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Metapopulations

A metapopulation is a population that is confined
to a network of geographically separated habitat
patches (for example a group of islands).

Individual patches may suffer local extinction.

Recolonization can occur through dispersal of
individuals from other patches.
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Metapopulations

Total Extinction
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Metapopulations

A metapopulation is a population that is confined
to a network of geographically separated habitat
patches (for example a group of islands).

Individual patches may suffer local extinction.

Recolonization can occur through dispersal of
individuals from other patches.
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Metapopulations

A metapopulation is a population that is confined
to a network of geographically separated habitat
patches (for example a group of islands).

Individual patches may suffer local extinction.

Recolonization can occur through dispersal of
individuals from other patches.

In some instances there is an external source of
immigration (mainland-island configuration).
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Mainland-island configuration
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Mainland-island configuration

Colonization
from the mainland
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Mainland-island configuration
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Mainland-island configuration
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Mainland-island configuration
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Mainland-island configuration
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Mainland-island configuration
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Mainland-island configuration
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Typical questions

Given an appropriate model . . .

Assessing population viability:

What is the expected time to (total) extinction∗ ?
What is the probability of extinction by time t∗ ?

Can we improve population viability ?

How do we estimate the parameters of the model ?

Can we determine the stationary/quasi-stationary
distributions ?

∗Or first total extinction in the mainland-island setup.
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Patch-occupancy models

Here we simply record the number nt of occupied
patches at each time t.

A typical approach is to suppose that (nt, t ≥ 0) is a
Markov chain in discrete or continuous time.
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Patch-occupancy models

Here we simply record the number nt of occupied
patches at each time t.

A typical approach is to suppose that (nt, t ≥ 0) is a
Markov chain in discrete or continuous time.

Note. This entails a high degree of homogeneity
among patches (in particular the colonization and
local extinction processes).
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A continuous-time model

Suppose that there are J patches. Each occupied
patch becomes empty at rate e and colonization of
empty patches occurs at rate c/J for each suitable pair.

The state space of the Markov chain (nt, t ≥ 0) is
S = {0, 1, . . . , J} and the transitions are:

n → n + 1 at rate c
J
n (J − n)

n → n − 1 at rate en

I will call this model the stochastic logistic (SL) model ,
though it has many names, having been rediscovered
several times since Feller∗ proposed it.

∗Feller, W. (1939) Die grundlagen der volterraschen theorie des kampfes ums dasein
in wahrscheinlichkeitsteoretischer behandlung. Acta Biotheoretica 5, 11–40.

MASCOS IR2008, December 2008 - Page 26



The SL model simulation (c < e)
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The SL model simulation (c > e)
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The SL model

There are many ways to distinguish this behaviour
and, at the same time, evaluate some useful
quantities.
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The SL model

There are many ways to distinguish this behaviour
and, at the same time, evaluate some useful
quantities.

For example, drift:

E(nt+s − nt|nt) = nt

(

c − e − c
nt

J

)

s + ◦(s).
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The SL model

There are many ways to distinguish this behaviour
and, at the same time, evaluate some useful
quantities.

For example, drift:

E(nt+s − nt|nt) = nt

(

c − e − c
nt

J

)

s + ◦(s).

So, c < e implies that the drift is always < 0 (small s).
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The SL model

There are many ways to distinguish this behaviour
and, at the same time, evaluate some useful
quantities.

For example, drift:

E(nt+s − nt|nt) = nt

(

c − e − c
nt

J

)

s + ◦(s).

So, c < e implies that the drift is always < 0 (small s).

If c > e, then the drift is < 0 when nt > n∗ := J(1 − e/c)

and > 0 when nt < n∗: the process is “attracted” to n∗.
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The SL model simulation (c > e)
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The SL model

Since the SL model is a birth-death process, we have
an explicit expression for the expected time to
extinction starting with n occupied patches:

τ (J)
n =

1

e

n
∑

j=1

J−j
∑

k=0

1

j + k

k−1
∏

l=0

(

J − j − l

Jρ

)

,

where ρ = e/c.
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The SL model

Since the SL model is a birth-death process, we have
an explicit expression for the expected time to
extinction starting with n occupied patches:

τ (J)
n =

1

e

n
∑

j=1

J−j
∑

k=0

1

j + k

k−1
∏

l=0

(

J − j − l

Jρ

)

,

where ρ = e/c.

