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Metapopulations

A metapopulation is a population that is confined
to a network of geographically separated habitat
patches (for example a group of islands).

Individual patches may suffer local extinction.

Recolonization can occur through dispersal of
individuals from other patches.

In some instances there is an external source of
immigration (mainland-island configuration).
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Mainland-island configuration

Colonization

from the mainland
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Typical questions

Given an appropriate model . . .

Assessing population viability:

What is the expected time to (total) extinction∗ ?
What is the probability of extinction by time t∗ ?

Can we improve population viability ?

How do we estimate the parameters of the model ?

Can we determine the stationary/quasi-stationary
distributions ?

∗Or first total extinction in the mainland-island setup.
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Patch-occupancy models

We record the number nt of occupied patches at each
time t and suppose that (nt, t ≥ 0) is a Markov chain in
discrete or continuous time.

In Lecture 1 we looked at the stochastic logistic (SL)
model of Feller∗.

∗Feller, W. (1939) Die grundlagen der volterraschen theorie des kampfes ums dasein
in wahrscheinlichkeitsteoretischer behandlung. Acta Biotheoretica 5, 11–40.
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A continuous-time model

There are J patches. Each occupied patch becomes
empty at rate e and colonization of empty patches
occurs at rate c/J for each occupied-unoccupied pair.

The state space of the Markov chain (nt, t ≥ 0) is
S = {0, 1, . . . , J} and the transitions are:

n → n + 1 at rate c
J n (J − n)

n → n− 1 at rate en

Mainland-island version (v is the immigration rate):

n → n + 1 at rate v(J − n) + c
J n (J − n)

n → n− 1 at rate en
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The SL model

We identified an approximating deterministic model for
the proportion, X (J)

t = nt/J , of occupied patches at
time t. A functional law of large numbers established
convergence of the family (X (J)

t ) to the unique
trajectory (xt) satisfying

x ′t = cxt(1− xt)− ext = cxt (1− ρ− xt) ,

namely
xt =

(1− ρ)x0

x0 + (1− ρ− x0) e−(c−e)t
,

being the classical Verhulst∗ model.

∗Verhulst, P.F. (1838) Notice sur la loi que la population suit dans son accroisement.
Corr. Math. et Phys. X, 113–121.
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The SL model (c < e) x = 0 stable
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The SL model (c > e) x = 1 − e/c stable
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The SL model

Theorem If X (J)

0 → x0 as J →∞, then the family of
processes (X (J)

t ) converges uniformly in probability on
finite time intervals to the deterministic trajectory (xt):
for every ǫ > 0,

lim
J→∞

Pr

(
sup
s≤t

∣∣X (J)
s − xs

∣∣ > ǫ

)
= 0.
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The SL model (c > e) J → ∞
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Accounting for life cycle

Many species have life cycles (often annual) that
consist of distinct phases, and the propensity for
colonization and local extinction is different in each
phase. Examples:

The Vernal pool fairy shrimp (Branchinecta lynchi) and

the California linderiella (Linderiella occidentalis), both

listed under the Endangered Species Act (USA)

The Jasper Ridge population of Bay checkerspot

butterfly (Euphydryas editha bayensis), now extinct
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Butterfly life cycle

Egg ≃ 4 days

Larva (caterpillar) ≃ 14 days

Pupa (chrysalis) ≃ 7 days

Adult (butterfly) ≃ 14 days
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Colonization and extinction phases

Colonization is restricted to the adult phase, and there
is a greater propensity for local extinction in the
non-adult phases.

We will assume that that colonization (C) and
extinction (E) occur in separate distinct phases.

There are several ways to model this:

A quasi-birth-death process with two phases

A non-homogeneous continuous-time Markov
chain (cycle between two sets of transition rates)

A discrete-time Markov chain ✔
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A discrete-time Markovian model

Recall that there are J patches and that nt is the
number of occupied patches at time t. We suppose
that (nt, t = 0, 1, . . . ) is a discrete-time Markov chain
taking values in S = {0, 1, . . . , J} with a 1-step transition
matrix P = (pij) constructed as follows.

The extinction and colonization phases are governed
by their own transition matrices, E = (eij) and C = (cij).

We let P = EC if the census is taken after the
colonization phase or P = CE if the census is taken
after the extinction phase.

MASCOS IR2008, December 2008 - Page 36

EC versusCE

P = EC

{

P = CE

{

t− 1 t t + 1 t + 2

t− 1 t t + 1 t + 2
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Extinction phase

Suppose that local extinction occurs at any given
patch with probability e (0 < e < 1), independently of
other occupied patches. So, the number of extinctions
when there are i patches occupied has a binomial
Bin(i, e) distribution, and therefore

ei,i−k =

(
i

k

)
ek(1− e)i−k (k = 0, 1, . . . , i).

We also have eij = 0 if j > i.

