SIMILAR MARKOV CHAINS

by

Phil Pollett

The University of Queensland



MAIN REFERENCES

Convergence of Markov transition proba-
bilities and their spectral properties

1. Vere-Jones, D. Geometric ergodicity in denumerable
Markov chains. Quart. J. Math. Oxford Ser. 2 13
(1962) 7—28.

2. Vere-Jones, D. On the spectra of some linear opera-
tors associated with queueing systems. Z. Wahrschein-
lichkeitstheorie und Verw. Gebiete 2 (1963) 12-21.

3. Vere-Jones, D. Ergodic properties of nonnegative
matrices. I. Pacific J. Math. 22 (1967) 361—-386.

4. Vere-Jones, D. Ergodic properties of nonnegative
matrices. II. Pacific J. Math. 26 (1968) 601—620.

Classification of transient Markov chains
and quasi-stationary distributions

5. Seneta, E.; Vere-Jones, D. On quasi-stationary dis-
tributions in discrete-time Markov chains with a denu-
merable infinity of states. J. Appl. Probability 3 (1966)
403—434.

6. Vere-Jones, D. Some limit theorems for evanescent
processes. Austral. J. Statist. 11 (1969) 67-78.



Related work

7. Vere-Jones, D.; Kendall, David G. A commutativity
problem in the theory of Markov chains. Teor. Veroy-
atnost. i Primenen. 4 (1959) 97—-100.

8. Vere-Jones, D. A rate of convergence problem in the
theory of queues. Teor. Verojatnost. i Primenen. 9
(1964) 104—-112.

9. Vere-Jones, D. Note on a theorem of Kingman and
a theorem of Chung. Ann. Math. Statist. 37 (1966)
1844—1846.

10. Heathcote, C. R.; Seneta, E.; Vere-Jones, D. A
refinement of two theorems in the theory of branching
processes. Teor. Verojatnost. i Primenen. 12 (1967)
341-346.

11. Rubin, H.; Vere-Jones, D. Domains of attraction
for the subcritical Galton-Watson branching process. J.
Appl. Probability 5 (1968) 216—219.

12. Seneta, E.; Vere-Jones, D. On the asymptotic
behaviour of subcritical branching processes with con-
tinuous state space. Z. Wahrscheinlichkeitstheorie und
Verw. Gebiete 10 (1968) 212—225.

13. Fahady, K. S.; Quine, M. P.; Vere-Jones, D. Heavy
traffic approximations for the Galton-Watson process.
Advances in Appl. Probability 3 (1971) 282—-300.

14. Pollett, P. K.; Vere-Jones, D. A note on evanescent
processes. Austral. J. Statist. 34 (1992), no. 3, 531-
536.



Important early work on quasi-stationary
distributions

Yaglom, A.M. Certain limit theorems of the theory of
branching processes (Russian) Doklady Akad. Nauk
SSSR (N.S.) 56 (1947) 795-798.

Bartlett, M.S. Deterministic and stochastic models for
recurrent epidemics. Proceedings of the Third Berkeley
Symposium on Mathematical Statistics and Probability,
1954—-1955, Vol. 1V, pp. 81—-109. University of Califor-
nia Press, Berkeley and Los Angeles, 1956.

Bartlett, M.S. Stochastic population models in ecology
and epidemiology. Methuen's Monographs on Applied
Probability and Statistics Methuen & Co., Ltd., London;
John Wiley & Sons, Inc., New York, 1960.

Darroch, J. N.; Seneta, E. On quasi-stationary distribu-
tions in absorbing discrete-time finite Markov chains. J.
Appl. Probability 2 (1965) 88—100.

Darroch, J. N.; Seneta, E. On quasi-stationary distribu-
tions in absorbing continuous-time finite Markov chains.
J. Appl. Probability 4 (1967) 192—-196.



Important early work on quasi-stationary
distributions

Mandl, Petr Sur le comportement asymptotique des
probabilités dans les ensembles des états d’'une chaine
de Markov homogene (Russian) Casopis P&st. Mat. 84
(1959) 140-1409.