This expression permits large-J asymptotics . . . .
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The SL model

The following hold in the limit as J → ∞. If ρ > 1 (c < e),

τ (J)

1 ∼
1

c
log

(

ρ

ρ − 1

)

and, for n ≥ 2,

τ (J)
n ∼

1

c(ρ − 1)

{

(ρn − 1) log

(

ρ

ρ − 1

)

−
n−1
∑

k=1

(ρn−k − 1)

k

}

,

while if ρ < 1 (c > e),

τ (J)
n ∼

1

c(1 − ρ)







(

1 − ρn

1 − ρ

)

(

e−(1−ρ)

ρ

)J √

2π

J
−

n−1
∑

k=1

(1 − ρn−k)

k







.
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The following hold in the limit as J → ∞. If ρ > 1 (c < e),
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The SL model simulation (c < e)
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The SL model simulation (c < e)
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The SL model

The following hold in the limit as J → ∞. If ρ > 1 (c < e),

τ (J)
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The SL model simulation (c > e)
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The SL model simulation (c > e)
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The SL model

Or, we can identify an approximating deterministic
model.
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The SL model

Or, we can identify an approximating deterministic
model. Let X (J)

t = nt/J be the proportion of occupied
patches at time t.
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The SL model

Or, we can identify an approximating deterministic
model. Let X (J)

t = nt/J be the proportion of occupied
patches at time t. We can prove a functional law of
large numbers that establishes convergence of the
family (X (J)

t ) to the unique trajectory (xt) satisfying

x ′
t = cxt(1 − xt) − ext = cxt (1 − ρ − xt) ,

namely
xt =

(1 − ρ)x0

x0 + (1 − ρ − x0) e−(c−e)t
.
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The SL model

Or, we can identify an approximating deterministic
model. Let X (J)

t = nt/J be the proportion of occupied
patches at time t. We can prove a functional law of
large numbers that establishes convergence of the
family (X (J)

t ) to the unique trajectory (xt) satisfying

x ′
t = cxt(1 − xt) − ext = cxt (1 − ρ − xt) ,

namely
xt =

(1 − ρ)x0

x0 + (1 − ρ − x0) e−(c−e)t
.

There are two equilibria: x = 0 is stable if c < e, while
x = 1 − ρ (= 1 − e/c) is stable if c > e.
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The SL model (c < e) x = 0 stable
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The SL model (c > e) x = 1 − e/c stable
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The SL model

This of course is the classical Verhulst∗ model.

∗Verhulst, P.F. (1838) Notice sur la loi que la population suit dans son accroisement.
Corr. Math. et Phys. X, 113–121.
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The SL model

This of course is the classical Verhulst∗ model.

∗Verhulst, P.F. (1838) Notice sur la loi que la population suit dans son accroisement.
Corr. Math. et Phys. X, 113–121.

Theorem If X (J)

0 → x0 as J → ∞, then the family of
processes (X (J)

t ) converges uniformly in probability on
finite time intervals to the deterministic trajectory (xt):
for every ǫ > 0,

lim
J→∞

Pr

(

sup
s≤t

∣

∣X (J)
s − xs

∣

∣ > ǫ

)

= 0.
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The SL model (c > e) J → ∞
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The Mainland-Island model

Recall that there are J patches. Each occupied patch
becomes empty at rate e and colonization of empty
patches occurs at rate c/J for each suitable pair.

Additionally, immigration from the mainland occurs
that rate v.

The state space of the Markov chain (nt, t ≥ 0) is
S = {0, 1, . . . , J} and the transitions are:

n → n + 1 at rate v(J − n) +
c

J
n (J − n)

n → n − 1 at rate en
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Network models

We now record the numbers of individuals in the
various patches: a typical state is n = (n1, . . . , nJ),
where nj is the number of individuals in patch j.

There are two cases: (1) the open system, where
individuals may enter or leave the network through
external immigration and external emigration or
removal, and (2) the closed system, where there is a
fixed number N of individuals circulating.

In the open case individuals are assumed to arrive at
patch i from outside the network as a Poisson stream
with rate νi (if νi = 0 there is no external immigration
process at that patch).
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Network models

We account for spatial structure as follows.

After a sojourn at patch i, an individual either leaves
the network, with probability λi0, or proceeds to
another patch j, with probability λij (in the closed case
we take λi0 = 0); λij thus specifies the relative
proportion of propagules emanating from patch i that
are destined for patch j, λi0 being the proportion
destined to leave the network. For simplicity, we
set λii = 0. Clearly

∑

j λij = 1.

The matrix Λ = (λij) is termed the routing matrix .
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Open network
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Open network
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Open network

External immigration

i

νi
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Open network
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Open network

Internal
migration

i
j

λij
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Open network

External emigrationRemoval

i

λi0
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Closed network
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Closed network

Internal
migration

i
j

λij
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Network models

Again for simplicity, we shall assume that Λ is chosen
so that an individual can reach any patch from
anywhere in the network. In the open case we shall
also assume that an individual can reach any patch
from outside the network and eventually leave the
network starting from anywhere.