MASCOS IR2008, December 2008 - Page 38



Colonization phase

Suppose that colonization occurs according to the
following mechanism.

If there are i occupied patches, then each unoccupied
patch is colonized with probability ci = (i/J)c, where
c ∈ (0, 1] is a fixed maximum colonization potential, the
(hypothetical) probability that a single unoccupied
patch is colonized by the fully occupied network.

So, the unoccupied patches are colonized
independently with the same probability, this
probability being proportional to the number of
patches with the potential to colonize.
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Colonization phase

Therefore, the number of colonizations when there
are i patches occupied has a binomial Bin(J − i, ci)

distribution, and so

ci,i+k =

(
J − i

k

)
ck
i (1− ci)

J−i−k, (k = 0, 1, . . . , J − i),

In particular, c0j = δ0j. We also have cij = 0, for j < i.

Notice that 0 is an absorbing state and C = {1, . . . , J} is
a communicating class.

There are other sensible choices for ci: for example
ci = c(1− (1− c1/c)

i) or ci = 1− exp(−iβ/J).
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Evaluation of P

We can evaluate P elementwise as follows. If P = EC,
then p0j = δ0j, pi0 = ei0 = ei, i ≥ 1, and, for i, j ≥ 1,

pij =

min{i,j}∑

k=1

(
i

k

)
(1− e)kei−k

(
J − k

j − k

)
cj−k
k (1− ck)

J−j .

If P = CE, then p0j = δ0j, and, for i ≥ 1 and j ≥ 0,

pij =
J∑

k=max{i,j}

(
J − i

k − i

)
ck−i
i (1− ci)

J−k

(
k

k − j

)
ek−j(1− e)j .

In particular, for i ≥ 1, pi0 = ei(1− ci(1− e))J−i.
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Equivalent independent phases

For the CE-model,

E(znt+1|nt = i) = (e + (1− e)z)i(1− (1− e)ci(1− z))J−i.

Thus, given nt = i, nt+1 has the same distribution as
B1 + B2, where B1 and B2 are two independent
random variables with B1 ∼ Bin(i, 1− e) and
B2 ∼ Bin(J − i, (1− e)ci).

It is as if each of the i occupied patches remains
occupied with probability 1− e and each of the J − i

unoccupied patches becomes occupied with
probability (1− e)ci, all J patches being affected
independently.
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Equivalent independent phases

For the EC-model, the best we can do is

E(znt+1 |nt = i) = E
{

zB (1− cB(1− z))J−B
}

,

where B ∼ Bin(i, 1− e).
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Large-J

However, note the large-J asymptotics when ci = ic/J .
Write p(J)

i (z) = E(znt+1|nt = i).

For the CE-model,

lim
J→∞

p(J)

i (z) = [e + (1− e)z exp(−c(1− e)(1− z))]i.

For the EC-model,

lim
J→∞

p(J)

i (z) = [e + (1− e)z exp(−c(1− z))]i.
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Large-J

However, note the large-J asymptotics when ci = ic/J .
Write p(J)

i (z) = E(znt+1|nt = i).

For the CE-model,

lim
J→∞

p(J)

i (z) =[e + (1− e)z exp(−c(1− e)(1− z))]i.

For the EC-model,

lim
J→∞

p(J)

i (z) =[e + (1− e)z exp(−c(1− z))]i.

Branching!
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Infinitely many patches

Now S = {0, 1, . . . }.
The number of extinctions when there are i patches
occupied follows the Bin(i, e) law (as before), but in the
colonization phase the number of colonizations when
there are i patches occupied follows a Poisson(ic) law
(previously a binomial Bin(J − i, ic/J) law).

The effect is . . .

Theorem Both infinite patch models are Galton-
Watson branching processes.
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Infinitely many patches - branching

The occupied patches independently produce
“offspring” according to the following distributions.

For the EC-model, p10 = e and

p1j = (1− e) exp(−c)
cj−1

(j − 1)!
(j ≥ 1),

the interpretation being that each individual “dies” with
probability e or otherwise is joined by a random
number of new offspring that follows a Poisson(c) law.
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Infinitely many patches - branching

For the CE-model, p10 = e exp(−c(1− e)) and

p1j = (1− e) exp(−c(1− e))
(c(1− e))j−1

(j − 1)!

+ e exp(−c(1− e))
(c(1− e))j

j!
(j ≥ 1).

The individual survives with probability 1− e or dies
with probability e, and there is a random number of
new offspring that follows a Poisson(c(1− e)) law.

We can now invoke the encylopaedic theory of
branching processes.
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Infinitely many patches

For both the EC and CE models, the mean number of
offspring µ is given by µ = (1 + c)(1− e). The
corresponding variance σ2 is:

For the EC-model σ2 = (1− e)((1 + c)2e + c).