Mandl, Petr On the asymptotic behaviour of probabili-
ties within groups of states of a homogeneous Markov
process (Czech) Casopis Pést. Mat. 85 (1960) 448—
456.

Ewens, W.J. The diffusion equation and a pseudo-distrib
ution in genetics. J. Roy. Statist. Soc., Ser B 25 (1963)
405—412.

Kingman, J.F.C. The exponential decay of Markov tran-
sition probabilities. Proc. London Math. Soc. 13
(1963) 337—358.

Ewens, W.J. The pseudo-transient distribution and its
uses in genetics. J. Appl. Probab. 1 (1964) 141-156.

Seneta, E. Quasi-stationary distributions and time-rever-
sion in genetics. (With discussion) J. Roy. Statist. Soc.
Ser. B 28 (1966) 253—-277.

Seneta, E. Quasi-stationary behaviour in the random
walk with continuous time. Austral. J. Statist. 8 (1966)
92—-98.



DISCRETE-TIME CHAINS

Setting: {X,,n=0,1,...}, a time-homogen-
eous Markov chain taking values in a countable
set S with transition probabilities

Let C be any irreducible and (for simplicity)
aperiodic class.

DVJ1: For i€ C, {p{™}1/" = p as n — oo.
The limit p does not depend on ¢ and it satisfies
0 < p<1. Moreover, p( n) < p"™ and indeed, for

1,7 € C, p()<M p", where M;; < co.

(If C is recurrent, angf’) = oo implies p = 1.
When C is transient, we can have p = 1, or,
p < 1, which is called geometric ergodicity.)

DVJ2: For any real r > 0, the series an(”) n
1,7 € C, converge or diverge together; in par-
ticular, they have the same radius of conver-
gence R, and R =1/p. And, all or none of the
sequences {pw) "1 tend to zero.



TRANSIENT CHAINS

The key to unlocking this *“quasi-stationarity”
IS to examine the behaviour of the transition
probabilities at the radius of convergence R.

Suppose that C is transient class which is ge-
ometrically ergodic (p < 1, R > 1). Although
pi”) — 0, it might be true that p{)R" — m;,

where m;; > 0. How does this help?

For i,5 € C,
Pr(X, = j|Xn € C, X = i)
_Pr(Xn=jlXo=1) _ P’
- Pr(Xn€C|Xo=1) Zkecpgg)
_ ppm mij

Skee PR CkeC Mik

provided that we can justify taking limit under
summation.



DVJ3: C is said to be R-transient or R-recur-
rent according as anz( )R’” converges or di-
verges. If C is R—recurrent, then it is said to
be R-positive or R-null according to whether
the limit of pg?’)R” is positive or zero.

DVJ4: If C is R-recurrent, then, for : € C, the
inequalities

> mz'pgl) < mj;p" > p%)%' < z;p"
e’ 1eC
have unique positive solutions {m;} and {z;}
and indeed they are eigenvectors:
> mzp( ") = mp" > p§?)wi = z;p".
1€C 1eC’
C is then R-positive recurrent if and only if
> ke MEpxE < 00, in which case
> keC TEMY
and, if > p.mg < oo, then

(n) pn _ - (n)pn _ .
n||_>moo Z P R Z n“—>moopik R" = z; Z my .
keC keC keC

p’L(j )Rn -



AND FINALLY

S-DVJ: If C is R-positive recurrent and the
left-eigenvector satisfies ) . m; < oo, then the
limiting conditional (or quasi-stationary) dist-
ribution exists: as n — oo,

Pr(X, = j|Xn € C, Xg = i) e

D _keC M

AND MUCH MORE

Other kinds of QSD, more general and more
precise statements, continuous-time chains, gen-
eral state spaces, numerical methods and in
particular truncation methods, MCMC, count-
less applications of QSDs: chemical kinetics,
population biology, ecology, epidemiology, re-
liability, telecommunications. A full bibliogra-
phy is maintained at my web site:

http://www.maths.uq.edu.au/ pkp/research.html



SIMILAR MARKOV CHAINS

New setting: (X, ¢t > 0), a time-homogen-
eous Markov chain in continuous time taking
values in a countable set S, with transition
function P = (p;;(t)), where

pii(t) = Pr(Xsq, =jlXs =14), i,j€S.

