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Questions

Is the deterministic approximation reasonable?
Yes, provided N is large.
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Deterministic approximation reasonable?
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Deterministic approximation reasonable?
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Deterministic approximation reasonable?
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Deterministic approximation reasonable?
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Deterministic approximation reasonable?
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Deterministic approximation reasonable?
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Questions

Is the deterministic approximation reasonable?
Yes, provided N is large.
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Questions

Is the deterministic approximation reasonable?
Yes, provided N is large.

When N is small, what is the effect of ignoring random
dynamics? And, can we quantify the variation “missed”?
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Questions

Is the deterministic approximation reasonable?
Yes, provided N is large.

When N is small, what is the effect of ignoring random
dynamics? And, can we quantify the variation “missed”?

We can do this (and more) for a very large class of
stochastic models called density dependent Markov chains.
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Questions

Is the deterministic approximation reasonable?
Yes, provided N is large.

When N is small, what is the effect of ignoring random
dynamics? And, can we quantify the variation “missed”?

We can do this (and more) for a very large class of
stochastic models called density dependent Markov chains.

I will first explain how the Kegan and West approach
(mapping an initial distribution) can be extended: we do not
need to evaluate the trajectories explicitly .
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Our population process

Our population process (nt, t ≥ 0) is assumed to be a
continuous-time Markov chain taking values in a subset S

of Z
D.
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Our population process

Our population process (nt, t ≥ 0) is assumed to be a
continuous-time Markov chain taking values in a subset S

of Z
D.

It has a (stable and conservative) set of transition rates
Q = (q(m,n), m, n ∈ S), so that q(m,n) is the transition rate
from m to n for n 6= m and q(m,m) = −q(m), where
q(m) =

∑

n6=m q(m,n) (< ∞) is the total rate out of state m.
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Our population process

Our population process (nt, t ≥ 0) is assumed to be a
continuous-time Markov chain taking values in a subset S

of Z
D.

It has a (stable and conservative) set of transition rates
Q = (q(m,n), m, n ∈ S), so that q(m,n) is the transition rate
from m to n for n 6= m and q(m,m) = −q(m), where
q(m) =

∑

n6=m q(m,n) (< ∞) is the total rate out of state m.

For example, in the SI model nt is the number of
susceptibles at time t, S = {0, 1, . . . , N − 1}, where N is total
number of individuals (we assume that there is at least one
infective), and q(n) = q(n, n − 1) = (β/N)n(N − n), where β is
the per-contact transmission rate.
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Our population process

Our population process (nt, t ≥ 0) is assumed to be a
continuous-time Markov chain taking values in a subset S

of Z
D.

It has a (stable and conservative) set of transition rates
Q = (q(m,n), m, n ∈ S), so that q(m,n) is the transition rate
from m to n for n 6= m and q(m,m) = −q(m), where
q(m) =

∑

n6=m q(m,n) (< ∞) is the total rate out of state m.

For example, in the SI model nt is the number of
susceptibles at time t, S = {0, 1, . . . , N − 1}, where N is total
number of individuals (we assume that there is at least one
infective), and q(n) = q(n, n − 1) = (β/N)n(N − n), where β is
the per-contact transmission rate.
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Density dependent models

We suppose that the process is density dependent in the
sense of Tom Kurtz (1970): there is a parameter N (usually
a parameter of the model and often related to the size of the
population) with the property that

q(n, n + l) = Nf
( n

N
, l

)

, n, n + l ∈ S,

for suitable functions f(x, l), x ∈ E, where E ⊆ R
D.
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Density dependent models

We suppose that the process is density dependent in the
sense of Tom Kurtz (1970): there is a parameter N (usually
a parameter of the model and often related to the size of the
population) with the property that

q(n, n + l) = Nf
( n

N
, l

)

, n, n + l ∈ S,

for suitable functions f(x, l), x ∈ E, where E ⊆ R
D.

