Where are the bottlenecks?

Phil. Pollett

The University of Queensland

European Conference on Queueing Theory

July 2016
The setting

A closed network:
- Fixed number of nodes J
- N items circulating - random routing
- $\phi_j(n)$ is the service effort at node j when n items are present
- The usual Markovian/irreducibility assumptions are in force
The setting

A closed network:
- Fixed number of nodes J
- N items circulating - random routing
- $\phi_j(n)$ is the service effort at node j when n items are present
- The usual Markovian/irreducibility assumptions are in force

Aim:
- To identify regions of congestion (bottlenecks) from the parameters of the model.
Common sense:

The nodes with the biggest traffic intensity will be the most congested.

A formal definition:

If n_j is the (steady state) number of items at node j, then this node is a bottleneck if, for all $m \geq 0$, $\Pr(n_j \geq m) \to 1$ as $N \to \infty$.
Bottlenecks

Common sense:

The nodes with the biggest traffic intensity will be the most congested.

A formal definition:

If n_j is the (steady state) number of items at node j, then this node is a bottleneck if, for all $m \geq 0$, $\Pr(n_j \geq m) \to 1$ as $N \to \infty$.
All nodes are random delay systems (infinite-server queues) \((\phi_j(n) = a_jn)\):

In the steady state \(n_j\) has a binomial \(B(N, \alpha_j)\) distribution, where \(\alpha_j (\leq 1)\) is proportional to the arrival rate at node \(j\) divided the (per-capita) service rate. Clearly \(\Pr(n_j = n) \to 0\) for each \(n\) as \(N \to \infty\), and so all nodes are bottlenecks.
Simple examples

All nodes are random delay systems (infinite-server queues) \((\phi_j(n) = a_j n) \):

In the steady state \(n_j \) has a binomial \(B(N, \alpha_j) \) distribution, where \(\alpha_j \) \((< 1) \) is proportional to the arrival rate at node \(j \) divided the (per-capita) service rate. Clearly \(\Pr(n_j = n) \rightarrow 0 \) for each \(n \) as \(N \rightarrow \infty \), and so *all nodes are bottlenecks.*

All nodes are single-server queues \((\phi_j(n) = a_j, n \geq 1) \):

The steady state distribution of \(n_j \) cannot be written down explicitly, but one can show that if there is a node \(j \) whose traffic intensity is *strictly greater* than the others, it is the unique bottleneck.
Simple examples

All nodes are random delay systems (infinite-server queues) \((\phi_j(n) = a_j n)\):

In the steady state \(n_j\) has a binomial \(B(N, \alpha_j)\) distribution, where \(\alpha_j (< 1)\) is proportional to the arrival rate at node \(j\) divided the (per-capita) service rate. Clearly \(\Pr(n_j = n) \to 0\) for each \(n\) as \(N \to \infty\), and so all nodes are bottlenecks.

All nodes are single-server queues \((\phi_j(n) = a_j, n \geq 1)\):

The steady state distribution of \(n_j\) cannot be written down explicitly, but one can show that if there is a node \(j\) whose traffic intensity is strictly greater than the others, it is the unique bottleneck.

Moreover, for each node \(k\) in the remainder of the network, the distribution of \(n_k\) approaches a geometric distribution in the limit as \(N \to \infty\), and \((n_k, k \neq j)\) are asymptotically independent.
Three single-serve nodes: $N = 100$, $\phi_1(n) = 3$, $\phi_2(n) = 2$, $\phi_3(n) = 1$
Three ∞-server nodes: $N = 100$, $\phi_1(n) = 3n$, $\phi_2(n) = 2n$, $\phi_3(n) = n$
Three ∞-server nodes: $N = 1000$, $\phi_1(n) = 3n$, $\phi_2(n) = 2n$, $\phi_3(n) = n$
Markovian networks

The steady-state joint distribution π of the numbers of items $n = (n_1, n_2, \ldots, n_J)$ at the various nodes has the \textit{product form}

$$\pi(n) = B_N \prod_{j=1}^{J} \frac{\alpha_j^{n_j}}{\prod_{r=1}^{n_j} \phi_j(r)}, \quad n \in S,$$

where S is the finite subset of \mathbb{Z}_+^J with $\sum_j n_j = N$ and B_N is a normalizing constant chosen so that π sums to 1 over S.