In the closed case these conditions ensure that Λ is
irreducible and, hence, that there is a unique collection
(α1, . . . , αJ) of strictly positive numbers which satisfy
the traffic equations αj =

∑

i αiλij, j = 1, . . . , J (cf.
Kirchhoff’s law). Here we may assume without loss of
generality that

∑

j αj = 1.
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Network models

In the open case these conditions ensure that there is
a unique positive solution (α1, . . . , αJ) to the equations
αj = νj +

∑

i αiλij, j = 1, . . . , J . In this case αj is the
arrival rate at patch j, while in the closed case αj is
proportional to the arrival rate at patch j.
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Open network

αj
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Network models: propagation

When there are n individuals at patch j, propagation
occurs at rate φj(n) (an arbitrary function for each
patch). We assume that φj(0) = 0 and φj(n) > 0

whenever n ≥ 1.
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Network models: propagation

When there are n individuals at patch j, propagation
occurs at rate φj(n) (an arbitrary function for each
patch). We assume that φj(0) = 0 and φj(n) > 0

whenever n ≥ 1. For example,

φj(n) = φj (n ≥ 1): the propagation rate is φj,
irrespective of how many individuals are present;

φj(n) = φjn: the propagation rate at patch j is
proportion to the number of individuals present;

φj(n) = φj min{n, sj} (n ≥ 1): the propagation rate is
proportion to the number of individuals present,
but there is a fixed maximum rate.
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Network models

I have described the migration process of Whittle∗.

∗Whittle, P. (1967) Nonlinear migration processes. Bull. Inst. Int. Statist. 42, 642–647.

(Constant rates: Jackson, R.R.P. (1954) Queueing systems with phase-type service.
Operat. Res. Quart. 5, 109–120.)

The Markov chain (n(t), t ≥ 0) has state space S = ZJ
+

in open case and transition rates

q(n,n + ej) = νj (external arrival at patch j)

q(n,n − ei) = φi(ni)λi0 (removal from patch i)

q(n,n − ei + ej) = φi(ni)λij (migration from i to j) .

(ej is the unit vector in ZJ
+ with a 1 as its j-th entry)
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Network models

In the closed case we simply have

q(n,n − ei + ej) = φi(ni)λij (migration from i to j) ,

and state state space S
(N) is the subset of ZJ

+ whose
elements satisfy n1 + · · · + nJ = N .
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In the closed case we simply have

q(n,n − ei + ej) = φi(ni)λij (migration from i to j) ,

and state state space S
(N) is the subset of ZJ

+ whose
elements satisfy n1 + · · · + nJ = N .

The equilibrium behaviour of migration processes is
well understood.
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and state state space S
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+ whose
elements satisfy n1 + · · · + nJ = N .

The equilibrium behaviour of migration processes is
well understood (but apparently not by ecologists).
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Network models

In the closed case we simply have

q(n,n − ei + ej) = φi(ni)λij (migration from i to j) ,

and state state space S is the subset of ZJ
+ whose

elements satisfy n1 + · · · + nJ = N .

The equilibrium behaviour of migration processes is
well understood (but apparently not by ecologists).

Let π(n) be the equilibrium probability of configuration
n = (n1, . . . , nJ).
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Open migration process

Theorem An equilibrium distribution exists if

b−1
j := 1 +

∞
∑

n=1

αn
j

∏n
r=1 φj(r)

< ∞ for all j,

in which case

π(n) =
J
∏

j=1

πj(nj), where πj(n) = bj

αn
j

∏n
r=1 φj(r)

.

Thus, in equilibrium, n1, . . . , nJ are independent and
each patch j behaves as if it were isolated with
Poisson input at rate αj.
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Open migration process: examples

(1) φj(n) = φj (n ≥ 1) . If ρj := αj/φj < 1,

πj(n) = (1 − ρj)ρ
n
j (geometric).
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Open migration process: examples

(1) φj(n) = φj (n ≥ 1) . If ρj := αj/φj < 1,

πj(n) = (1 − ρj)ρ
n
j (geometric).

(2) φj(n) = φjn .

πj(n) = e−rj
rn
j

n!
, where rj =

αj

φj
(Poisson).
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Open migration process: examples

(1) φj(n) = φj (n ≥ 1) . If ρj := αj/φj < 1,

πj(n) = (1 − ρj)ρ
n
j (geometric).

(2) φj(n) = φjn .

πj(n) = e−rj
rn
j

n!
, where rj =

αj

φj
(Poisson).

