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The basic model

An infinite occupancy process X t = (Xi,t)
∞
i=1 is a (time-homogeneous) Markov chain on

{0, 1}Z+ with the property that, conditional on X t , the occupancies X1,t+1,X2,t+1, . . . , at
time t + 1, are mutually independent. In particular, the dynamics are determined by the
collection of functions

Pi (x) = P(Xi,t+1 = 1|X t = x), i = 1, 2, . . .

It will be convenient to write

Pi (x) = Si (x)xi + Ci (x)(1− xi ), x ∈ {0, 1}Z+ ,

where Si ,Ci : {0, 1}Z+ → [0, 1]; Ci (x) and 1− Si (x) are the (configuration dependent)
“flip” probabilities.

Voter Model : Si (x) = 1−
∑∞

j=1 pij(1− xj), Ci (x) =
∑∞

j=1 pijxj (pii = 0).

Domany-Kinzel PCA: Si (x) = (q2 − q1)xi+1, Ci (x) = q1xi+1, q1, q2 ∈ [0, 1].
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A metapopulation model

The sites i = 1, 2, . . . are habitat patches, and Xi,t is 1 or 0 according to whether patch i
is occupied or unoccupied at time t. Si (x) = si (patch i survival probability) is the same
for all x , and

Ci (x) = f

(
ai

∞∑
j=1

dijxj

)
,

where f : [0,∞)→ [0, 1] (called the colonisation function) satisfies f (0) = 0 (so there is
total extinction at x ≡ 0), and is typically an increasing function, ai is a weight that may
be interpreted as the capacity, or area, of patch i , and dij is the migration potential from
patch j to patch i . (Further assumptions will be added later.)

This particular form is reminiscent of the Hanski incidence function model 1, but now
there is no fixed upper limit on the number of patches that can be occupied.

1McVinish, R. and Pollett, P.K. (2014) The limiting behaviour of Hanski’s incidence function

metapopulation model. J. Appl. Probab. 51, 297–316.
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A famous example (Note: only known patches are shown)

Glanville fritillary butterfly (Melitaea cinxia) in the Åland Islands in Autumn 2005.
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A simulation - patches located on the integer lattice Z2
+
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A simulation - patches located on the integer lattice Z2
+ (t = 0)
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A simulation - patches located on the integer lattice Z2
+ (t = 1)
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A simulation - patches located on the integer lattice Z2
+ (t = 2)
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A simulation - patches located on the integer lattice Z2
+ (t = 3)
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A simulation - patches located on the integer lattice Z2
+ (t = 4)
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A simulation - patches located on the integer lattice Z2
+ (t = 5)
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A simulation - patches located on the integer lattice Z2
+ (t = 10)
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A simulation - patches located on the integer lattice Z2
+ (t = 20)
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A simulation - patches located on the integer lattice Z2
+ (t = 50)
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Two approximating models

Returning to the general case

P(Xi,t+1 = 1|X t) = Si (X t)Xi,t + Ci (X t)(1− Xi,t), i = 1, 2, . . . , t = 0, 1, . . . ,

we consider a deterministic analogue 2 pt = {pi,t}∞i=1 that evolves according to

pi,t+1 = Si (pt)pi,t + Ci (pt)(1− pi,t), i = 1, 2, . . . , t = 0, 1, . . .

2Barbour, A.D., McVinish, R. and Pollett, P.K. (2015) Connecting deterministic and stochastic

metapopulation models. J. Math. Biol. 71, 1481–1504.

(The domains of Si and Ci have been extended to [0, 1]Z+ .)

The closeness of X t and pt (in a weak sense) is established by coupling X t with an
independent site approximation 2 W t = {Wi,t}∞i=1 satisfying

P(Wi,t+1 = 1|W t) = Si (pt)Wi,t + Ci (pt)(1−Wi,t), i = 1, 2, . . . , t = 0, 1, . . .