Here

- α_j is proportional to the \textit{service requirement} (in items per minute) coming into node j (this will actually be \textit{equal to} $\alpha_j B_N / B_{N-1}$). We will suppose (wlog) that $\sum_j \alpha_j = 1$.

- $\phi_j(n)$ is the \textit{service effort} at node j (in items per minute) when there are n items present. We will assume that $\phi_j(0) = 0$ and $\phi_j(n) > 0$ whenever $n \geq 1$.

For example, node j is an s_j-server queue if $\phi_j(n) = a_j \min\{n, s_j\}$.
Generating functions

Our primary tool:

Define *generating functions* $\Phi_1, \Phi_2, \ldots, \Phi_J$ by

$$
\Phi_j(z) = 1 + \sum_{n=1}^{\infty} \frac{\alpha^n_j}{\prod_{r=1}^{n} \phi_j(r)} z^n.
$$

Various quantities of interest can be expressed in terms of *products* of these generating functions.
Generating functions

Our primary tool:

Define generating functions $\Phi_1, \Phi_2, \ldots, \Phi_J$ by

$$\Phi_j(z) = 1 + \sum_{n=1}^{\infty} \frac{\alpha_j^n}{\prod_{r=1}^{n} \phi_j(r)} z^n.$$

Various quantities of interest can be expressed in terms of products of these generating functions.

For example, $B_N^{-1} = \langle \prod_{j=1}^{J} \Phi_j \rangle_N$, where $\langle \cdot \rangle_n$ takes the n^{th} coefficient of a power series.
Generating functions

Our primary tool:

Define *generating functions* \(\Phi_1, \Phi_2, \ldots, \Phi_J \) by

\[
\Phi_j(z) = 1 + \sum_{n=1}^{\infty} \frac{\alpha_j^n}{\prod_{r=1}^{n} \phi_j(r)} z^n.
\]

Various quantities of interest can be expressed in terms of *products* of these generating functions.

For example, \(B^{-1}_N = \langle \prod_{j=1}^{J} \Phi_j \rangle_N \), where \(\langle \cdot \rangle_n \) takes the \(n \)th coefficient of a power series.

Also, the **marginal distribution** of \(n_j \) can be evaluated as

\[
\pi_j^{(N)}(n) = B_N \langle \Phi_j \rangle_n \langle \prod_{k \neq j} \Phi_k \rangle_{N-n}, \quad n = 0, 1, \ldots, N.
\]
Single-server nodes

Suppose that node j is a single-server queue with $\phi_j(n) = 1$ for $n \geq 1$. Then, $\langle \Phi_j \rangle_n = \alpha_j^n$ and so $\langle \Phi_j \rangle_{n+m} = \alpha_j^m \langle \Phi_j \rangle_n$. Summing

$$\pi_j^{(N)}(n) = B_N \langle \Phi_j \rangle_n \langle \prod_{k \neq j} \Phi_k \rangle_{N-n}$$

over n, and recalling that $B_{N-1} = \langle \prod_{j=1}^J \Phi_j \rangle_N$, gives $Pr(n_j \geq m) = \alpha_j^m B_N / B_{N-m}$.

Suppose that $\alpha_1 \leq \alpha_2 \leq \cdots \leq \alpha_{J-1} < \alpha_J$, so that node J has maximal traffic intensity.

If we can prove that $B_{N-1}/B_N \to \alpha_j$ as $N \to \infty$, then $Pr(n_j \geq m) \to 1$ (node J is a bottleneck) and $Pr(n_j \geq m) \to (\alpha_j/\alpha_J)^m < 1$ for $j < J$ (the others are not).
Why does $B_{N-1}/B_N \to \alpha_j$?

