High-density limits for metapopulations with no occupancy ceiling

Phil. Pollett

The University of Queensland

Workshop in celebration of Ron Doney's 80th birthday

University of Manchester, 26-28 July 2022

Liam Hodgkinson Department of Statistics UC Berkeley

 \Downarrow (soon)

School of Mathematics and Statistics University of Melbourne

$$\mathsf{P}_i(\mathbf{x}) = \mathbb{P}(X_{i,t+1} = 1 | \mathbf{X}_t = \mathbf{x}), \qquad i = 1, 2, \dots$$

$$P_i(\mathbf{x}) = \mathbb{P}(X_{i,t+1} = 1 | \mathbf{X}_t = \mathbf{x}), \quad i = 1, 2, \dots$$

It will be convenient to write

$$P_i(\mathbf{x}) = S_i(\mathbf{x})x_i + C_i(\mathbf{x})(1-x_i), \qquad \mathbf{x} \in \{0,1\}^{\mathbb{Z}_+},$$

where $S_i, C_i : \{0, 1\}^{\mathbb{Z}_+} \to [0, 1]; C_i(x) \text{ and } 1 - S_i(x) \text{ are the (configuration dependent)}$ "flip" probabilities.

$$P_i(\mathbf{x}) = \mathbb{P}(X_{i,t+1} = 1 | \mathbf{X}_t = \mathbf{x}), \quad i = 1, 2, \dots$$

It will be convenient to write

$$P_i(\mathbf{x}) = S_i(\mathbf{x})x_i + C_i(\mathbf{x})(1-x_i), \qquad \mathbf{x} \in \{0,1\}^{\mathbb{Z}_+},$$

where $S_i, C_i : \{0, 1\}^{\mathbb{Z}_+} \to [0, 1]; C_i(x)$ and $1 - S_i(x)$ are the (configuration dependent) "flip" probabilities.

Voter Model:
$$S_i(\mathbf{x}) = 1 - \sum_{j=1}^{\infty} p_{ij}(1 - x_j)$$
, $C_i(\mathbf{x}) = \sum_{j=1}^{\infty} p_{ij}x_j$ $(p_{ii} = 0)$.

$$P_i(\mathbf{x}) = \mathbb{P}(X_{i,t+1} = 1 | \mathbf{X}_t = \mathbf{x}), \quad i = 1, 2, \dots$$

It will be convenient to write

$$P_i(\mathbf{x}) = S_i(\mathbf{x})x_i + C_i(\mathbf{x})(1-x_i), \qquad \mathbf{x} \in \{0,1\}^{\mathbb{Z}_+},$$

where $S_i, C_i : \{0, 1\}^{\mathbb{Z}_+} \to [0, 1]; C_i(x) \text{ and } 1 - S_i(x) \text{ are the (configuration dependent)}$ "flip" probabilities.

Voter Model: $S_i(\mathbf{x}) = 1 - \sum_{j=1}^{\infty} p_{ij}(1 - x_j), \ C_i(\mathbf{x}) = \sum_{j=1}^{\infty} p_{ij}x_j \ (p_{ii} = 0).$ Domany-Kinzel PCA: $S_i(\mathbf{x}) = (q_2 - q_1)x_{i+1}, \ C_i(\mathbf{x}) = q_1x_{i+1}, \ q_1, q_2 \in [0, 1].$

A metapopulation model

The sites i = 1, 2, ... are habitat patches, and $X_{i,t}$ is 1 or 0 according to whether patch i is occupied or unoccupied at time t. $S_i(x) = s_i$ (patch i survival probability) is the same for all x, and

$$C_i(\mathbf{x}) = f\left(a_i\sum_{j=1}^{\infty}d_{ij}x_j\right),$$

where $f : [0, \infty) \rightarrow [0, 1]$ (called the *colonisation function*) satisfies f(0) = 0 (so there is total extinction at $x \equiv 0$), and is typically an increasing function, a_i is a weight that may be interpreted as the capacity, or area, of patch *i*, and d_{ij} is the migration potential from patch *j* to patch *i*. (Further assumptions will be added later.)

