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DISCRETE-TIME CHAINS

Setting: {Xn, n = 0,1, . . . }, a time-homogen-
eous Markov chain taking values in a countable
set S with transition probabilities

p
(n)
ij = Pr(Xm+n = j|Xm = i), i, j ∈ S.

Let C be any irreducible and (for simplicity)
aperiodic class.

DVJ1: For i ∈ C, {p(n)
ii }

1/n → ρ as n → ∞.
The limit ρ does not depend on i and it satisfies
0 < ρ ≤ 1. Moreover, p(n)

ii ≤ ρ
n and indeed, for

i, j ∈ C, p(n)
ij ≤Mijρ

n, where Mij <∞.

(If C is recurrent,
∑
n p

(n)
ii = ∞ implies ρ = 1.

When C is transient, we can have ρ = 1, or,
ρ < 1, which is called geometric ergodicity.)

DVJ2: For any real r > 0, the series
∑
n p

(n)
ij rn,

i, j ∈ C, converge or diverge together; in par-
ticular, they have the same radius of conver-
gence R, and R = 1/ρ. And, all or none of the
sequences {p(n)

ij rn} tend to zero.
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TRANSIENT CHAINS

The key to unlocking this “quasi-stationarity”
is to examine the behaviour of the transition
probabilities at the radius of convergence R.

Suppose that C is transient class which is ge-
ometrically ergodic (ρ < 1, R > 1). Although
p

(n)
ij → 0, it might be true that p(n)

ij Rn → mij,
where mij > 0. How does this help?

For i, j ∈ C,

Pr(Xn = j|Xn ∈ C,X0 = i)

=
Pr(Xn = j|X0 = i)

Pr(Xn ∈ C|X0 = i)
=

p
(n)
ij∑

k∈C p
(n)
ik

=
p

(n)
ij Rn∑

k∈C p
(n)
ik Rn

→
mij∑
k∈Cmik

,

provided that we can justify taking limit under
summation.
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DVJ3: C is said to be R-transient or R-recur-
rent according as

∑
n p

(n)
ij Rn converges or di-

verges. If C is R-recurrent, then it is said to
be R-positive or R-null according to whether
the limit of p(n)

ij Rn is positive or zero.

DVJ4: If C is R-recurrent, then, for i ∈ C, the
inequalities∑

i∈C
mip

(n)
ij ≤ mjρ

n
∑
i∈C

p
(n)
ji xi ≤ xjρ

n

have unique positive solutions {mj} and {xj}
and indeed they are eigenvectors:∑

i∈C
mip

(n)
ij = mjρ

n
∑
i∈C

p
(n)
ji xi = xjρ

n.

C is then R-positive recurrent if and only if∑
k∈Cmkxk <∞, in which case

p
(n)
ij Rn →

ximj∑
k∈C xkmk

,

and, if
∑
kmk <∞, then

lim
n→∞

∑
k∈C

p
(n)
ik Rn =

∑
k∈C

lim
n→∞ p

(n)
ik Rn = xi

∑
k∈C

mk .
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AND FINALLY

S-DVJ: If C is R-positive recurrent and the
left-eigenvector satisfies

∑
kmk < ∞, then the

limiting conditional (or quasi-stationary) dist-
ribution exists: as n→∞,

Pr(Xn = j|Xn ∈ C,X0 = i)→
mj∑
k∈Cmk

.

... AND MUCH MORE

Other kinds of QSD, more general and more
precise statements, continuous-time chains, gen-
eral state spaces, numerical methods and in
particular truncation methods, MCMC, count-
less applications of QSDs: chemical kinetics,
population biology, ecology, epidemiology, re-
liability, telecommunications. A full bibliogra-
phy is maintained at my web site:

http://www.maths.uq.edu.au/˜pkp/research.html
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SIMILAR MARKOV CHAINS

New setting: (Xt, t ≥ 0), a time-homogen-

eous Markov chain in continuous time taking

values in a countable set S, with transition

function P = (pij(t)), where

pij(t) = Pr(Xs+t = j|Xs = i), i, j ∈ S.

Assuming that pij(0+) = δij (standard), the

transitions rates are defined by qij = p′ij(0+).