Assuming that p;;(0+) = §;; (standard), the
transitions rates are defined by ¢;; = p;;j(O—l—).
Set ¢; = —q;; and assume g; < oo (stable).

Definition: Two such chains X and X are said
to be similar if their transition functions, P
and P, satisfy ﬁz](t) = Cz’jpij(t)v 1,73 €S8,t>0,
for some collection of positive constants Cijr
1,7 €85.

10



Immediate consequences of the definition:
Since both chains are standard, c¢;; = 1 and
the transition rates must satisfy g;; = <545,
in particular, g; = q;. They share the same
irreducible classes and the same classification
of states.

Birth-death chains: Lenin et al.* proved
that for birth-death chains the “similarity con-
stants” must factorize as c;; = «;8;. (Note
that Cij = ﬁ]/ﬁz, since c¢;; = 1.)

Is this true more generally?

Definition: Let C be a subset of S. Two
chains are said to be strongly similar over C
if p;;(t) = p;;(t)B;/6;, 1,5 € C, t > 0, for some
collection of positive constants g;, j € C.

Proposition: If C' is recurrent, then ¢;; = 1.

(PFOOf: fz] = Cz]fz])

*Lenin, R., Parthasarathy, P., Scheinhardt, W. and
van Doorn, E. (2000) Families of birth-death pro-
cesses with similar time-dependent behaviour. J. Appl.
Probab. 37, 835—849.
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EXTENSION OF DJV THEORY

Kingman: If C is irreducible, then, for each
i,j € C —t~Llogp;i(t) — X (> 0), pi(t) <
Mwe , for some M;; < oo, et cetera.

Definition: C is said to be A-transient or \-
recurrent according as [5° pij(t)e)‘t dt converges
or diverges. If C is A-recurrent, then it is said
to be \-positive or A-null according to whether
the limit of p;;(t)eM is positive or zero.

Theorem: If C is A-recurrent, then, for z € C,
the inequalities

—\t —\t
S mpii(®) < e Mmy Y pux; <e
ieC ieC
have unique positive solutions {m;} and {z;}
and indeed they are eigenvectors:
—\t —\t
Y ompii(t) = e my Y pp(x; = e Ny
1eC 1eC
C is then M\-positive recurrent if and only if
> kco MEpTE < 00, in which case

a:z-mj

pij(t)e :
D_keC TEMy
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Suppose that P and P are similar. They share
the same A and the same *“)-classification”.

Theorem: If C is a \-positive recurrent class,
then P and P are strongly similar over C. We
may take B; = m,;/m;, where {m;} and {m;}
are the essentially unique A-invariant measures
(left eigenvectors) on C for P and for P, re-
spectively.

Proof: Let t — oo in ﬁij(t)eAt = Cijpij(t)e)‘t.
We get, in an obvious notation,

T;m; ~ ~
cj=bk——> BE= > omyxy /Y My,
Li Mt ieC ieC

and, since ¢; = 1, we have Ex;m; = x;m;.

Again: Are similar chains always strongly sim-
ilar?
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In the A-null recurrent case, it may still be pos-
sible to deduce the desired factorization, for,
although eMp;;(t) — 0, it may be possible to
find a k > O such that t"e*p;;(¢) tends to a
strictly positive limit. (Similar chains will have
the same k.)

Lemma: Assume that C is A-null recurrent
and suppose that there is a k > 0, which does
not depend on ¢ and j, such that t“eAtpij(t)
tends to a strictly positive limit T for all 7,5 €
C'. Then, there is a positive constant d such
that T = dx;m;, 1,7 € C', where {m]} and {ZC]}
are, respectively, the essentially unique A-invar-
iant measure and vector (left- and right-eigen-
vectors) on C for P.

Remark: Even in the A-transient case it might
still be possible to find a > 0 such that
theMp;;(t) tends to a positive limit, and for the
conclusions to the lemma to hold good. (Note
that, by the usual irreducibility arguments, &
will be the same for all + and 5 in any given
class.)
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