Define Θ_i to be the product $\Phi_1 \cdots \Phi_i$, where now $\Phi_j(z) = 1/(1 - \alpha_jz)$. Clearly Φ_j has radius of convergence (RC) $\rho_j = 1/\alpha_j$; in particular, $\Theta_1 (= \Phi_1)$ has RC $1/\alpha_1$.

Claim. The product Θ_i has RC $1/\alpha_i$ for all i, so that

$$\frac{B_N}{B_{N-1}} = \frac{\langle \Theta_J \rangle_{N-1}}{\langle \Theta_J \rangle_N} \to \frac{1}{\alpha_J}, \text{ as } N \to \infty.$$

Proof. Suppose Θ_k has RC $1/\alpha_k$ and consider

$$\langle \Theta_{k+1} \rangle_m = \sum_{n=0}^{m} \alpha_{k+1}^{m-n} \langle \Theta_k \rangle_n = \alpha_{k+1}^m \sum_{n=0}^{m} \rho_{k+1}^n \langle \Theta_k \rangle_n.$$

Clearly $\sum_{n=0}^{\infty} \rho_{k+1}^n \langle \Theta_k \rangle_n = \Theta_k(\rho_{k+1}) < \infty$, since $\rho_{k+1} < \rho_k$, and so

$$\frac{\langle \Theta_{k+1} \rangle_m}{\langle \Theta_{k+1} \rangle_{m+1}} \to \frac{1}{\alpha_{k+1}}, \text{ as } m \to \infty,$$

implying that Θ_{k+1} has RC $1/\alpha_{k+1}$.
The general case

Message. Bottleneck behaviour depends on the relative sizes of the radii of convergence of the power series $\Phi_1, \Phi_2, \ldots, \Phi_J$, where recall that $\Phi_j(z) = 1 + \sum_{n=1}^{\infty} \frac{\alpha_j^n}{\prod_{r=1}^{n} \phi_j(r)} Z^n$.

Proposition 1 Suppose Φ_j has radius of convergence ρ_j and that $\rho_J < \rho_J - 1 < \rho_J - 2 < \cdots < \rho_1$. Suppose also that $\langle \Phi_1 \cdots \Phi_{J-1} \rangle^{n-1} < \langle \Phi_1 \cdots \Phi_{J-1} \rangle^n$ has a limit as $n \to \infty$. Then, node J is a bottleneck.

Example. Suppose node j is an s_j-server queue with $\phi_j(n) = \min\{n, s_j\}$, so that the traffic intensity at node j is proportional to α_j/s_j. Since $\phi_j(n) \to s_j$, we have $\langle \Phi_j \rangle^{n-1}/\langle \Phi_j \rangle^n \to s_j/\alpha_j$, and so ρ_j is proportional to the reciprocal of the traffic intensity at node j. It can be shown that (1) holds.
The general case

Message. Bottleneck behaviour depends on the relative sizes of the radii of convergence of the power series \(\Phi_1, \Phi_2, \ldots, \Phi_J \), where recall that \(\Phi_j(z) = 1 + \sum_{n=1}^{\infty} \frac{\alpha_j^n}{\prod_{r=1}^n \phi_j(r)} Z^n \).

Proposition 1

Suppose \(\Phi_j \) has radius of convergence \(\rho_j \) and that \(\rho_J < \rho_{J-1} \leq \rho_{J-2} \leq \cdots \leq \rho_1 \). Suppose also that

\[
\frac{\langle \Phi_1 \cdots \Phi_{J-1} \rangle_{n-1}}{\langle \Phi_1 \cdots \Phi_{J-1} \rangle_n}
\]

has a limit as \(n \to \infty \). Then, node \(J \) is a bottleneck.
The general case

Message. Bottleneck behaviour depends on the relative sizes of the radii of convergence of the power series $\Phi_1, \Phi_2, \ldots, \Phi_J$, where recall that $\Phi_j(z) = 1 + \sum_{n=1}^{\infty} \frac{\alpha_j^n}{\prod_{r=1}^{n} \phi_j(r)} z^n$.

