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Metapopulations

A metapopulation is a population that is confined
to a network of geographically separated habitat
patches (for example a group of islands).

Individual patches may suffer local extinction.

Recolonization can occur through dispersal of
individuals from other patches.

In some instances there is an external source of
immigration (mainland-island configuration).
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Accounting for life cycle

Many species have life cycles (often annual) that
consist of distinct phases, and the propensity for
colonization and local extinction is different in each
phase. Examples:

The Vernal pool fairy shrimp (Branchinecta lynchi) and

the California linderiella (Linderiella occidentalis), both

listed under the Endangered Species Act (USA)

The Jasper Ridge population of Bay checkerspot

butterfly (Euphydryas editha bayensis), now extinct
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Patch-occupancy models

There are J patches. We record the number nt

occupied at time t and suppose that (nt, t ≥ 0) is a
discrete-time Markov chain taking values in
{0, 1, . . . , J} with transition matrix P = (pij).

We assume that colonization (C) and extinction (E)
occur in separate distinct phases which are governed
by their own transition matrices, E = (eij) and C = (cij).
Then, P = EC if the census is taken after the
colonization phase or P = CE if the census is taken
after the extinction phase.
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EC versusCE

P = EC

{

P = CE
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t− 1 t t + 1 t + 2
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Patch-occupancy models

Recall that the number of extinctions when there are i

patches occupied follows a Bin(i, e) law (0 < e < 1):

ei,i−k =

(
i

k

)
ek(1− e)i−k (k = 0, 1, . . . , i).

(eij = 0 if j > i.) The number of colonizations when
there are i patches occupied follows a Bin(J − i, ci) law:

ci,i+k =

(
J − i

k

)
ck
i (1− ci)

J−i−k, (k = 0, 1, . . . , J − i).

(cij = 0 if j < i.)
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Patch-occupancy models

Previously we look at two cases.

ci = (i/J)c, where c ∈ (0, 1] (c is the maximum
colonization potential).

This entails c0j = δ0j, so that 0 is an absorbing
state and {1, . . . , J} is a communicating class.

ci = c, where c ∈ (0, 1] (fixed colonization
probability–the Mainland-Island configuration).

Now {0, 1, . . . , J} is irreducible.

Other possibilities include ci = c(1− (1− c1/c)
i) and

ci = 1− exp(−iβ/J).
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Patch-occupancy models

We might also “combine” the two models and thus
account for both internal and external colonization: the
number of colonizations when there are i patches
occupied will be C ∼Bin(J − i, d + ic/J).

We obtained explicit results for the Mainland-Island
model . . .
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J-patch Mainland-Island models

Let a = p− q = (1− e)(1− c) (0 < a < 1) and
q∗ = q/(1− a), where

EC-model: p = 1− e(1− c) and q = c

CE-model: p = 1− e and q = (1− e)c

Define sequences (pt) and (qt) by

qt = q∗(1− at) and pt = qt + at (t ≥ 0).

Theorem Given n0 = i patches occupied initially, the
number nt occupied at time t has the same distribution
as B1 + B2, where B1 and B2 are independent random
variables with B1 ∼ Bin(i, pt) and B2 ∼ Bin(J − i, qt).
The limiting distribution of nt is Bin(J, q∗).
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J-patch Mainland-Island models

We saw that

E(nt|n0 = i) = ipt + (J − i)qt = iat + Jqt
(
→ Jq∗ as t →∞

)
and

Var(nt|n0 = i) = ipt(1− pt) + (J − i)qt(1− qt)

= iat(1− at)(1− 2q∗) + Jqt(1− qt)
(
→ Jq∗(1− q∗) as t →∞

)
.

Now let X (J)

t = nt/J be the proportion of occupied
patches at time t. Let (i(J)) be a sequence of initial
states such that x(J)

0 := i(J)/J → x0. Then, . . .

MASCOS IR2008, December 2008 - Page 17

Mainland-Island models: J→ ∞

As J →∞,

E(X (J)

t ) → x0pt + (1− x0)qt
and

J Var(X (J)

t ) → x0pt(1− pt) + (1− x0)qt(1− qt).

Indeed, X (J)

t
P→ xt, where xt = x0pt + (1− x0)qt, and, if√

J(x(J)

0 − x0) → z0 (the sequence of initial proportions
converges to x0 at the “correct” rate), then
√

J(X (J)

t − xt)
D→ Zt, where Zt ∼ N(atz0, vt) and

vt = x0pt(1− pt) + (1− x0)qt(1− qt).
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Mainland-Island models: J→ ∞

We can do better . . .