(3) φj(n) = φj min{n, sj} (n ≥ 1) . If ρj := αj/(sjφj) < 1,

πj(n) = πj(0)
(sjρj)

n

n!
(n = 1, . . . , sj)

πj(n) = πj(s)ρ
n−sj

j (n = sj + 1, . . . ).
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Closed migration process (N individuals)

Theorem An equilibrium distribution always exists
and is given by

π(N)(n) = B
(N)

J
∏

j=1

α
nj

j
∏nj

r=1 φj(r)
(n ∈ S

(N)
),

where B
(N) is a normalizing constant chosen so

that π(N) sums to 1 over S
(N) .
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Closed migration process (N individuals)

Theorem An equilibrium distribution always exists
and is given by

π(N)(n) = B
(N)

J
∏

j=1

α
nj

j
∏nj

r=1 φj(r)
(n ∈ S

(N)
),

where B
(N) is a normalizing constant chosen so

that π(N) sums to 1 over S
(N) .

Note that n1, . . . , nJ are not independent.

MASCOS IR2008, December 2008 - Page 66



Closed migration process: examples

(1) φj(n) = φj (n ≥ 1) .

The equilibrium distribution is

π(N)(n) = B
(N)

J
∏

i=1

ρni

i (n ∈ S
(N)

),

where ρi = αi/φi.
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Closed migration process: examples

(1) φj(n) = φj (n ≥ 1) .

The equilibrium distribution is

π(N)(n) = B
(N)

J
∏

i=1

ρni

i (n ∈ S
(N)

),

where ρi = αi/φi.

The marginal distribution of the number nj at
patch j is messy (the form depends on which of
the ρi’s are distinct).
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Closed migration process: examples

(2) φj(n) = φjn .

The equilibrium distribution is multinomial :

π(N)(n) =
N !

n1! n2! · · ·nJ !
pn1

1 pn2

2 · · · pnJ

J (n ∈ S
(N)

),

where pi = ri/
∑J

j=1 rj and ri = αi/φi.
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Closed migration process: examples

(2) φj(n) = φjn .

The equilibrium distribution is multinomial :

π(N)(n) =
N !

n1! n2! · · ·nJ !
pn1

1 pn2

2 · · · pnJ

J (n ∈ S
(N)

),

where pi = ri/
∑J

j=1 rj and ri = αi/φi.

The marginal distribution of the number nj at
patch j is binomial :

π(N)

j (n) =

(

N

n

)

pn
j (1 − pj)

N−n (n = 0, 1, . . . , N).
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Network models: we ask ...

For each of the network models—but where there is
homogeneity among the patches—what is the
corresponding/appropriate patch-occupancy model?
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Network models: we ask ...

For each of the network models—but where there is
homogeneity among the patches—what is the
corresponding/appropriate patch-occupancy model?

Do we recover the SL model?
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Network models: we ask ...

For each of the network models—but where there is
homogeneity among the patches—what is the
corresponding/appropriate patch-occupancy model?

Do we recover the SL model?

Recall that nt was the number of occupied patches at
time t, that local extinction occurred at common rate e

and that colonization occurred at common rate c/J for
each of the n(J − n) occupied-unoccupied pairs:

n → n + 1 at rate c
J
n (J − n)

n → n − 1 at rate en

(closed network)
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Network models: we ask ...

For each of the network models—but where there is
homogeneity among the patches—what is the
corresponding/appropriate patch-occupancy model?

Do we recover the SL model?

Recall that nt was the number of occupied patches at
time t, that local extinction occurred at common rate e

and that colonization occurred at common rate c/J for
each of the n(J − n) occupied-unoccupied pairs:

n → n + 1 at rate v(J − n) + c
J
n (J − n)

n → n − 1 at rate en

(open network)
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The SL model: what isc?

What is the interpretation of c in the SL model?
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The SL model: what isc?

What is the interpretation of c in the SL model?

. . . colonization occurred at common rate c/J for
each of the n(J − n) occupied-unoccupied pairs:

n → n + 1 at rate c
J
n (J − n)
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The SL model: what isc?

What is the interpretation of c in the SL model?

. . . colonization occurred at common rate c/J for
each of the n(J − n) occupied-unoccupied pairs:

n → n + 1 at rate c
J
n (J − n)

Even in the epidemiological literature∗, where the SL
model—called the Susceptible-Infective-Susceptible
(SIS) model—is ubiquitous, there is still controversy
about interpretation of the ingredients of the model.

∗Begon, M., Bennett, M., Bowers, R.G., French, N.P., Hazel, S.M. and Turner, J. (2002)
A clarification of transmission terms in host-microparasite models: numbers, densities
and areas. Epidemiology and Infection 129, 147–153.
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The SL model: what isc?

What is the interpretation of c in the SL model?

. . . colonization occurred at common rate c/J for
each of the n(J − n) occupied-unoccupied pairs:

n → n + 1 at rate c
J
n (J − n)

Even in the epidemiological literature∗, where the SL
model—called the Susceptible-Infective-Susceptible
(SIS) model—is ubiquitous, there is still controversy
about interpretation of the ingredients of the model.