The SI model is density dependent because

q(n, n − 1) =
β

N
n(N − n) = Nβ

n

N

(

1 −
n

N

)

,

and hence f(x,−1) = βx(1 − x), x ∈ E = [0, 1).
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Step I: Identify the deterministic model

Set Xt = nt/N and call (Xt, t ≥ 0) the density process (of
course Xt would typically be a population density).

Set F (x) =
∑

l 6=0 lf (x, l).

A deterministic model for Xt is

dx

dt
= F (x) x(0) = x0.
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Step I: Identify the deterministic model

Set Xt = nt/N and call (Xt, t ≥ 0) the density process (of
course Xt would typically be a population density).

Set F (x) =
∑

l 6=0 lf (x, l).

A deterministic model for Xt is

dx

dt
= F (x) x(0) = x0.

Theorem 1. For every ǫ > 0,

Pr

(

sup
0≤s≤t

∣

∣X (N)
s − x(s)

∣

∣ > ǫ

)

→ 0 as N → ∞.
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Step I: Identify the deterministic model

For the SI model

dx

dt
= −βx(1 − x) x(0) = x0.

x(t) =
x0

x0 + (1 − x0)eβt
(t ≥ 0).
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Step II: Map the initial distribution

Think of the initial population density X0 as being a random
variable with a specified probability density function (pdf) f0.

Write x(t, x0) for the trajectory starting at x0.

Determining the action of the map gt(x0) = x(t, x0) (assumed
to be injective) on f0 to obtain a pdf ft that summaries the
effect of random initial conditions in our population: for any
t > 0,

ft(y) = |Jt(y)|f0

(

g−1
t (y)

)

, y ∈ Rt,

where Jt is the Jacobian of g−1
t and Rt = gt(E) is the image

of E under gt.
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Step II: Map the initial distribution

For the SI model, Rt = E = [0, 1) for all t, and

ft(y) =
e−βt

(y + (1 − y)e−βt)2
f0

(

y

y + (1 − y)e−βt

)

, y ∈ [0, 1).
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Step II: Map the initial distribution

For one-dimensional models (D = 1) this can be done
without evaluating the trajectories explicitly.

We are given
dx

dt
= F (x) x(0) = x0.

Let L(u) be the primitive L(u) =
∫ u

dw/F (w). Suppose L is
injective, so that L−1 is well defined (it is sufficient that F be
everywhere positive or everywhere negative).

Theorem 2.

ft(y) =
F (L−1(L(y) − t))

F (y)
f0(L

−1(L(y) − t)), y ∈ Rt.
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Step III: Unexplained variation

The following result quantifies the variation not accounted
for when random dynamics are ignored.

Theorem 3. For N large,

Cov(Xs) ≃ Vs + 1
N

∫

E
Σs(x0)f0(x0) dx0,

where Vs = Cov(x(s,X0)) (variation due to initial conditions)

Σs(x0) = Ms

∫ s

0
M−1

u G(x(u, x0))(M
−1
u )T duMT

s ,

Ms = exp(
∫ s

0 Bu du), Bs = ∇F (x(s, x0)) and G(x) is the D × D

matrix with entries Gij(x) =
∑

l 6=0 liljfl(x).
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Step III: The one-dimensional case

Corollary. Suppose D = 1. For N large,

Var(Xs) ≃ Vs + 1
N

∫

E
Σs(x0)f0(x0) dx0,

where Vs = Var(x(s,X0)) (variation due to initial conditions),

Σs(x0) = M2
s

∫ s

0 M−2
u G(x(u, x0)) du ,

Ms = exp(
∫ s

0 Bu du), Bs = F ′(x(s, x0)) and G(x) =
∑

l 6=0 l2fl(x).

For the SI model

Σt = eβtx0(1 − x0)
(1−x0)

2e2βt−(1−2x0−2βtx0(1−x0))e
βt−x2

0

(x0+(1−x0)eβt)4 .
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Unexplained variation in the SI model
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