Theorem (X (J)

t1 , X (J)

t2 , . . . , X (J)

tn
)

P→ (xt1 , xt2 , . . . , xtn), for
any finite sequence of times t1, t2, . . . , tn.

For the corresponding central limit law, define the
process (Z(J)

t , t ≥ 0) by

Z(J)

t =
√

J(X (J)

t − xt)

and suppose that
√

J(x(J)

0 − x0) → z0.
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Mainland-Island models: J→ ∞

Theorem The finite-dimensional distributions (FDDs)
of (Z(J)

t ) converge to those of the Gaussian Markov
chain (Zt) defined by

Zt+1 = aZt + Et (Z0 = z0),

where a = p− q = (1− e)(1− c) and Et (t = 0, 1, . . . ) are
independent Gaussian random variables with
Et ∼ N(0, σ2

t ), where

σ2
t = xtp(1− p) + (1− xt)q(1− q).
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Simulation: P = EC
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Simulation: P = EC (Deterministic path)
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Simulation: P = EC (Gaussian approx.)
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Mainland-Island models: J→ ∞

We can also model the fluctuations about the limiting
proportion of patches q∗. Let Z(J)

t =
√

J(X (J)

t − q∗) and
suppose that

√
J(x(J)

0 − q∗) → z0.

Corollary The FDDs of (Z(J)

t ) converge to those of
the autoregressive (AR-1) process (Zt) defined by

Zt+1 = aZt + Et (Z0 = z0),

where a = p− q = (1− e)(1− c) and Et (t = 0, 1, . . . ) are
iid Gaussian N(0, σ2) random variables with
σ2 = q∗(1− q∗)(1− a2).
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Simulation: P = EC (AR-1 approx.)
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AR-1 Simulation: P = EC
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Gaussian approximations

Can we establish deterministic and Gaussian
approximations for the basic J-patch models (where
the distribution of nt is not known explicitly)?

Is there a general theory of convergence for
discrete-time Markov chains that share the salient
features of the patch-occupancy models presented
here?

Recall our numerical evaluation of quasi-stationary
distributions for the basic J-patch models (described
in Lecture 2) . . . .
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Simulation and qsd: P = EC
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Simulation and qsd: P = CE
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General structure: density dependence

We have a sequence of Markov chains (n(J)

t ) indexed
by J , together with a function f such that

E(n(J)

t+1|n(J)

t ) = Jf(n(J)

t /J),

or, more generally, a sequence of functions (f (J)) such
that

E(n(J)

t+1|n(J)

t ) = Jf (J)(n(J)

t /J)

and f (J) converges uniformly to f .

We then define (X (J)

t ) by X (J)

t = n(J)

t /J and hope that if

X (J)

0 → x0 as J →∞, then (X (J)

t )
FDD→ (xt), where (xt)

satisfies xt+1 = f(xt) (the limiting deterministic model).
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General structure: density dependence

Next we suppose that there is a function s such that

Var(n(J)

t+1|n(J)

t ) = Js(n(J)

t /J)

or, more generally, a sequence of functions (s(J)) such
that

Var(n(J)

t+1|n(J)

t ) = Js(J)(n(J)

t /J)

and s(J) converges uniformly to s.

We then define (Z(J)

t ) by Z(J)

t =
√

J(X (J)

t − xt) and hope

that if
√

J(X (J)

0 − x0) → z0, then (Z(J)

t )
FDD→ (Zt), where

(Zt) is a Gaussian Markov chain with Z0 = z0.
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General structure: density dependence

What will be the form of this chain?

Consider the simplest case, f (J) = f and s(J) = s.

Formally, by Taylor’s theorem,

f(X (J)

t )− f(xt) = (X (J)

t − xt)f
′(xt) + O

(
(X (J)

t − xt)
2
)
,

and so, since E(X (J)

t+1|X (J)

t ) = f(X (J)

t ) and xt+1 = f(xt),

E(Z(J)

t+1) =
√

J (E(X (J)

t+1)− f(xt)) = f ′(xt) E(Z(J)

t ) + · · · ,

suggesting that E(Zt+1) = at E(Zt), where at = f ′(xt).
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General structure: density dependence

Moreover, J Var(X (J)

t+1|X (J)

t ) = s(X (J)

t ), suggesting that

Zt+1 = atZt + Et (Z0 = z0),

where at = f ′(xt) and Et (t = 0, 1, . . . ) are independent
Gaussian random variables with Et ∼ N(0, s(xt)).