In particular, for any t, W1,t ,W2,t , . . . are independent and satisfy EWi,t = pi,t .
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The main result

To assess the quality of our approximation, we shall let 3

α = sup
j∈Z+

∞∑
i=1

‖∂jPi‖∞ β =
∞∑
i=1

 ∞∑
j=1, j 6=i

‖∂jPi‖2
∞

1/2

γ =
∞∑

i,j=1

‖∂2
j Pi‖∞

and assume these quantities are all finite. Here ∂j and ∂2
j are the first and second partial

derivative operators in the j-th coordinate.

Theorem 1 There is a constant C ∈ (0, 2
√
π ] such that, for any w ∈ `∞ and t > 0,

E

∣∣∣∣∣
∞∑
i=1

wi (Xi,t − pi,t)

∣∣∣∣∣ 6 C‖w‖∞(β + γ)(1 + 2α)t +

(
∞∑
i=1

w 2
i pi,t

)1/2

.

3Hodgkinson, L., McVinish, R. and Pollett, P.K. (2020) Normal approximations for discrete-time

occupancy processes. Stochastic Process. Appl. 130, 6414–6444.
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A density limit

We can use this result to obtain a deterministic limit for the weighted number of occupied
sites of appropriate sequences of occupancy processes {X (m)

t }, indexed by m = 1, 2, . . . .

Assume that X
(m)
i,0 , i = 1, 2, . . . , are independent Bernoulli random variables with

P(X
(m)
i,0 = 1) = r

(m)
i , for a sequence r (m) = {r (m)

i }
∞
i=1 of probabilities with

∑
i r

(m)
i <∞.

Write 〈x , y〉 =
∑∞

i=1 xiyi , and suppose that

m−1E〈w ,X (m)
0 〉 = m−1〈w , r (m)〉 → x0, as m→∞,

where x0 depends on w . So, as m gets large, increasingly more sites are occupied . Since

it is also true that Var (m−1〈w ,X (m)
0 〉)→ 0, this entails m−1〈w ,X (m)

0 〉
P→ x0.

But the same is true also for t > 0; by way of Theorem 1 we can prove:

Theorem 2 Suppose that, for each t > 0, there is a function xt : `∞ → R such that
m−1〈w , p(m)

t 〉 → xt for all t > 0 and w ∈ `∞. If {αm} is bounded, and

m−1(βm + γm)→ 0 as m→∞, then m−1〈w ,X (m)
t 〉

P→ xt for all t > 0.
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The metapopulation model

In our metapopulation model

Pi (x) := sixi + f

(
ai
∑
j

dijxj

)
(1− xi ), x ∈ [0, 1]Z+ .

Recall that si is the patch i survival probability, ai is the patch weight, dij is the
migration potential from patch j to patch i , and f : [0,∞)→ [0, 1], the colonisation
function, satisfies f (0) = 0.

Now assume that
∑

i ai < +∞ (the total weight of all patches is finite), and suppose
that dij = D(zi , zj) := κ(‖zi − zj‖), for patches located at points {zi} in Rd , where κ is a
smooth, non-negative, monotone decreasing function (typically κ(x) = e−ψx , or

κ(x) = e−ψx2

, ψ > 0). These assumptions are enough to ensure that α, β, γ are all finite.
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smooth, non-negative, monotone decreasing function (typically κ(x) = e−ψx , or

κ(x) = e−ψx2

, ψ > 0). These assumptions are enough to ensure that α, β, γ are all finite.
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The metapopulation model - a high density limit

We shall suppose that the patch locations are spaced according to some measure σ. In
particular, for any bounded continuous function g ,

1

md

∞∑
i=1

g(m−1zi )→
∫
Rd

g(z)σ(dz), as m→∞.

If zi are spaced on a regular lattice, then σ is d-dimensional Lebesgue measure.