The sites i = 1, 2, ... are habitat patches, and $X_{i,t}$ is 1 or 0 according to whether patch i is occupied or unoccupied at time t. $S_i(x) = s_i$ (patch i survival probability) is the same for all x, and

$$C_i(\mathbf{x}) = f\left(a_i\sum_{j=1}^{\infty}d_{ij}x_j\right),$$

where $f : [0, \infty) \rightarrow [0, 1]$ (called the *colonisation function*) satisfies f(0) = 0 (so there is total extinction at $x \equiv 0$), and is typically an increasing function, a_i is a weight that may be interpreted as the capacity, or area, of patch *i*, and d_{ij} is the migration potential from patch *j* to patch *i*. (Further assumptions will be added later.)

This particular form is reminiscent of the *Hanski incidence function model*¹, but now there is *no fixed upper limit* on the number of patches that can be occupied.

¹McVinish, R. and Pollett, P.K. (2014) The limiting behaviour of Hanski's incidence function metapopulation model. *J. Appl. Probab.* 51, 297–316.

A famous example (Note: only known patches are shown)

Glanville fritillary butterfly (Melitaea cinxia) in the Åland Islands in Autumn 2005.

The sites i = 1, 2, ... are habitat patches, and $X_{i,t}$ is 1 or 0 according to whether patch i is occupied or unoccupied at time t. $S_i(x) = s_i$ (patch i survival probability) is the same for all x, and

$$C_i(\mathbf{x}) = f\left(a_i\sum_{j=1}^{\infty}d_{ij}x_j\right),$$

where $f : [0, \infty) \rightarrow [0, 1]$ (called the *colonisation function*) satisfies f(0) = 0 (so there is total extinction at $x \equiv 0$), and is typically an increasing function, a_i is a weight that may be interpreted as the capacity, or area, of patch *i*, and d_{ij} is the migration potential from patch *j* to patch *i*. (Further assumptions will be added later.)

This particular form is reminiscent of the *Hanski incidence function model*¹, but now there is *no fixed upper limit* on the number of patches that can be occupied.

¹McVinish, R. and Pollett, P.K. (2014) The limiting behaviour of Hanski's incidence function metapopulation model. *J. Appl. Probab.* 51, 297–316.

A simulation - patches located on the integer lattice \mathbb{Z}^2_+

A simulation - patches located on the integer lattice \mathbb{Z}^2_+ (t=0)

A simulation - patches located on the integer lattice \mathbb{Z}^2_+ (t=1)

A simulation - patches located on the integer lattice \mathbb{Z}^2_+ (t=2)

A simulation - patches located on the integer lattice \mathbb{Z}^2_+ (t=3)

A simulation - patches located on the integer lattice \mathbb{Z}_+^2 (t=4)

A simulation - patches located on the integer lattice \mathbb{Z}^2_+ (t=5)

Phil. Pollett (The University of Queensland)

A simulation - patches located on the integer lattice \mathbb{Z}^2_+ (t=10)

Phil. Pollett (The University of Queensland)

15/41

A simulation - patches located on the integer lattice \mathbb{Z}^2_+ (t=20)

A simulation - patches located on the integer lattice \mathbb{Z}^2_+ (t=50)

Returning to the general case

 $\mathbb{P}(X_{i,t+1} = 1 | X_t) = S_i(X_t)X_{i,t} + C_i(X_t)(1 - X_{i,t}), \quad i = 1, 2, \dots, t = 0, 1, \dots,$

we consider a deterministic analogue $p_t^2 = \{p_{i,t}\}_{i=1}^{\infty}$ that evolves according to

$$p_{i,t+1} = S_i(p_t)p_{i,t} + C_i(p_t)(1-p_{i,t}), \quad i = 1, 2, \ldots, t = 0, 1, \ldots$$

²Barbour, A.D., McVinish, R. and Pollett, P.K. (2015) Connecting deterministic and stochastic metapopulation models. J. Math. Biol. 71, 1481–1504.