Proposition 1

Suppose Φ_j has radius of convergence ρ_j and that $\rho_J < \rho_{J-1} \leq \rho_{J-2} \leq \cdots \leq \rho_1$. Suppose also that

$$\frac{\langle \Phi_1 \cdots \Phi_{J-1} \rangle_{n-1}}{\langle \Phi_1 \cdots \Phi_{J-1} \rangle_n}$$

has a limit as $n \to \infty$. Then, node J is a bottleneck.

Example. Suppose node j is an s_j-server queue with $\phi_j(n) = \min\{n, s_j\}$, so that the traffic intensity at node j is proportional to α_j/s_j. Since $\phi_j(n) \to s_j$, we have $\langle \Phi_j \rangle_{n-1}/\langle \Phi_j \rangle_n \to s_j/\alpha_j$, and so ρ_j is proportional to the reciprocal of the traffic intensity at node j. It can be shown that (1) holds.
Three nodes: $N = 100$, $s_1 = 3$, $s_2 = 2$, $s_3 = 1$

The image shows a graph with three lines representing the states $n_1(t)$ (blue), $n_2(t)$ (green), and $n_3(t)$ (red) over time. The graph plots the number of nodes against time, with t ranging from 0 to 200.
Compound bottlenecks

What happens when the generating functions corresponding to two or more nodes share the same minimal RC?
Compound bottlenecks

What happens when the generating functions corresponding to two or more nodes share the same minimal RC?

Proposition 2

In the setup of Proposition 1, suppose that $\rho_L = \rho_{L+1} = \cdots = \rho_J (= \rho)$ and that $\rho < \rho_j$ for $j = 1, 2, \ldots, L - 1$. Then, nodes $L, L + 1, \ldots, J$ behave jointly as a bottleneck in that $\Pr(\sum_{i=L}^{J} n_i \geq m) \to 1$ as $N \to \infty$.
Three nodes: $N = 100$, $s_1 = s_3 = 1$, $s_2 = 2$
Three nodes: $N = 100, s_1 = s_3 = 1, s_2 = 2$
When two nodes share the same minimal RC

It might be conjectured that when the generating functions corresponding to two nodes share the same minimal RC, they are always bottlenecks *individually*. While this is true when all nodes are single-server queues (since $Pr(n_j \geq m) \to (\rho/\rho_j)^m$, $j = 1, \ldots, L - 1$), it is *not true* in general.
When two nodes share the same minimal RC

It might be conjectured that when the generating functions corresponding to two nodes share the same minimal RC, they are always bottlenecks *individually*. While this is true when all nodes are single-server queues (since $Pr(n_j \geq m) \rightarrow (\rho/\rho_j)^m$, $j = 1, \ldots, L - 1$), it is *not true* in general.

Consider a network with $J = 2$ nodes and suppose that $\alpha_1 = \alpha_2 = 1/2$. In the following examples Φ_1 and Φ_2 have the same RC $\rho = 2$.

Where are the bottlenecks?
When two nodes share the same minimal RC

It might be conjectured that when the generating functions corresponding to two nodes share the same minimal RC, they are always bottlenecks \textit{individually}. While this is true when all nodes are single-server queues (since $Pr(n_j \geq m) \to (\rho/\rho_j)^m$, $j = 1, \ldots, L - 1$), it is \textit{not true} in general.

Consider a network with $J = 2$ nodes and suppose that $\alpha_1 = \alpha_2 = 1/2$. In the following examples Φ_1 and Φ_2 have the same RC $\rho = 2$.

Only one node is a bottleneck.