Suppose that there is a sequence of models {X (m)
t }∞m=1 with parameters s

(m)
i , a

(m)
i , d

(m)
ij ,

and the same colonisation function f , such that

s
(m)
i = s

(
m−1zi

)
, a

(m)
i = a

(
m−1zi

)
, d

(m)
ij = m−dκ

(
m−1‖zi − zj‖

)
,

for smooth functions κ : R+ → R+, a : Rd → R+, and s : Rd → [0, 1].

In this way, the patch locations are effectively being drawn together as m→∞.
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The metapopulation model - a high density limit

To cut a long story short, we use the earlier result,

E
∣∣∑∞

i=1 wi (Xi,t − pi,t)
∣∣ 6 C‖w‖∞(β + γ)(1 + 2α)t +

(∑∞
i=1 w

2
i pi,t

)1/2
,

to compare the finite measure π
(m)
t defined by

π
(m)
t (B) = m−d ∑∞

i=1 p
(m)
i,t 1{m

−1zi ∈ B}, B ∈ B(Rd),

with the random measure µ
(m)
t defined by

µ
(m)
t (B) = m−d ∑∞

i=1 X
(m)
i,t 1{m

−1zi ∈ B}, B ∈ B(Rd).
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The metapopulation model - a high density limit

To cut a long story short, we use the earlier result,

E
∣∣∑∞

i=1 wi (Xi,t − pi,t)
∣∣ 6 C‖w‖∞(β + γ)(1 + 2α)t +

(∑∞
i=1 w

2
i pi,t

)1/2
,

to compare the finite measure π
(m)
t defined by∫

g(z)π
(m)
t (dz) = m−d ∑∞

i=1 p
(m)
i,t g(m−1zi ),

with the random measure µ
(m)
t defined by∫

g(z)µ
(m)
t (dz) = m−d ∑∞

i=1 X
(m)
i,t g(m−1zi ).

We prove that, as m→∞,
∫
g(z)µ

(m)
t (dz)→

∫
g(z)pt(z)σ(dz), for some function pt .

In particular, the functions pt , t = 0, 1, . . . , satisfy the recursion

pt+1(z) = s(z)pt(z) + (1− pt(z))f

(
a(z)

∫
κ(‖z − x‖)pt(x)σ(dz)

)
, z ∈ Rd .

Nice interpretation: if a patch is located at z , pt(z) is the chance it is occupied.
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The earlier simulation - patches located on the integer lattice Z2
+

Details

d = 2

Colonisation function: f (x) = 1− exp(−αx) with α = 0.01.

Survival function: s(z) = exp(−φ‖z‖) with φ = 0.25.

Patch weight function: a(z) = exp(−θ‖z‖) with θ = 0.25.

Easy of movement function: d(x , z) = b exp(−ψ‖x − z‖) with b = 25 and ψ = 0.4.

Scaling: m = 8

s
(m)
i = s

(
m−1zi

)
, a

(m)
i = a

(
m−1zi

)
, d

(m)
ij = m−2κ

(
m−1‖zi − zj‖

)
Initially configuration: 70 percent of patches are occupied in {1, 2, . . . , 10}2.
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The earlier simulation - patches located on the integer lattice Z2
+ (t = 50)
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Occupancy probability heatmap pt(z) (t = 0)
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Occupancy probability heatmap pt(z) (t = 1)
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Occupancy probability heatmap pt(z) (t = 2)
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Occupancy probability heatmap pt(z) (t = 3)
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Occupancy probability heatmap pt(z) (t = 4)
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Occupancy probability heatmap pt(z) (t = 5)
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Occupancy probability heatmap pt(z) (t = 6)
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Occupancy probability heatmap pt(z) (t = 7)
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Occupancy probability heatmap pt(z) (t = 8)
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Occupancy probability heatmap pt(z) (t = 9)
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Occupancy probability heatmap pt(z) (t = 10)
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Occupancy probability heatmap pt(z) (t = 50)
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A simulation - patches located on the integer lattice Z2
+ (t = 50)
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