If xeq is a fixed point of f , and
√

J(X (J)

0 − xeq) → z0,

then we might hope that (Z(J)

t )
FDD→ (Zt), where (Zt) is

the AR-1 process defined by Zt+1 = aZt + Et, Z0 = z0,
where a = f ′(xeq) and Et (t = 0, 1, . . . ) are iid Gaussian
N(0, s(xeq)) random variables.
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Convergence of Markov chains

We can adapt results of Alan Karr∗ for our purpose.

∗Karr, A.F. (1975) Weak convergence of a sequence of Markov chains.
Probability Theory and Related Fields 33, 41–48.

He considered a sequence of time-homogeneous
Markov chains (X

(n)
t ) on a general state space

(Ω,F) = (E, E)N with transition kernels (Kn(x,A),
x ∈ E,A ∈ E) and initial distributions (πn(A), A ∈ E).

He proved that if (i) πn ⇒ π and (ii) xn → x in E implies
Kn(xn, ·) ⇒ K(x, ·), then the corresponding probability
measures (Pπn

n ) on (Ω,F) also converge: Pπn
n ⇒ Pπ.
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Convergence of Markov chains

The “adaption” to our two-phase patch-occupancy
models is simply to observe that Karr’s main result (his
Theorem 1) remains true for a time inhomogeneous
Markov chain with alternating transition kernels:
U, V, U, V, . . . .

For a sequence of such chains we will have a
sequence of pairs (Un, Vn). In addition to (i), we check
(ii ′) that xn → x in E implies Un(xn, ·) ⇒ U(x, ·) and
Vn(xn, ·) ⇒ V (x, ·).

MASCOS IR2008, December 2008 - Page 44



J-patch models: convergence

We follow the above programme for the (time-
homogeneous) Markov chain (X (J)

t , Z(J)

t ), where recall
that X (J)

t is the proportion of occupied patches at
time t and Z(J)

t =
√

J(X (J)

t − xt), where (xt) is the
limiting deterministic trajectory. We apply the adaption
of Karr’s results to the two-phase counterpart of
(X (J)

t , Z(J)

t ).

Notation. In what follows, yt is the next state after one
phase (E or C) of the limiting deterministic trajectory
and Yt is the next state of the limiting Gaussian
process (the current states being xt and Zt).
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J-patch models: convergence

E-phase. Let (i(J)) be a sequence of integers such
that i(J) ∈ {0, 1, . . . , J} and x(J) := i(J)/J → x as J →∞,
and suppose that B

(J) ∼ Bin(i(J) , p), where p = 1− e

(0 < e < 1). Thus, B
(J) is the number of survivors of the

extinction phase starting with i(J) occupied patches.

Let X
(J)

= B
(J)

/J . It is easy to see that X
(J) P→ px, and,

if
√

N(x(J) − x) → z, then
√

N(X
(J) − px)

D→ Z, where
Z ∼ N(pz, xp(1− p)). Therefore,

yt = (1− e)xt and Yt = (1− e)Zt + N(0, e(1− e)xt).
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J-patch models: convergence

C-phase. Let (i(J)) be a sequence of integers such
that i(J) ∈ {0, 1, . . . , J} and x(J) := i(J)/J → x as J →∞,
and suppose that C

(J) ∼ Bin(J − i(J) , ci(J)/J) (0 < c < 1).
Thus, C

(J) is the number of colonizations starting with
i(J) occupied patches. Let X

(J)
= x(J) + C

(J)
/J (being

the proportion of occupied patches after the
colonization phase). It is easy to prove that

X
(J) P→ x(1 + c− cx), and, if

√
J(x(J) − x) → z, then

√
J(X

(J) − x(1 + c− cx))
D→ Z, where

Z ∼ N((1 + c− 2cx)z, cx(1− x)(1− cx)). Therefore,

yt = xt(1 + c− cxt) and

Yt = (1 + c− 2cxt)Zt + N(0, cxt(1− xt)(1− cxt)).
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J-patch models: convergence

We can thus “build” the limiting deterministic (xt)

trajectory and the limiting Gaussian process (Zt) for
each of our models (EC and CE) by specifying f(x)

such that xt+1 = f(xt), and a(x) and s(x) such that
Zt+1 = a(xt)Zt + N(0, s(xt)).

