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» A metapopulation is a population that is confined
to a network of geographically separated habitat
patches (for example a group of islands).

» Individual patches may suffer local extinction.

» Recolonization can occur through dispersal of
Individuals from other patches.
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» A metapopulation is a population that is confined
to a network of geographically separated habitat
patches (for example a group of islands).

s Individual patches may suffer local extinction.

» Recolonization can occur through dispersal of
Individuals from other patches.

o In some instances there I1s an external source of
Immigration (mainland-island configuration).


































Given an appropriate model . ..

» Assessing population viability:

s What is the expected time to (total) extinction* ?
s What is the probabillity of extinction by time ¢* ?

» Can we improve population viability ?
s How do we estimate the parameters of the model ?

» Can we determine the stationary/quasi-stationary
distributions ?

*Or first total extinction in the mainland-island setup.
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Here we simply record the number n; of occupied
patches at each time ¢.

A typical approach is to suppose that (n;, t > 0) IS a
Markov chain in discrete or continuous time.




Here we simply record the number n; of occupied
patches at each time ¢.

A typical approach is to suppose that (n;, t > 0) IS a
Markov chain in discrete or continuous time.

Note. This entalls a high degree of homogeneity
among patches (in particular the colonization and
local extinction processes).




Suppose that there are J patches. Each occupied
patch becomes empty at rate ¢ and colonization of
empty patches occurs at rate ¢/.J for each suitable pair.

The state space of the Markov chain (n;, t > 0) IS
S =1{0,1,...,J} and the transitions are:

n—n+1 atrate  Sn(J —n)
n—n-—1 atrate en

| will call this model the stochastic logistic (SL) model,
though it has many names, having been rediscovered
several times since Feller* proposed it.

*Feller, W. (1939) Die grundlagen der volterraschen theorie des kampfes ums dasein
in wahrscheinlichkeitsteoretischer behandlung. Acta Biotheoretica 5, 11-40.
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Simulation of SL Model (J =20, ¢ =0.0325, e =0.1625)
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There are many ways to distinguish this behaviour
and, at the same time, evaluate some useful
guantities.
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There are many ways to distinguish this behaviour
and, at the same time, evaluate some useful
guantities.

For example, drift:

E(nirs — ne|ng) = ny (c —e—c %) s+ o(s).

So, ¢ < e Implies that the drift is always < 0 (small s).

If ¢ > e, then the driftis < 0 when n; > n* := J(1 —¢e/c)
and > 0 when n; < n*: the process is “attracted” to n*.
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Since the SL model is a birth-death process, we have
an explicit expression for the expected time to
extinction starting with n occupied patches:

where p = ¢/c.




Since the SL model is a birth-death process, we have
an explicit expression for the expected time to
extinction starting with n occupied patches:

where p = ¢/c.
This expression permits large-J asymptotics . ...
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The following hold in the limitas J — oco. If p > 1 (¢ <€),

!
gl <Pf 1)

and, for n > 2,
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Simulation of SL Model (J =1000, ¢ =0.1625, e =0.0325)
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Or, we can identify an approximating deterministic
model.
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large numbers that establishes convergence of the
family (X,;”) to the unique trajectory (z;) satisfying
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Or, we can identify an approximating deterministic
model. Let X;” = n;/J be the proportion of occupied
patches at time ¢. We can prove a functional law of
large numbers that establishes convergence of the
family (X,;”) to the unique trajectory (z;) satisfying

v =cri(1 —x¢) —exy = cxy (1 — p—x4),
namely

. (1 = p)xo
" ono+ (1—p—z0)ele—e)t’

There are two equilibria: = = 0 Is stable If ¢ < ¢, while
r=1—p(=1-e/c)is stable if ¢ > e.




Simulation of SL Model (J =20, ¢ =0.0325, ¢ =0.1625)
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This of course Is the classical Verhulst* model.

*Verhulst, P.F. (1838) Notice sur la loi que la population suit dans son accroisement.
Corr. Math. et Phys. X, 113-121.




This of course Is the classical Verhulst* model.

*Verhulst, P.F. (1838) Notice sur la loi que la population suit dans son accroisement.
Corr. Math. et Phys. X, 113-121.

Theorem If X|” — zp as J — oo, then the family of
processes (X;”) converges uniformly in probability on
finite time intervals to the deterministic trajectory (x;):
for every ¢ > 0,

lim Pr (sup ‘X;J) — .I‘S‘ > 6) = 0.