∗Begon, M., Bennett, M., Bowers, R.G., French, N.P., Hazel, S.M. and Turner, J. (2002)
A clarification of transmission terms in host-microparasite models: numbers, densities
and areas. Epidemiology and Infection 129, 147–153.
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Network models: what arec and e?

Is there a “network interpretation” of c, e and v?
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Network models: what arec and e?

Is there a “network interpretation” of c, e and v?

Joshua Ross (2008)∗ “. . . c is the rate of propagation
from any given occupied patch”.

∗Personal communication
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Network models: what arec and e?

Is there a “network interpretation” of c, e and v?

Joshua Ross (2008)∗ “. . . c is the rate of propagation
from any given occupied patch”.

∗Personal communication

We will use the various network models to find out.
There are some surprises.
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Which patch-occupancy model?

Symmetric networks Suppose that φj(n) = φ(n) for
all j (all patches produce propagules at the same
rate). We consider two cases (i) “constant” φ(n) = φ

(n ≥ 1) (constant propagation rate φ) and (ii) “linear”
φ(n) = φn (φ is the per-capita propagation rate).
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Which patch-occupancy model?

Symmetric networks Suppose that φj(n) = φ(n) for
all j (all patches produce propagules at the same
rate). We consider two cases (i) “constant” φ(n) = φ

(n ≥ 1) (constant propagation rate φ) and (ii) “linear”
φ(n) = φn (φ is the per-capita propagation rate).

We will also suppose that emigration to any patch j is
the same from all patches i : λij = 1/(J − 1) in the
closed network, and, νi = ν, λi0 = λ0 and
λij = (1 − λ0)/(J − 1) in the open network.

This is sufficient for αj (= α) to be the same for all j:
α = 1/J (closed network) and α = ν/λ0 (open network).

MASCOS IR2008, December 2008 - Page 74



Symmetric network (open)
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Symmetric network (closed)
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Which patch-occupancy model?

We will evaluate

(i) the equilibrium expected colonization rate c(m),
that is, the expected arrival rate at unoccupied
patches, conditional on there being m patches
occupied , and,

(ii) the equilibrium expected local extinction rate e(m),
that is, the expected rate at which empty patches
appear, conditional on there being m patches
occupied .
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Which patch-occupancy model?

We will evaluate

(i) the equilibrium expected colonization rate c(m),
that is, the expected arrival rate at unoccupied
patches, conditional on there being m patches
occupied , and,

(ii) the equilibrium expected local extinction rate e(m),
that is, the expected rate at which empty patches
appear, conditional on there being m patches
occupied .

We might expect that, for some c, e and v,

(i) c(m) = v(J − m) + c
J
m(J − m) and (ii) e(m) = em.
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Which patch-occupancy model?

We will evaluate

(i) the equilibrium expected colonization rate c(m),
that is, the expected arrival rate at unoccupied
patches, conditional on there being m patches
occupied , and,

(ii) the equilibrium expected local extinction rate e(m),
that is, the expected rate at which empty patches
appear, conditional on there being m patches
occupied .

We might expect that, for some c, e and v,

External colonization

(i) c(m) = v(J − m) + c
J
m(J − m) and (ii) e(m) = em.
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Which patch-occupancy model?

We will evaluate

(i) the equilibrium expected colonization rate c(m),
that is, the expected arrival rate at unoccupied
patches, conditional on there being m patches
occupied , and,

(ii) the equilibrium expected local extinction rate e(m),
that is, the expected rate at which empty patches
appear, conditional on there being m patches
occupied .

We might expect that, for some c, e and v,

Ross (2008)?

(i) c(m) = v(J − m) +
φ
J
m(J − m) and (ii) e(m) = em.
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Which patch-occupancy model?

Let C(n) =
∑

k 1{nk(t)>0} be the number of occupied
patches when the network is in state n. Then,

c(m) = E





∑

j

(

νj +
∑

i6=j

φi(ni(t))λij

)

1{nj(t)=0}

∣

∣

∣
C(n) = m





=
∑

j

νj Pr(nj(t) = 0
∣

∣C(n) = m)

+
∑

j

∑

i6=j

E
(

φi(ni(t))1{nj(t)=0}

∣

∣

∣
C(n) = m

)

λij .

(open network)
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Which patch-occupancy model?

Let C(n) =
∑

k 1{nk(t)>0} be the number of occupied
patches when the network is in state n. Then,

c(m) = E





∑

j

(

νj+
∑

i6=j

φi(ni(t))λij

)

1{nj(t)=0}

∣

∣

∣
C(n) = m





=
∑

j

νj Pr(nj(t) = 0
∣

∣C(n) = m)

+
∑

j

∑

i6=j

E
(

φi(ni(t))1{nj(t)=0}

∣

∣

∣
C(n) = m

)

λij .