We find that a(x) = f ′(x), as expected.
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J-patch models: convergence

EC-model. f(x) = (1− e)(1 + c− c(1− e)x)x and

Zt+1 = (1 + c− 2c(1− e)xt)[(1− e)Zt + N(0, e(1− e)xt)]

+ N(0, c(1− e)xt(1− (1− e)xt)(1− c(1− e)xt)),

implying that a(x) = (1− e)(1 + c− 2c(1− e)x) and

s(x) = c(1− e)x(1− (1− e)x)(1− c(1− e)x)

+ (1 + c− 2c(1− e)x)2e(1− e)x

= (1−e)[c(1−(1−e)x)(1−c(1−e)x)+e(1+c−2c(1−e)x)2]x.
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J-patch models: convergence

CE-model. f(x) = (1− e)(1 + c− cx)x and

Zt+1 = (1− e)[(1 + c− 2cxt)Zt + N(0, cxt(1− xt)(1− cxt))]

+ N(0, e(1− e)xt(1 + c− cxt)),

implying that a(x) = (1− e)(1 + c− 2cx) and

s(x) = e(1− e)x(1 + c− cx) + (1− e)2cx(1− x)(1− cx)

· · · = (1− e)[e + c(1− x)(1− c(1− e)x)]x.
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J-patch models: convergence

Theorem For either of the J-patch state-dependent
models, if X (J)

0 → x0 as J →∞, then

(X (J)

t1 , X (J)

t2 , . . . , X (J)

tn
)

P→ (xt1 , xt2 , . . . , xtn),

for any finite sequence of times t1, t2, . . . , tn, where
(xt) is defined by the recursion xt+1 = f(xt) with

EC-model: f(x) = (1− e)(1 + c− c(1− e)x)x

CE-model: f(x) = (1− e)(1 + c− cx)x
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J-patch models: convergence

Theorem If, additionally,
√

J(X (J)

0 − x0) → z0, then

(Z(J)

t )
FDD→ (Zt), where (Zt) is the Gaussian Markov

chain defined by

Zt+1 = f ′(xt)Zt + Et (Z0 = z0),

where Et (t = 0, 1, . . . ) are independent Gaussian
random variables with Et ∼ N(0, s(xt)) and

EC-model: s(x) = (1− e)[c(1− (1− e)x)(1− c(1− e)x)

+e(1 + c− 2c(1− e)x)2]x

CE-model: s(x) = (1− e)[e + c(1− x)(1− c(1− e)x)]x
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Simulation: P = EC
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Simulation: P = EC (Deterministic path)
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Simulation: P = EC (Gaussian approx.)
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Simulation: P = CE
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Simulation: P = CE (Deterministic path)
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Simulation: P = CE (Gaussian approx.)
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J-patch models: convergence

In both cases (EC and CE) the deterministic model
has two equilibria, x = 0 and x = x∗, given by

EC-model: x∗ =
1

1− e

(
1− e

c(1− e)

)

CE-model: x∗ = 1− e

c(1− e)

Indeed, we may write f(x) = x (1 + r (1− x/x∗)),
r = c(1− e)− e for both models (the form of the
discrete-time logistic model), and we obtain the
condition c > e/(1− e) for x∗ to be positive and then
stable. Note: this is the condition for supercriticality in
the corresponding infinite-patch model (Lecture 2).
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J-patch models: convergence

Corollary If c > e/(1− e), so that x∗ given above is

stable, and
√

J(X (J)

0 − x∗) → z0, then (Z(J)

t )
FDD→ (Zt),

where (Zt) is the AR-1 process defined by

Zt+1 = (1 + e− c(1− e))Zt + Et (Z0 = z0),

where Et (t = 0, 1, . . . ) are independent Gaussian
N(0, σ2) random variables with

EC-model: σ2 = (1− e)[c(1− (1− e)x∗)(1− c(1− e)x∗)
+e(1 + c− 2c(1− e)x∗)2]x∗

CE-model: σ2 = (1− e)[e + c(1− x∗)(1− c(1− e)x∗)]x∗
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Simulation: P = EC (AR-1 approx.)
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AR-1 Simulation: P = EC
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Simulation: P = CE (AR-1 approx.)
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AR-1 Simulation: P = CE
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