J—00 s<t
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Recall that there are J patches. Each occupied patch
pecomes empty at rate ¢ and colonization of empty
patches occurs at rate ¢/.J for each suitable pair.

Additionally, immigration from the mainland occurs
that rate v.

The state space of the Markov chain (n;, t > 0) IS
S =1{0,1,...,J} and the transitions are:

n—n+1 atrate U(J—n)—l—gn((]—n)

n—n—1 atrate en




We now record the numbers of individuals in the
various patches: a typical state is n = (ny,...,ny),
where n; Is the number of individuals in patch ;.

There are two cases: (1) the open system, where
Individuals may enter or leave the network through
external immigration and external emigration or
removal, and (2) the closed system, where there is a
fixed number N of individuals circulating.

In the open case individuals are assumed to arrive at
patch : from outside the network as a Poisson stream
with rate v; (if v; = 0 there Is no external immigration
process at that patch).
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We account for spatial structure as follows.

After a sojourn at patch 7, an individual either leaves
the network, with probability \;,, or proceeds to
another patch j, with probability A;; (in the closed case
we take \;p = 0); \;; thus specifies the relative
proportion of propagules emanating from patch i that
are destined for patch j, A\, being the proportion
destined to leave the network. For simplicity, we

set \;; = 0. Clearly >, \;; = 1.

The matrix A = (\;;) Is termed the routing matrix.
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Again for simplicity, we shall assume that A is chosen
so that an individual can reach any patch from
anywhere in the network. In the open case we shall
also assume that an individual can reach any patch
from outside the network and eventually leave the
network starting from anywhere.

In the closed case these conditions ensure that A Is
Irreducible and, hence, that there is a unigue collection
(a1, ...,ay) of strictly positive numbers which satisfy
the traffic equations a; = >, ai\ij, j=1,...,J (cf.
Kirchhoff’s law). Here we may assume without |oss of
generality that . a; = 1.




In the open case these conditions ensure that there is
a unigue positive solution (aq, ..., «y ) to the equations
aj =v;+ Y. aiNij, 7 =1,...,J. In this case «; Is the
arrival rate at patch j, while in the closed case «; IS
proportional to the arrival rate at patch ;.







When there are n individuals at patch j, propagation

occurs at rate ¢;(n) (an arbitrary function for each
patch). We assume that ¢;(0) =0 and ¢;(n) > 0
whenever n > 1.




When there are n individuals at patch j, propagation
occurs at rate ¢;(n) (an arbitrary function for each
patch). We assume that ¢;(0) =0 and ¢;(n) > 0
whenever n > 1. For example,

» ¢;(n) =¢; (n>1): the propagation rate IS ¢,,
Irrespective of how many individuals are present;

» ¢;(n) = ¢,;n: the propagation rate at patch j Is
proportion to the number of individuals present;

s ¢i(n) =¢;min{n,s;} (n > 1): the propagation rate IS
proportion to the number of individuals present,
but there Is a fixed maximum rate.




| have described the migration process of Whittle*.

*Whittle, P. (1967) Nonlinear migration processes. Bull. Inst. Int. Statist. 42, 642—647.

(Constant rates: Jackson, R.R.P. (1954) Queueing systems with phase-type service.
Operat. Res. Quart. 5, 109-120.)

The Markov chain (n(t), t > 0) has state space S = Z?
INn open case and transition rates

¢(n,n+ej)=v; (external arrival at patch j)

g(n,n —e;) = ¢;(n;)N\jo (removal from patch i)

q(n,n —e; +e;) = oi(n;)Ai; (mMigration from i to j).

(e; is the unit vector in Z/ with a 1 as its j-th entry)

e
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In the closed case we simply have

gn,n—e; + ej) — ¢Z(nz))\w (migration from i to ]) :

and state state space S is the subset of Z/ whose
elements satisfy n; +--- +ny; = N.
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The equilibrium behaviour of migration processes is
well understood.
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In the closed case we simply have
g(n,m —e;+e;) = ¢i(n;)A;; (Migration from i to j),

and state state space S is the subset of Z/ whose
elements satisfy n; +--- +ny; = N.

The equilibrium behaviour of migration processes is
well understood (but apparently not by ecologists).

Let 7(n) be the equilibrium probability of configuration

n:(nl,...,nJ).




Theorem An equilibrium distribution exists if

b _1+ZH7«1¢3 < forallj

INn which case

_ 1;[17rj(nj), where 7;(n) = b; Hlejﬁbj(r)'

Thus, in equilibrium, nq,...,n; are independent and
each patch ; behaves as if it were isolated with
Poisson input at rate «;.