(closed network)

MASCOS IR2008, December 2008 - Page 81



Which patch-occupancy model?

Owing to the symmetry . . .

c(m) = Jν Pr(n1(t) = 0|C(n) = m)

+J(J − 1)E
(

φ(n1(t))1{n2(t)=0}

∣

∣C(n) = m
) 1 − λ0

J − 1

= Jν
(

1 −
m

J

)

+ (1 − λ0)J E
(

φ(n1(t))1{n2(t)=0}

∣

∣C(n) = m
)

(open network)
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Which patch-occupancy model?

Owing to the symmetry . . .

c(m) = Jν Pr(n1(t) = 0|C(n) = m)

+J(J − 1)E
(

φ(n1(t))1{n2(t)=0}

∣

∣C(n) = m
) 1−λ0

J − 1

= Jν
(

1 −
m

J

)

+(1 − λ0)J E
(

φ(n1(t))1{n2(t)=0}

∣

∣C(n) = m
)

(closed network)
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Which patch-occupancy model?

And, for both the open and closed network,

e(m) = E

(

∑

i

φi(1)1{ni(t)=1}

∣

∣

∣C(n) = m

)

=
∑

i

φi(1) Pr(ni(t) = 1|C(n) = m)

= Jφ Pr(n1(t) = 1|C(n) = m)
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Which patch-occupancy model?

Before proceeding, recall that . . .

Open network

J – number of patches
ν – common external immigration rate
φ(n) – common propagation rate when n individuals

present at that patch – two cases:
“constant” φ(n) = φ1{n>0} ρ := ν/(φλ0) (< 1)

“linear” φ(n) = φn r := ν/(φλ0)

λ0 – common external emigration/removal probability
λij = (1 − λ0)/(J − 1)
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Which patch-occupancy model?

Closed network

J – number of patches
N – number of individuals (fixed)
φ(n) – common propagation rate when n individuals

present at that patch – two cases:
“constant” φ(n) = φ1{n>0}

“linear” φ(n) = φn

λij = 1/(J − 1)
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Equilibrium distributions

Propagation Open network∗ Closed network
rates πj(n) (n ≥ 0) π(N)(n) (n ∈ S

(N)
)

Constant (1 − ρ)ρn

(

N + J − 1

J − 1

)−1

Linear e−r rn

n!

N !

n1! n2! · · ·nJ !

(

1

J

)N

∗
n1, . . . , nJ are independent
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Which patch-occupancy model?c(m)

Closed constant

c(m) =
φ

J − 1
m(J − m) (m = 1, . . . , J)

Closed linear

c(m) =
Nφ

J − 1
(J − m) (m = 1, . . . , J)

Open constant

c(m) = ν(J −m)+
φ(1 − λ0)

(J − 1)(1 − ρ)
m(J −m) (m = 0, . . . , J)

Open linear

c(m) = ν(J−m)+
φ(1 − λ0)

J − 1

(

r

1 − e−r

)

m(J−m) (m = 0, . . . , J)

MASCOS IR2008, December 2008 - Page 88



Which patch-occupancy model?e(m)

Closed constant

e(m) = φN
m(m − 1)

(N + m − 1)(N + m − 2)
(m = 1, . . . , J, N ≥ 2)

Closed linear

e(m) = φNm
bm−1(N − 1)

bm(N)
(m = 1, . . . , J, N ≥ 2)

bm(N) =
∑m−1

k=0 (−1)k
(

m
k

)

(m − k)N (m = 1, . . . , J) b0(N) = δN0

Open constant

e(m) = φ(1 − ρ)m (m = 0, . . . , J)

Open linear

e(m) = φ

(

re−r

1 − e−r

)

m (m = 0, . . . , J)
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Which patch-occupancy model?

Closed constant

c(m) =
φ

J − 1
m(J−m) e(m) = φN

m(m − 1)

(N + m − 1)(N + m − 2)

Closed linear

c(m) =
Nφ

J − 1
(J − m) e(m) = φNm

bm−1(N − 1)

bm(N)

Open

c(m) = ν(J − m) +
c

J − 1
m(J − m) e(m) = em

Constant c = φ(1 − λ0)/(1 − ρ) e = φ(1 − ρ)

Linear c = φ(1 − λ0)r/(1 − e−r) e = φre−r/(1 − e−r)
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Which patch-occupancy model?