(The domains of S_i and C_i have been extended to $[0,1]^{\mathbb{Z}_+}$.)

Returning to the general case

 $\mathbb{P}(X_{i,t+1} = 1 | X_t) = S_i(X_t)X_{i,t} + C_i(X_t)(1 - X_{i,t}), \quad i = 1, 2, \dots, t = 0, 1, \dots,$

we consider a deterministic analogue $p_t^2 = \{p_{i,t}\}_{i=1}^{\infty}$ that evolves according to

$$p_{i,t+1} = S_i(p_t)p_{i,t} + C_i(p_t)(1-p_{i,t}), \quad i = 1, 2, ..., t = 0, 1, ...$$

²Barbour, A.D., McVinish, R. and Pollett, P.K. (2015) Connecting deterministic and stochastic metapopulation models. J. Math. Biol. 71, 1481–1504.

(The domains of S_i and C_i have been extended to $[0,1]^{\mathbb{Z}_+}$.)

The closeness of X_t and p_t (in a weak sense) is established by coupling X_t with an *independent site approximation*² $W_t = \{W_{i,t}\}_{i=1}^{\infty}$ satisfying

$$\mathbb{P}(W_{i,t+1} = 1 | W_t) = S_i(p_t)W_{i,t} + C_i(p_t)(1 - W_{i,t}), \quad i = 1, 2, \dots, t = 0, 1, \dots$$

In particular, for any t, $W_{1,t}, W_{2,t}, \ldots$ are independent and satisfy $\mathbb{E}W_{i,t} = p_{i,t}$.

Two approximating models

Returning to the general case

 $\mathbb{P}(X_{i,t+1} = 1 | X_t) = S_i(X_t)X_{i,t} + C_i(X_t)(1 - X_{i,t}), \quad i = 1, 2, \dots, t = 0, 1, \dots,$

we consider a deterministic analogue $p_t^2 = \{p_{i,t}\}_{i=1}^{\infty}$ that evolves according to

$$p_{i,t+1} = S_i(p_t)p_{i,t} + C_i(p_t)(1-p_{i,t}), \quad i = 1, 2, ..., t = 0, 1, ...$$

²Barbour, A.D., McVinish, R. and Pollett, P.K. (2015) Connecting deterministic and stochastic metapopulation models. J. Math. Biol. 71, 1481–1504.

(The domains of S_i and C_i have been extended to $[0,1]^{\mathbb{Z}_+}$.)

The closeness of X_t and p_t (in a weak sense) is established by coupling X_t with an *independent site approximation*² $W_t = \{W_{i,t}\}_{i=1}^{\infty}$ satisfying

$$\mathbb{P}(W_{i,t+1} = 1 | W_t) = S_i(p_t)W_{i,t} + C_i(p_t)(1 - W_{i,t}), \quad i = 1, 2, \dots, t = 0, 1, \dots$$

In particular, for any t, $W_{1,t}, W_{2,t}, \ldots$ are independent and satisfy $\mathbb{E}W_{i,t} = p_{i,t}$.

To assess the quality of our approximation, we shall let³

$$\alpha = \sup_{j \in \mathbb{Z}_+} \sum_{i=1}^{\infty} \|\partial_j P_i\|_{\infty} \quad \beta = \sum_{i=1}^{\infty} \left(\sum_{j=1, j \neq i}^{\infty} \|\partial_j P_i\|_{\infty}^2 \right)^{1/2} \quad \gamma = \sum_{i,j=1}^{\infty} \|\partial_j^2 P_i\|_{\infty}$$

and assume these quantities are all finite. Here ∂_j and ∂_j^2 are the first and second partial derivative operators in the *j*-th coordinate.

³Hodgkinson, L., McVinish, R. and Pollett, P.K. (2020) Normal approximations for discrete-time occupancy processes. *Stochastic Process. Appl.* 130, 6414–6444.