(1) ¢j(n) =¢; (n>1). If pj :=a;/d; <1,

mi(n) = (1—p;)p} (geometric).
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mi(n) = (1—p;)p} (geometric).

(2) ¢j(n) = ¢jn.

n
mi(n) =e "L, where r; = % (Poisson).




(1) ¢j(n)=9¢; (n=1). It pj = a;/0; <1,

mi(n) = (1—p;)p} (geometric).

(2) ¢j(n) = ¢jn.

n
mi(n) =e "L wherer; = - (Poisson).
n! gbj

(3) ¢j(n) =¢;min{n,s;} (n>1). If pj == a;/(s;¢;) <1,

7j(n) = 7;(0) (Sfﬁ')n (n=1,....s;)
mj(n) = mi(s)p; (n=sj+1,...).

-
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Theorem An equilibrium distribution always exists
and Is given by

7T(N)

(nes™),

(N)
H Hn” 1 fby( )

where B" is a normalizing constant chosen so
that 7 sums to 1 over S,




Theorem An equilibrium distribution always exists
and Is given by

7™ (n) = B H 5 (mes™),
'r 1%

where B" is a normalizing constant chosen so
that 7 sums to 1 over S,

Note that nq,...,n; are not independent.




(1) ¢j(n) =¢; (n=>1).
The equilibrium distribution Is

J
r(m) = BV T o (nes™),

()
1=1

where p; = a;/¢;.




(1) ¢j(n) =¢; (n=>1).
The equilibrium distribution Is

J
r(m) = BV T o (nes™),

()
1=1

where p; = a;/¢;.

The marginal distribution of the number »; at
patch j is messy (the form depends on which of
the p;’s are distinct).




(2) ¢j(n) = ¢jn.
The equilibrium distribution is multinomial:

N e

(V)
T ) = gy (e ST

where Di = 7“7;/ Z]J:I Tj and ri = Ckz/¢z




(2) ¢j(n) = ¢jmn.

The equilibrium distribution is multinomial:

T (n) = pal i R (nes™),
beeemgl

The marginal distribution of the number »; at
patch j is binomial:

N N n —n
W;-)(n):<n>pj(1—pj)N (n=0,1,...,N).

-
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For each of the network models—but where there is
homogeneity among the patches—what is the
corresponding/appropriate patch-occupancy model?




For each of the network models—but where there is
homogeneity among the patches—what is the
corresponding/appropriate patch-occupancy model?

Do we recover the SL model?




For each of the network models—but where there is
homogeneity among the patches—what is the
corresponding/appropriate patch-occupancy model?

Do we recover the SL model?

Recall that n; was the number of occupied patches at
time ¢, that local extinction occurred at common rate e
and that colonization occurred at common rate ¢/J for
each of the n(J — n) occupied-unoccupied pairs:

n—n+1 atrate  5n(J —n)
n—mn-—1 at rate en

(closed network)
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For each of the network models—but where there is
homogeneity among the patches—what is the
corresponding/appropriate patch-occupancy model?

Do we recover the SL model?

Recall that n; was the number of occupied patches at
time ¢, that local extinction occurred at common rate e
and that colonization occurred at common rate ¢/J for
each of the n(J — n) occupied-unoccupied pairs:

n—n+1 atrate o(J—n)+5n(J—n)
n—n-—1 atrate en

(open network)

-
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What is the interpretation of ¢ in the SL model?
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What is the interpretation of ¢ in the SL model?

... colonization occurred at common rate ¢/.J for
each of the n(J — n) occupied-unoccupied pairs:

n—n+1 atrate  5n(J —n)

Even in the epidemiological literature*, where the SL
model—called the Susceptible-Infective-Susceptible
(SIS) model—is ubiquitous, there is still controversy
about interpretation of the ingredients of the model.

*Begon, M., Bennett, M., Bowers, R.G., French, N.P,, Hazel, S.M. and Turner, J. (2002)
A clarification of transmission terms in host-microparasite models: numbers, densities
and areas. Epidemiology and Infection 129, 147-153.
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What is the interpretation of ¢ in the SL model?

. colonization occurred at common rate ¢/.J for
each of the n(J — n) occupied-unoccupied pairs:

n—n+1 at rate [%n(J—n)]

Even in the epidemiological lite
model—called the Suscepiti
(SIS) model—is ubiquito
about interpretation of

ure*, where the SL
-Infective-Susceptible
, there is still controversy
e ingredients of the model.