Suppose that $\phi_1(n) = (n + 1)^2/n^2$ and $\phi_2(n) = 1$ for $n \geq 1$.

Then, it can be shown that $Pr(n_1 = n) \to 6/(\pi^2(n + 1)^2)$ and $Pr(n_2 = n) \to 0$ as $N \to \infty$.
When two nodes share the same minimal RC

It might be conjectured that when the generating functions corresponding to two nodes share the same minimal RC, they are always bottlenecks *individually*. While this is true when all nodes are single-server queues (since \(Pr(n_j \geq m) \rightarrow (\rho/\rho_j)^m, j = 1, \ldots, L - 1 \)), it is *not true* in general.

Consider a network with \(J = 2 \) nodes and suppose that \(\alpha_1 = \alpha_2 = 1/2 \). In the following examples \(\Phi_1 \) and \(\Phi_2 \) have the same RC \(\rho = 2 \).

Only one node is a bottleneck.

Suppose that \(\phi_1(n) = (n + 1)^2/n^2 \) and \(\phi_2(n) = 1 \) for \(n \geq 1 \).

Then, it can be shown that \(Pr(n_1 = n) \rightarrow 6/(\pi^2(n + 1)^2) \) and \(Pr(n_2 = n) \rightarrow 0 \) as \(N \rightarrow \infty \).

Neither node is a bottleneck.

Suppose that \(\phi_1(n) = \phi_2(n) = (n + 1)^2/n^2 \) for \(n \geq 1 \).

Then, \(Pr(n_1 = n) \rightarrow 3/(\pi^2(n + 1)^2) \) as \(N \rightarrow \infty \).
Two nodes: $N = 100, \phi_1(n) = (n + 1)^2/n^2, \phi_2(n) = 1$
Two nodes: $N = 100, \phi_1(n) = \phi_2(n) = (n + 1)^2/n^2$
And finally ...

Proposition 3

Suppose that $\Phi_1, \Phi_2, \ldots, \Phi_K$ have the same strictly minimal RC ρ, and that $\phi_j(n)$ converges monotonically for some $j \in \{2, \ldots, K\}$. Then, node 1 is a bottleneck if and only if

$$\Pr(n_1 \geq m \mid \sum_{i=1}^{K} n_i = N) \to 1 \text{ as } N \to \infty.$$

A sufficient condition for node 1 to be a bottleneck is that Φ_1 diverges at its RC and

$$\frac{\langle \Phi_2 \cdots \Phi_K \rangle_{n-1}}{\langle \Phi_2 \cdots \Phi_K \rangle_n} \text{ converges as } n \to \infty.$$
Proposition 3

Suppose that $\Phi_1, \Phi_2, \ldots, \Phi_K$ have the same strictly minimal RC ρ, and that $\phi_j(n)$ converges monotonically for some $j \in \{2, \ldots, K\}$. Then, node 1 is a bottleneck if and only if

$$\Pr(n_1 \geq m \mid \sum_{i=1}^{K} n_i = N) \to 1 \text{ as } N \to \infty.$$

A sufficient condition for node 1 to be a bottleneck is that Φ_1 diverges at its RC and

$$\frac{\langle \Phi_2 \cdots \Phi_K \rangle_{n-1}}{\langle \Phi_2 \cdots \Phi_K \rangle_n} \text{ converges as } n \to \infty.$$

This latter condition is not necessary. In the setup of the previous examples, suppose that $\phi_1(n) = (n + 1)^3/n^3$ and $\phi_2(n) = (n + 1)^2/n^2$ for $n \geq 1$. Then, Φ_1 and Φ_2 have common RC $\rho = 2$ and both converge at their RC. But, it can be shown that $\Pr(n_2 = n)$ is bounded above by a quantity which is $O(N^{-1})$ as $N \to \infty$, implying that node 2 is a bottleneck.
Two nodes: $N = 100$, $\phi_1(n) = (n + 1)^3/n^3$, $\phi_2(n) = (n + 1)^2/n^2$