To assess the quality of our approximation, we shall let³

$$\alpha = \sup_{j \in \mathbb{Z}_+} \sum_{i=1}^{\infty} \|\partial_j P_i\|_{\infty} \quad \beta = \sum_{i=1}^{\infty} \left(\sum_{j=1, j \neq i}^{\infty} \|\partial_j P_i\|_{\infty}^2 \right)^{1/2} \quad \gamma = \sum_{i,j=1}^{\infty} \|\partial_j^2 P_i\|_{\infty}$$

and assume these quantities are all finite. Here ∂_j and ∂_j^2 are the first and second partial derivative operators in the *j*-th coordinate.

Theorem 1 There is a constant $C \in (0, 2\sqrt{\pi}]$ such that, for any $w \in \ell^{\infty}$ and $t \ge 0$,

$$\mathbb{E}\left|\sum_{i=1}^{\infty}w_i(X_{i,t}-p_{i,t})\right| \leq C \|\boldsymbol{w}\|_{\infty}(\beta+\gamma)(1+2\alpha)^t + \left(\sum_{i=1}^{\infty}w_i^2p_{i,t}\right)^{1/2}.$$

³Hodgkinson, L., McVinish, R. and Pollett, P.K. (2020) Normal approximations for discrete-time occupancy processes. *Stochastic Process. Appl.* 130, 6414–6444.

We can use this result to obtain a deterministic limit for the weighted number of occupied sites of appropriate sequences of occupancy processes { $X_t^{(m)}$ }, indexed by m = 1, 2, ...

We can use this result to obtain a deterministic limit for the weighted number of occupied sites of appropriate sequences of occupancy processes { $X_t^{(m)}$ }, indexed by m = 1, 2, ...

Assume that $X_{i,0}^{(m)}$, i = 1, 2, ..., are independent Bernoulli random variables with $\mathbb{P}(X_{i,0}^{(m)} = 1) = r_i^{(m)}$, for a sequence $\mathbf{r}^{(m)} = \{r_i^{(m)}\}_{i=1}^{\infty}$ of probabilities with $\sum_i r_i^{(m)} < \infty$.

We can use this result to obtain a deterministic limit for the weighted number of occupied sites of appropriate sequences of occupancy processes { $X_t^{(m)}$ }, indexed by m = 1, 2, ...

Assume that $X_{i,0}^{(m)}$, i = 1, 2, ..., are independent Bernoulli random variables with $\mathbb{P}(X_{i,0}^{(m)} = 1) = r_i^{(m)}$, for a sequence $\mathbf{r}^{(m)} = \{r_i^{(m)}\}_{i=1}^{\infty}$ of probabilities with $\sum_i r_i^{(m)} < \infty$. Write $\langle x, y \rangle = \sum_{i=1}^{\infty} x_i y_i$, and suppose that

$$m^{-1}\mathbb{E}\langle oldsymbol{w},oldsymbol{X}_0^{(m)}
angle=m^{-1}\langle oldsymbol{w},oldsymbol{r}^{(m)}
angle
ightarrow x_0,\qquad ext{as }m
ightarrow\infty,$$

where x_0 depends on w. So, as m gets large, increasingly more sites are occupied.

We can use this result to obtain a deterministic limit for the weighted number of occupied sites of appropriate sequences of occupancy processes { $X_t^{(m)}$ }, indexed by m = 1, 2, ...

Assume that $X_{i,0}^{(m)}$, i = 1, 2, ..., are independent Bernoulli random variables with $\mathbb{P}(X_{i,0}^{(m)} = 1) = r_i^{(m)}$, for a sequence $\mathbf{r}^{(m)} = \{r_i^{(m)}\}_{i=1}^{\infty}$ of probabilities with $\sum_i r_i^{(m)} < \infty$. Write $\langle x, y \rangle = \sum_{i=1}^{\infty} x_i y_i$, and suppose that

$$m^{-1}\mathbb{E}\langle oldsymbol{w},oldsymbol{X}_0^{(m)}
angle=m^{-1}\langle oldsymbol{w},oldsymbol{r}^{(m)}
angle
ightarrow x_0,\qquad ext{as }m
ightarrow\infty,$$

where x_0 depends on \boldsymbol{w} . So, as m gets large, increasingly more sites are occupied. Since it is also true that $\operatorname{Var}(m^{-1}\langle \boldsymbol{w}, \boldsymbol{X}_0^{(m)}\rangle) \to 0$, this entails $m^{-1}\langle \boldsymbol{w}, \boldsymbol{X}_0^{(m)}\rangle \xrightarrow{\mathbb{P}} x_0$.