Closed constant

c(m) =
φ

J − 1
m(J − m) e(m) = φN

m(m − 1)

(N + m − 1)(N + m − 2)

Closed linear

c(m) =
Nφ

J − 1
(J − m) e(m) = φNm

bm−1(N − 1)

bm(N)

Open
“Correct” logistic growth

c(m) = ν(J − m) +
c

J − 1
m(J − m) e(m) = em

Constant c = φ(1 − λ0)/(1 − ρ) e = φ(1 − ρ)

Linear c = φ(1 − λ0)r/(1 − e−r) e = φre−r/(1 − e−r)
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Which patch-occupancy model?

Closed constant

c(m) =
φ

J − 1
m(J−m) e(m) = φN

m(m − 1)

(N + m − 1)(N + m − 2)

Closed linear

c(m) =
Nφ

J − 1
(J − m) e(m) = φNm

bm−1(N − 1)

bm(N)

Open

c(m) = ν(J − m) +
c

J − 1
m(J − m) e(m) = em

Constant c = φ(1 − λ0)/(1 − ρ) e = φ(1 − ρ)

Linear c = φ(1 − λ0)r/(1 − e−r) e = φre−r/(1 − e−r)
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Which patch-occupancy model?

Closed constant

c(m) =
φ

J − 1
m(J − m) e(m) = φN

m(m − 1)

(N + m − 1)(N + m − 2)

Closed linear
The SL model with immigration

c(m) =
Nφ

J − 1
(J − m) e(m) = φNm

bm−1(N − 1)

bm(N)

Open

c(m) = ν(J − m) +
c

J − 1
m(J − m) e(m) = em

Constant c = φ(1 − λ0)/(1 − ρ) e = φ(1 − ρ)

Linear c = φ(1 − λ0)r/(1 − e−r) e = φre−r/(1 − e−r)
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Which patch-occupancy model?

Closed constant

c(m) =
φ

J − 1
m(J−m) e(m) = φN

m(m − 1)

(N + m − 1)(N + m − 2)

Closed linear

c(m) =
Nφ

J − 1
(J − m) e(m) = φNm

bm−1(N − 1)

bm(N)

Open

c(m) = ν(J − m) +
c

J − 1
m(J − m) e(m) = em

Constant c = φ(1 − λ0)/(1 − ρ) e = φ(1 − ρ)

Linear c = φ(1 − λ0)r/(1 − e−r) e = φre−r/(1 − e−r)
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Which patch-occupancy model?

For the open network with linear propagation rates
(only), we can do much better.

We can evaluate the expected colonization rate and
the expected local extinction rate as time-dependent
quantities. This yields a corresponding time-inhomo-
geneous SL model:

ct(m) = ν(J − m) +
ct

J − 1
m(J − m) et(m) = etm.

Here ct = φ(1 − λ0)rt/(1 − e−rt), et = φrte
−rt/(1 − e−rt),

where rt = ν(1 − e−φλ0t)/(φλ0).
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Local population dynamics

We have not attempted to account for local population
dynamics (within patches).

Here is a simple embellishment that separates
emigration from death:

q(n,n + ej) = νj

q(n,n − ei) = dini + φi(ni)λi0

q(n,n − ei + ej) = φi(ni)λij
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Local population dynamics

We have not attempted to account for local population
dynamics (within patches).

Here is a simple embellishment that separates
emigration from death:

q(n,n + ej) = νj

q(n,n − ei) = dini + φi(ni)λi0

q(n,n − ei + ej) = φi(ni)λij

per-capita death rate
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Local population dynamics

For example, with linear propagation rates . . .

q(n,n + ej) = νj

q(n,n − ei) = dini + φiniλi0 = φiniλ
′
i0

q(n,n − ei + ej) = φiniλij

where λ ′
i0 = λi0 + di/φi.

(This can be accommodated within the present setup
with some minor adjustments.)
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Local population dynamics

And, something a little more complicated . . .

Let S = {0, . . . , N1} × · · · × {0, . . . , Nk} and define
non-zero transition rates as

q(n,n + ei) = νi + bi
ni

Ni
(Ni − ni)

q(n,n − ei + ej) = φi(ni)λij

q(n,n − ei) = dini + φi(ni)λi0

Here Ni is the population ceiling at patch i.
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Local population dynamics

And, something a little more complicated . . .

Let S = {0, . . . , N1} × · · · × {0, . . . , Nk} and define
non-zero transition rates as

q(n,n + ei) = νi + bi
ni

Ni
(Ni − ni)

q(n,n − ei + ej) = φi(ni)λij

q(n,n − ei) = dini + φi(ni)λi0

Here Ni is the population ceiling at patch i.

Local population dynamics
are in accordance with the
stochastic logistic model.