For the CE-model σ2 = (e + c)(1− e).

Notice that σ2
EC − σ2

CE = c(2 + c)e(1− e) > 0.

Recall that, given n0 = i, E(nt) = iµt and

Var(nt) =

{
iσ2t if µ = 1 (e = c/(1 + c))

iσ2(µt − 1)µt−1/(µ− 1) if µ 6= 1 (e 6= c/(1 + c)).
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Infinitely many patches - total extinction

Theorem For both models extinction occurs with
probability 1 if and only if e ≥ c/(1 + c); otherwise the
extinction probability η is the unique solution to s = p(s)

on the interval (0, 1), where:

EC-model: p(s) = e + (1− e)s exp(−c(1− s))

CE-model: p(s) = (e + (1− e)s) exp(−c(1− e)(1− s))

And much more . . .

The expected time to extinction.

Yaglom’s theorem on limiting-conditional
(quasi-stationary) distributions.
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Back to the J-patch models

Recall that . . .

In the extinction phase the number of extinctions when
there are i patches occupied follows a Bin(i, e) law.

In the colonization phase the number of colonizations
when there are i patches occupied follows a binomial
Bin(J − i, ci) law, where ci = ic/J .

Exact analytical results are difficult to come by–later
we study deterministic and Gaussian approximations.

Numerical procedures are routine.
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Simulation: P = EC
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Simulation: P = CE
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Extinction probability: vary t

0 10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Extinction probability (J =100, i =95, e =0.44, c =0.8)

t

p
i0

(t
) P = EC

P = CE

MASCOS IR2008, December 2008 - Page 54



Extinction probability: vary n0
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Expected extinction time: varyn0

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

45

50
Expected extinction time (J =100, e =0.44, c =0.8)

i

E
i(

T
)

P = EC

P = CE

MASCOS IR2008, December 2008 - Page 56

Simulation: P = EC
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Simulation: P = CE
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Quasi stationarity

We can model this behaviour using a limiting
conditional distribution (lcd) (mj , j = 1, . . . , J); often
called a quasi-stationary distribution (qsd)∗.

lcd:
lim
t→∞

Pr(nt = j|nt 6= 0) = mj .

qsd:

Pr(n0 = j) = mj =⇒ Pr(nt = j|nt 6= 0) = mj (∀t > 0).

∗In the infinite state space setting, the distinction between lcd and
is both subtle and interesting.
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Simulation and qsd: P = EC
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Simulation and qsd: P = CE
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J-patch Mainland-Island models

In the extinction phase the number of extinctions when
there are i patches occupied follows a Bin(i, e) law.

In the colonization phase the number of colonizations
when there are i patches occupied follows a binomial
Bin(J − i, c) law.

MASCOS IR2008, December 2008 - Page 64



J-patch Mainland-Island models

In the extinction phase the number of extinctions when
there are i patches occupied follows a Bin(i, e) law.

In the colonization phase the number of colonizations
when there are i patches occupied follows a binomial
Bin(J − i, c) law. Now the colonization probability c

does not depend on how many patches are occupied.
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J-patch Mainland-Island models

In the extinction phase the number of extinctions when
there are i patches occupied follows a Bin(i, e) law.

In the colonization phase the number of colonizations
when there are i patches occupied follows a binomial
Bin(J − i, c) law. Now the colonization probability c

does not depend on how many patches are occupied.

This greatly simplifies the analysis!
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J-patch Mainland-Island models

The behaviour of both models can be summarized in
terms of a single pair of parameters (p, q):

EC-model: p = 1− e(1− c) and q = c

CE-model: p = 1− e and q = (1− e)c

Proposition Given nt = i, nt+1 has the same
distribution as B1 + B2, where B1 and B2 are two
independent random variables with B1 ∼ Bin(i, p) and
B2 ∼ Bin(J − i, q).
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J-patch Mainland-Island models

Proposition Given nt = i, nt+1 has the same
distribution as B1 + B2, where B1 and B2 are two
independent random variables with B1 ∼ Bin(i, p) and
B2 ∼ Bin(J − i, q).

It is as if each of the i currently occupied patches
remains occupied with probability p and each of
the J − i currently unoccupied patches become
occupied with probability q (all patches being affected
independently). Thus the process has some of the
character of an urn model.

We can improve on this result . . .
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J-patch Mainland-Island models

Reparameterize by setting a = p− q = (1− e)(1− c),
being the same for both models (0 < a < 1), and
q∗ = q/(1− a). Define sequences (pt) and (qt) by

qt = q∗(1− at) and pt = qt + at (t ≥ 0).