We can use this result to obtain a deterministic limit for the weighted number of occupied sites of appropriate sequences of occupancy processes { $X_t^{(m)}$ }, indexed by m = 1, 2, ...

Assume that $X_{i,0}^{(m)}$, i = 1, 2, ..., are independent Bernoulli random variables with $\mathbb{P}(X_{i,0}^{(m)} = 1) = r_i^{(m)}$, for a sequence $\mathbf{r}^{(m)} = \{r_i^{(m)}\}_{i=1}^{\infty}$ of probabilities with $\sum_i r_i^{(m)} < \infty$. Write $\langle x, y \rangle = \sum_{i=1}^{\infty} x_i y_i$, and suppose that

$$m^{-1}\mathbb{E}\langle oldsymbol{w},oldsymbol{X}_0^{(m)}
angle=m^{-1}\langle oldsymbol{w},oldsymbol{r}^{(m)}
angle
ightarrow x_0,\qquad ext{as }m
ightarrow\infty,$$

where x_0 depends on \boldsymbol{w} . So, as m gets large, increasingly more sites are occupied. Since it is also true that $\operatorname{Var}(m^{-1}\langle \boldsymbol{w}, \boldsymbol{X}_0^{(m)}\rangle) \to 0$, this entails $m^{-1}\langle \boldsymbol{w}, \boldsymbol{X}_0^{(m)}\rangle \xrightarrow{\mathbb{P}} x_0$.

But the same is true also for $t \ge 0$; by way of Theorem 1 we can prove:

Theorem 2 Suppose that, for each $t \ge 0$, there is a function $x_t : \ell^{\infty} \to \mathbb{R}$ such that $m^{-1} \langle \boldsymbol{w}, \boldsymbol{p}_t^{(m)} \rangle \to x_t$ for all $t \ge 0$ and $\boldsymbol{w} \in \ell^{\infty}$. If $\{\alpha_m\}$ is bounded, and $m^{-1}(\beta_m + \gamma_m) \to 0$ as $m \to \infty$, then $m^{-1} \langle \boldsymbol{w}, \boldsymbol{X}_t^{(m)} \rangle \stackrel{\mathbb{P}}{\to} x_t$ for all $t \ge 0$.

In our metapopulation model

$$P_i(\mathbf{x}) := s_i x_i + f\left(a_i \sum_j d_{ij} x_j\right) (1 - x_i), \qquad \mathbf{x} \in [0, 1]^{\mathbb{Z}_+}.$$

Recall that s_i is the patch *i* survival probability, a_i is the patch weight, d_{ij} is the migration potential from patch *j* to patch *i*, and $f : [0, \infty) \rightarrow [0, 1]$, the colonisation function, satisfies f(0) = 0.

In our metapopulation model

$$P_i(\mathbf{x}) := s_i x_i + f\left(a_i \sum_j d_{ij} x_j\right) (1 - x_i), \qquad \mathbf{x} \in [0, 1]^{\mathbb{Z}_+}.$$

Recall that s_i is the patch *i* survival probability, a_i is the patch weight, d_{ij} is the migration potential from patch *j* to patch *i*, and $f : [0, \infty) \rightarrow [0, 1]$, the colonisation function, satisfies f(0) = 0.