MASCOS IR2008, December 2008 - Page 100


	Collaborators
	Metapopulations
	Metapopulations
	Metapopulations
	Metapopulations
	Metapopulations
	Metapopulations
	Metapopulations
	Metapopulations
	Metapopulations
	Metapopulations
	Metapopulations
	Metapopulations

	Mainland-island configuration
	Mainland-island configuration
	Mainland-island configuration
	Mainland-island configuration
	Mainland-island configuration
	Mainland-island configuration
	Mainland-island configuration
	Mainland-island configuration
	Mainland-island configuration
	Mainland-island configuration
	Typical questions
	Patch-occupancy models
	Patch-occupancy models

	A continuous-time model
	The SL model simulation ($�oldsymbol {c}$ $�oldsymbol {<}$ $�oldsymbol {e}$)
	The SL model simulation ($�oldsymbol {c}$ $�oldsymbol {>}$ $�oldsymbol {e}$)
	The SL model
	The SL model
	The SL model

	The SL model simulation ($�oldsymbol {c}$ $�oldsymbol {<}$ $�oldsymbol {e}$)
	The SL model
	The SL model

	The SL model simulation ($�oldsymbol {c}$ $�oldsymbol {>}$ $�oldsymbol {e}$)
	The SL model
	The SL model

	The SL model
	The SL model
	The SL model simulation ($�oldsymbol {c}$ $�oldsymbol {<}$ $�oldsymbol {e}$)
	The SL model simulation ($�oldsymbol {c}$ $�oldsymbol {<}$ $�oldsymbol {e}$)
	The SL model
	The SL model simulation ($�oldsymbol {c}$ $�oldsymbol {>}$ $�oldsymbol {e}$)
	The SL model simulation ($�oldsymbol {c}$ $�oldsymbol {>}$ $�oldsymbol {e}$)
	The SL model
	The SL model
	The SL model
	The SL model

	The SL model ($�oldsymbol {c}$ $�oldsymbol {<}$ $�oldsymbol {e}$) $�oldsymbol {x}$ $�oldsymbol {=}$ $�oldsymbol {0}$ stable
	The SL model ($�oldsymbol {c}$ $�oldsymbol {>}$ $�oldsymbol {e}$) $�oldsymbol {x}$ $�oldsymbol {=}$ $�oldsymbol {1}$ $�oldsymbol {-}$ $�oldsymbol {e}�oldsymbol {/}�oldsymbol {c}$ stable
	The SL model
	The SL model

	The SL model ($�oldsymbol {c}$ $�oldsymbol {>}$ $�oldsymbol {e}$) $�oldsymbol {J}$ $�oldsymbol {	o }$ $�oldsymbol {infty }$
	The Mainland-Island model
	Network models
	Network models
	Open network
	Open network
	Open network
	Open network
	Open network
	Open network
	Closed network
	Closed network
	Network models
	Network models
	Open network
	Network models: propagation
	Network models: propagation

	Network models
	Network models
	Network models
	Network models

	Network models
	Open migration process
	Open migration process: examples
	Open migration process: examples
	Open migration process: examples

	Closed migration process ($�oldsymbol {N}$ individuals)
	Closed migration process ($�oldsymbol {N}$ individuals)

	Closed migration process: examples
	Closed migration process: examples

	Closed migration process: examples
	Closed migration process: examples

	Network models: we ask ...
	Network models: we ask ...
	Network models: we ask ...

	Network models: we ask ...
	The SL model: what is $�oldsymbol {c}$?
	The SL model: what is $�oldsymbol {c}$?
	The SL model: what is $�oldsymbol {c}$?

	The SL model: what is $�oldsymbol {c}$?
	Network models: what are $�oldsymbol {c}$ and $�oldsymbol {e}$?
	Network models: what are $�oldsymbol {c}$ and $�oldsymbol {e}$?
	Network models: what are $�oldsymbol {c}$ and $�oldsymbol {e}$?

	Which patch-occupancy model?
	Which patch-occupancy model?

	Symmetric network (open)
	Symmetric network (closed)
	Which patch-occupancy model?
	Which patch-occupancy model?

	Which patch-occupancy model?
	Which patch-occupancy model?
	Which patch-occupancy model?
	Which patch-occupancy model?
	Which patch-occupancy model?
	Which patch-occupancy model?
	Which patch-occupancy model?
	Which patch-occupancy model?
	Which patch-occupancy model?
	Equilibrium distributions
	Which patch-occupancy model? $�oldsymbol {c}�oldsymbol {(}�oldsymbol {m}�oldsymbol {)}$
	Which patch-occupancy model? $�oldsymbol {e}�oldsymbol {(}�oldsymbol {m}�oldsymbol {)}$
	Which patch-occupancy model?
	Which patch-occupancy model?
	Which patch-occupancy model?
	Which patch-occupancy model?
	Which patch-occupancy model?
	Which patch-occupancy model?
	Local population dynamics
	Local population dynamics
	Local population dynamics
	Local population dynamics
	Local population dynamics