Set qi = −qii and assume qi <∞ (stable).

Definition: Two such chains X and X̃ are said

to be similar if their transition functions, P

and P̃ , satisfy p̃ij(t) = cijpij(t), i, j ∈ S, t > 0,

for some collection of positive constants cij,

i, j ∈ S.
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Immediate consequences of the definition:
Since both chains are standard, cii = 1 and
the transition rates must satisfy q̃ij = cijqij,
in particular, q̃i = qi. They share the same
irreducible classes and the same classification
of states.

Birth-death chains: Lenin et al.∗ proved
that for birth-death chains the “similarity con-
stants” must factorize as cij = αiβj. (Note
that cij = βj/βi, since cii = 1.)

Is this true more generally?

Definition: Let C be a subset of S. Two
chains are said to be strongly similar over C

if p̃ij(t) = pij(t)βj/βi, i, j ∈ C, t > 0, for some
collection of positive constants βj, j ∈ C.

Proposition: If C is recurrent, then cij = 1.

(Proof: f̃ij = cijfij.)

∗Lenin, R., Parthasarathy, P., Scheinhardt, W. and
van Doorn, E. (2000) Families of birth-death pro-
cesses with similar time-dependent behaviour. J. Appl.
Probab. 37, 835–849.
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EXTENSION OF DJV THEORY

Kingman: If C is irreducible, then, for each
i, j ∈ C, −t−1 log pij(t) → λ (≥ 0), pij(t) ≤
Mije

−λt, for some Mij <∞, et cetera.

Definition: C is said to be λ-transient or λ-
recurrent according as

∫∞
0 pij(t)e

λt dt converges
or diverges. If C is λ-recurrent, then it is said
to be λ-positive or λ-null according to whether
the limit of pij(t)e

λt is positive or zero.

Theorem: If C is λ-recurrent, then, for i ∈ C,
the inequalities∑
i∈C

mipij(t) ≤ e−λtmj

∑
i∈C

pji(t)xi ≤ e−λtxj

have unique positive solutions {mj} and {xj}
and indeed they are eigenvectors:∑
i∈C

mipij(t) = e−λtmj

∑
i∈C

pji(t)xi = e−λtxj.

C is then λ-positive recurrent if and only if∑
k∈Cmkxk <∞, in which case

pij(t)e
λt →

ximj∑
k∈C xkmk

.
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Suppose that P and P̃ are similar. They share

the same λ and the same “λ-classification”.

Theorem: If C is a λ-positive recurrent class,

then P and P̃ are strongly similar over C. We

may take βj = m̃j/mj, where {mj} and {m̃j}
are the essentially unique λ-invariant measures

(left eigenvectors) on C for P and for P̃ , re-

spectively.

Proof: Let t → ∞ in p̃ij(t)e
λt = cijpij(t)e

λt.

We get, in an obvious notation,

cij = E
x̃i
xi

m̃j

mj
, E =

∑
i∈C

mixi

/∑
i∈C

m̃ix̃i,

and, since cii = 1, we have Ex̃im̃i = ximi.

Again: Are similar chains always strongly sim-

ilar?
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In the λ-null recurrent case, it may still be pos-
sible to deduce the desired factorization, for,
although eλtpij(t) → 0, it may be possible to
find a κ > 0 such that tκeλtpij(t) tends to a
strictly positive limit. (Similar chains will have
the same κ.)

Lemma: Assume that C is λ-null recurrent
and suppose that there is a κ > 0, which does
not depend on i and j, such that tκeλtpij(t)
tends to a strictly positive limit πij for all i, j ∈
C. Then, there is a positive constant d such
that πij = dximi, i, j ∈ C, where {mj} and {xj}
are, respectively, the essentially unique λ-invar-
iant measure and vector (left- and right-eigen-
vectors) on C for P .

Remark: Even in the λ-transient case it might
still be possible to find a κ > 0 such that
tκeλtpij(t) tends to a positive limit, and for the
conclusions to the lemma to hold good. (Note
that, by the usual irreducibility arguments, κ
will be the same for all i and j in any given
class.)
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