Now assume that $\sum_i a_i < +\infty$ (the total weight of all patches is finite), and suppose that $d_{ij} = D(z_i, z_j) := \kappa(||z_i - z_j||)$, for patches located at points $\{z_i\}$ in \mathbb{R}^d , where κ is a smooth, non-negative, monotone decreasing function (typically $\kappa(x) = e^{-\psi x}$, or $\kappa(x) = e^{-\psi x^2}$, $\psi > 0$). These assumptions are enough to ensure that α, β, γ are all finite.

We shall suppose that the patch locations are spaced according to some measure σ . In particular, for any bounded continuous function g,

$$rac{1}{m^d}\sum_{i=1}^\infty g(m^{-1}z_i) o \int_{\mathbb{R}^d} g(z)\sigma(\mathrm{d} z), \qquad ext{as } m o \infty.$$

If z_i are spaced on a regular lattice, then σ is *d*-dimensional Lebesgue measure.

We shall suppose that the patch locations are spaced according to some measure σ . In particular, for any bounded continuous function g,

$$rac{1}{m^d}\sum_{i=1}^\infty g(m^{-1}z_i) o \int_{\mathbb{R}^d} g(z)\sigma(\mathrm{d} z), \qquad ext{as } m o \infty.$$

If z_i are spaced on a regular lattice, then σ is *d*-dimensional Lebesgue measure.

Suppose that there is a sequence of models $\{X_t^{(m)}\}_{m=1}^{\infty}$ with parameters $s_i^{(m)}, a_i^{(m)}, d_{ij}^{(m)}$, and the same colonisation function f, such that

$$\mathbf{s}_i^{(m)} = \mathbf{s}\left(m^{-1}z_i\right), \quad \mathbf{a}_i^{(m)} = \mathbf{a}\left(m^{-1}z_i\right), \quad \mathbf{d}_{ij}^{(m)} = m^{-d}\kappa\left(m^{-1}\|z_i - z_j\|\right),$$

for smooth functions $\kappa : \mathbb{R}_+ \to \mathbb{R}_+$, $a : \mathbb{R}^d \to \mathbb{R}_+$, and $s : \mathbb{R}^d \to [0, 1]$.

In this way, the patch locations are effectively being drawn together as $m \to \infty$.

The metapopulation model - a high density limit

To cut a long story short, we use the earlier result,

$$\mathbb{E}\left|\sum_{i=1}^{\infty}w_i(X_{i,t}-p_{i,t})\right| \leqslant C \|\boldsymbol{w}\|_{\infty}(\beta+\gamma)(1+2\alpha)^t + \left(\sum_{i=1}^{\infty}w_i^2p_{i,t}\right)^{1/2}$$

to compare the finite measure $\pi_t^{(m)}$ defined by

$$\pi_t^{(m)}(B) = m^{-d} \sum_{i=1}^{\infty} p_{i,t}^{(m)} \mathbb{1}\{m^{-1}z_i \in B\}, \qquad B \in \mathcal{B}(\mathbb{R}^d),$$

with the random measure $\mu_t^{(m)}$ defined by

$$\mu_t^{(m)}(B) = m^{-d} \sum_{i=1}^{\infty} X_{i,t}^{(m)} \mathbb{1}\{m^{-1}z_i \in B\}, \qquad B \in \mathcal{B}(\mathbb{R}^d).$$

The metapopulation model - a high density limit

To cut a long story short, we use the earlier result,

$$\mathbb{E}\left|\sum_{i=1}^{\infty} w_i(X_{i,t}-p_{i,t})\right| \leqslant C \|\boldsymbol{w}\|_{\infty} (\beta+\gamma)(1+2\alpha)^t + \left(\sum_{i=1}^{\infty} w_i^2 p_{i,t}\right)^{1/2},$$

to compare the finite measure $\pi_t^{(m)}$ defined by

$$\int g(z)\pi_t^{(m)}(\mathrm{d} z) = m^{-d}\sum_{i=1}^{\infty} p_{i,t}^{(m)}g(m^{-1}z_i),$$

with the random measure $\mu_t^{(m)}$ defined by

$$\int g(z) \mu_t^{(m)}(\mathrm{d} z) = m^{-d} \sum_{i=1}^{\infty} X_{i,t}^{(m)} g(m^{-1} z_i).$$

