Diffusion Approximation for a Metapopulation Model
with Habitat Dynamics
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THE PROBLEM

e Develop a model for a population inhabiting a patchy,
dynamic landscape and analyse the effects of habitat
dynamics on population persistence.

MOTIVATION

e Understanding the dynamics of populations that In-
habitat patchy environments iIs a pivotal problem In
ecology. This area is known as metapopulation ecol-

ogy [1].

e Classical metapopulation ecology assumes a constant
number of patches. However, in many cases the num-
ber of suitable patches changes as a result of patches

being ephemeral or because they become temporarily
unsuitable.

e Therefore, of primary importance in ecology are sim-
ple models for metapopulations in dynamic landscapes
and simple formulae for the effects of these habitat dy-
namics on persistence.

THE MODEL

e The model we present for a metapopulation in a dy-
namic landscape iIs a continuous-time Markov chain.
We will assume thatX (¢),¢ > 0) is a Markov chain
with transition rates) = (q(¢,7),7,5 € S), SO that
q(7,7) represents the rate of transition from state
statej, for 7 # i, andq(z,7) = —q(¢), where

q(i) == _qli,j) (< o0)

J7
represents the total rate out of state

Denoting bym(t) and n(t), respectively, the num-
per of suitable patches and the number of occupied
patches at time, our process takes values #h, =
{(m,n):0<n<m < M} and has non-zero transi-
tion rates

qg((m,n),(m+1,n)) =r(M —m)
corresponding to recovery of an unsuitable patch,
q((m,n),(m —1,n)) = s(m —n)

corresponding to disturbance of a suitable unoccupied
patch,
Q((m7 TL), (m o 17 n — 1)) = SN

corresponding to disturbance an occupied patch,

n
= C——
M
corresponding to colonisation of a suitable unoccu-

pied patch, and

Q((m7 n)v (ma n + 1)) (m o n)

q((m,n),(m,n —1)) =en

corresponding to a local population extinction.
e ) Is the total number of patches in the network.
e r IS the per patch rate of recovery.
ne per patch rate of disturbance.
ne colonisation rate.
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e ¢ IS the local population extinction rate.

METHOD

e How do we analyse our model to derive simple re-
sults?

e We use the remarkable work of Kurtz [2,3], which
may be applied to any process with a particular type
of rates, called density-dependent rates.
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RESULTS The Effects of Habitat Dynamics

Deterministic AppI’OXImathn e We compare this model to the equivalent constant-

landscape model (a special case of the stochastic lo-
gistic model).

¢ \We also consider the consequences of using the stan-
dard model instead of our new model.

e FP = Fixed Point and PC = Persistence Condition.

e As the number of patched/ in our metapopulation
becomes large the processg(t) = (m(t)/M,n(t)/M)
converges, uniformly in probabllity over finite time in-
tervals, to the unique trajectony(t) = (u(t), v(t)) of
the deterministic model
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e Disturbance reduces the fraction of suitable habitat
and also increases the extinction rate of the popula-
tion.
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¢ EXIsting models overestimate the average proportion
of suitable habitat and provide incorrect persistence
conditions. This is worrying when considering the in-
crease In variance due to habitat dynamics.
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Simulation withr = 0.5, s = 0.1, ¢ = 0.6, e = 0.1,M = 500, for
10, 000 transitions, deterministic trajectory and gradient field.

Diffusion Approximation

e Populations are not deterministic and thus it Is Impor-
tant to model the variation in the population, in partic-
ular, fluctuations about the gquasi-stationary point.

e Providedlim /.o VM (2(0) — 2*) = z, the family
{Zy(-)}, defined by

Zu(t)

converges weakly i |0, 7| (the space of right-continuous, | | |
left-hand limit functions Or[IO, T]) to an Ornstein-UhlenbeckRatio of variance in occupied patches for our model to thalhef

processZ(.), with initial value Z(O) z, and with stochastic logistic model with= 0.6 ande = 0.1.
explicit expressions for the local drift matrix and the CONCLUSION

local covariance matrix.
¢ \We have developed a simple model for metapopula-
tions with habitat dynamics.

e We have derived a diffusion approximation for the
fluctuations of the process about the gquasi-stationary
point.

e \We have derived simple formulae for the effects of
habitat dynamics.
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VM (zy(t) — %), 0<t<T,

e In particular, the fluctuations can be accurately de-
scribed by a bivariate normal approximation, with ex-
plicit expressions for the mean and covariance matrix.
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