Theorem Given n0 = i patches occupied initially, the
number nt occupied at time t has the same distribution
as B1 + B2, where B1 and B2 are independent random
variables with B1 ∼ Bin(i, pt) and B2 ∼ Bin(J − i, qt).
The limiting distribution of nt is Bin(J, q∗).
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J-patch Mainland-Island models

Theorem Given n0 = i patches occupied initially, the
number nt occupied at time t has the same distribution
as B1 + B2, where B1 and B2 are independent random
variables with B1 ∼ Bin(i, pt) and B2 ∼ Bin(J − i, qt).
The limiting distribution of nt is Bin(J, q∗).

It is as if each of the i initially occupied patches
remains occupied with probability pt and each of
the J − i initially unoccupied patches become
occupied with probability qt (all patches being affected
independently). The limiting expected proportion
occupied is q∗.
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J-patch Mainland-Island models

We have in particular that

E(nt|n0 = i) = ipt + (J − i)qt = iat + Jqt

( → Jq∗ as t →∞)

and

Var(nt|n0 = i) = ipt(1− pt) + (J − i)qt(1− qt)

= iat(1− at)(1− 2q∗) + Jqt(1− qt)

( → Jq∗(1− q∗) as t →∞) .
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Simulation and sd: P = EC
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Simulation and sd: P = CE

0 500 1000 1500 2000 2500 3000 3500 4000
0

10

20

30

40

50

60

70

80

90

100
Mainland-Island simulation P = CE (J =100, n0 =95, e =0.6, c =0.6)

t

n
t

MASCOS IR2008, December 2008 - Page 73

Infinite-patch Mainland-Island models

Now suppose that c = d/J (imagine that a fixed
external colonization potential d is distributed evenly
among all J patches).

In the limit as J →∞, the number of unoccupied
patches that are colonized has a Poisson distribution
with mean d (all unoccupied patches being affected
independently).

Thus, the analogous infinite-patch model has cij = 0

for j < i and cij = exp(−d)dj−i/(j − i)! (j = i, i + 1, . . . ).

Note that in contrast with our earlier infinite-state
models, state 0 is no longer absorbing.
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Infinite-patch Mainland-Island models

Let m = d for the EC-model and m = (1− e)d for the
CE-model.

Proposition Given nt = i, nt+1 has the same
distribution as B + M , where B and M are two
independent random variables with B ∼ Bin(i, 1− e)

and M ∼ Poisson(m).

It is as if each of the i currently occupied patches
remains occupied with probability 1− e and a Poisson
distributed number of unoccupied patches become
occupied, the mean number being m (all patches
being affected independently).
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Infinite-patch Mainland-Island models

Indeed we observe that . . .

Proposition The process (nt) is a Galton-Watson
process with immigration: each occupied patch has a
Bernoulli Bin(1, 1− e) distributed number of offspring
and in each generation there is a Poisson(m) number
of immigrants. The mean number of offspring is 1− e

(< 1) and the mean number of immigrants is m (< ∞).

Again we can invoke general theory .
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Infinite-patch Mainland-Island models

Theorem For the infinite-patch model with
parameters e and m, given n0 = i patches occupied
initially, the number nt occupied at time t has the same
distribution as Bt + Mt, where Bt and Mt are two
independent random variables with Bt ∼ Bin(i, (1− e)t)

and Mt ∼ Poisson(mt), where mt = (m/e)(1− (1− e)t).
The limiting distribution of nt is Poisson(m/e).

It is as if each of the i initially occupied patches
remains occupied with probability (1− e)t and a
Poisson distributed number unoccupied patches
become occupied, the mean number being mt (all
patches affected independently).
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Simulation and sd: P = EC

0 500 1000 1500 2000 2500 3000 3500 4000
0

5

10

15

20

25

30

35

40

45

50
Mainland-Island simulation P = EC (n0 =10, e =0.6, d =10)

t

n
t

MASCOS IR2008, December 2008 - Page 79

Simulation and sd: P = CE
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First passage times

A measure of persistence for the Mainland-Island
models is the expected time to first total extinction of
the island network .
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First passage times

Theorem For the J-patch Mainland-Island model
with parameters p and q, given n0 = i patches
occupied initially, the expected time to first enter
state 0 is given by

µi0 =
J∑

k=1

(
J

k

)
bk

1− ak
−

i∑

j=0

(
i

j

)
(−1)j

J−i∑

k=0

(
J − i

k

)
bk(1− δj0δk0)

1− aj+k

=
∞∑

n=0

[
(1 + ban)J − (1− an)i(1 + ban)J−i

]
,

where a = p− q and b = q/(1− p).
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First passage times

Theorem For the infinite-patch Mainland-Island
model with parameters e and m, given n0 = i patches
occupied initially, the expected time to first enter
state 0 is always finite and is given by

µi0 =
i∑

j=1

(
i

j

)
(−1)j+1

∞∑

n=0

(1− e)jn exp
(m

e
(1− e)n

)

=
∞∑

n=0

[1− (1− (1− e)n)i] exp
(m

e
(1− e)n

)
.
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