The metapopulation model - a high density limit

To cut a long story short, we use the earlier result,

$$\mathbb{E}\left|\sum_{i=1}^{\infty}w_i(X_{i,t}-p_{i,t})\right| \leqslant C \|\boldsymbol{w}\|_{\infty}(\beta+\gamma)(1+2\alpha)^t + \left(\sum_{i=1}^{\infty}w_i^2p_{i,t}\right)^{1/2}$$

to compare the finite measure $\pi_t^{(m)}$ defined by

$$\int g(z)\pi_t^{(m)}(\mathrm{d} z) = m^{-d}\sum_{i=1}^{\infty} p_{i,t}^{(m)}g(m^{-1}z_i),$$

with the random measure $\mu_t^{(m)}$ defined by

$$\int g(z)\mu_t^{(m)}(\mathrm{d} z) = m^{-d} \sum_{i=1}^{\infty} X_{i,t}^{(m)} g(m^{-1} z_i).$$

We prove that, as $m \to \infty$, $\int g(z)\mu_t^{(m)}(dz) \to \int g(z)p_t(z)\sigma(dz)$, for some function p_t . In particular, the functions p_t , t = 0, 1, ..., satisfy the recursion

$$p_{t+1}(z) = s(z)p_t(z) + (1-p_t(z))f\left(a(z)\int\kappa(\|z-x\|)p_t(x)\sigma(\mathrm{d} z)
ight), \quad z\in\mathbb{R}^d.$$

Nice interpretation: if a patch is located at z, $p_t(z)$ is the chance it is occupied.

Details

d = 2

Colonisation function: $f(x) = 1 - \exp(-\alpha x)$ with $\alpha = 0.01$. Survival function: $s(z) = \exp(-\phi ||z||)$ with $\phi = 0.25$. Patch weight function: $a(z) = \exp(-\theta ||z||)$ with $\theta = 0.25$. Easy of movement function: $d(x, z) = b \exp(-\psi ||x - z||)$ with b = 25 and $\psi = 0.4$. Scaling: m = 8

$$s_{i}^{(m)} = s\left(m^{-1}z_{i}\right), \quad a_{i}^{(m)} = a\left(m^{-1}z_{i}\right), \quad d_{ij}^{(m)} = m^{-2}\kappa\left(m^{-1}||z_{i}-z_{j}||\right)$$

Initially configuration: 70 percent of patches are occupied in $\{1, 2, ..., 10\}^2$.

The earlier simulation - patches located on the integer lattice \mathbb{Z}^2_+ (t=50)

Phil. Pollett (The University of Queensland)

28 / 41

Occupancy probability heatmap $p_t(z)$ (t = 0)

Occupancy probability heatmap $p_t(z)$ (t = 1)

Occupancy probability heatmap $p_t(z)$ (t = 2)

Occupancy probability heatmap $p_t(z)$ (t = 3)

Phil. Pollett (The University of Queensland)

Occupancy probability heatmap $p_t(z)$ (t = 4)

Phil. Pollett (The University of Queensland)

Occupancy probability heatmap $p_t(z)$ (t = 5)

Occupancy probability heatmap $p_t(z)$ (t = 6)

Phil. Pollett (The University of Queensland)

Occupancy probability heatmap $p_t(z)$ (t = 7)

Occupancy probability heatmap $p_t(z)$ (t = 8)

Phil. Pollett (The University of Queensland)

Occupancy probability heatmap $p_t(z)$ (t = 9)

Occupancy probability heatmap $p_t(z)$ (t = 10)

Phil. Pollett (The University of Queensland)

Occupancy probability heatmap $p_t(z)$ (t = 50)

Phil. Pollett (The University of Queensland)

A simulation - patches located on the integer lattice \mathbb{Z}^2_+ (t=50)

Phil. Pollett (The University of Queensland)

High-density limits for metapopulations

41 / 41