*Begon, M., Bennett, M., Boyfers, R.G., French, N.P., Hazel, S.M. and Turner, J. (2002)
A clarification of transmission terms in host-microparasite models: numbers, densities
and areas. Epidemiology and Infection 129, 147-153.
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Is there a “network interpretation” of ¢, e and v?
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Joshua Ross (2008)* “... cis the rate of propagation
from any given occupied patch”.

*Personal communication




Is there a “network interpretation” of ¢, e and v?

Joshua Ross (2008)* “... cis the rate of propagation
from any given occupied patch”.

*Personal communication

We will use the various network models to find out.
There are some surprises.




Symmetric networks Suppose that ¢,(n) = ¢(n) for
all 5 (all patches produce propagules at the same
rate). We consider two cases (i) “constant” ¢(n) = ¢
(n > 1) (constant propagation rate ¢) and (ii) “linear”
o(n) = ¢n (¢ IS the per-capita propagation rate).




Symmetric networks Suppose that ¢,(n) = ¢(n) for
all 5 (all patches produce propagules at the same
rate). We consider two cases (i) “constant” ¢(n) = ¢
(n > 1) (constant propagation rate ¢) and (ii) “linear”
o(n) = ¢n (¢ IS the per-capita propagation rate).

We will also suppose that emigration to any patch j is
the same from all patches i: A\;; =1/(J — 1) In the
closed network, and, v; = v, \;g = \g and

Aij = (1 —Xo)/(J —1) In the open network.

This is sufficient for «; (= «) to be the same for all j:
a = 1/J (closed network) and o« = v/ )y (open network).










We will evaluate

(i) the equilibrium expected colonization rate ¢(m),
that is, the expected arrival rate at unoccupied
patches, conditional on there being m patches
occupied, and,

(i) the equilibrium expected local extinction rate e(m),
that is, the expected rate at which empty patches
appear, conditional on there being m patches
occupied.




We will evaluate

(i) the equilibrium expected colonization rate ¢(m),
that is, the expected arrival rate at unoccupied
patches, conditional on there being m patches
occupied, and,

(i) the equilibrium expected local extinction rate e(m),
that is, the expected rate at which empty patches
appear, conditional on there being m patches
occupied.

We might expect that, for some ¢, ¢ and v,

() c(m) =v(J —m)+ Sm(J —m) and (ll) e(m) = em.

m



We will evaluate

() the equilibrium expected colonization rate ¢(m),
that is, the expected arrival rate at unoccupied
patches, conditional on there being m patches
occupied, and,

(i) the equilibrium expected local extinction rate e(m),
that is, the expected rate at which empty patches
appear, conditional on there being m patches
occupied.

External colonization

We might expect that, for
(1) c(m)

me ¢, e and v,

m(J —m) and (il) e(m) = em.

I
=
N
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We will evaluate

() the equilibrium expected colonization rate ¢(m),
that is, the expected arrival rate at unoccupied
patches, conditional on there being m patches
occupied, and,

(i) the equilibrium expected local extinction rate e(m),
that is, the expected rate at which empty patches
appear, conditional on there being m patches
occupied.

Ross (2008)?

We might expect that, for sgr
() c(m) = v(J —m) —I—

e c, e and v,

(J—m) and (i) e(m) = em.




Let C(n) = >, 14, (1)>0y b€ the number of occupied
patches when the network is in state n. Then,

c(m) = (Z (VJ + Z i(ni(t Z]) 1{nj(t):0}‘0(n) = m)

] i#]
— Z v Pr(n;(t) = O‘O(n) =m)

] —I—E:E:E(gbz ni(£)) 1, ¢) O}|C )

] iFE]

(open network)




Let C(n) = >, 14, (1)>0y b€ the number of occupied
patches when the network is in state n. Then,

(Z 2 Gilni())A; 1{nj<t>=0}|0(n) m)

1]

> ) E (@(nz’ (D)1, (t)=0 |C (n) = m) i

J o iFE]

(closed network)




Owing to the symmetry ...

c(m) = JvPr(ni(t) =0|/C(n) =m)

1 — Ao

+J(J = 1E (¢(n1(t)) 11, (0—01 |C(n) = m) J—1

— Jv (1 - ?) + (1= X0)T E (¢(n1(£)1ny(6)—07 | C(m) = m)

(open network)




Owing to the symmetry ...
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And, for both the open and closed network,




Before proceeding, recall that . ..

Open network

J  — number of patches
v — common external immigration rate

¢(n) — common propagation rate when n individuals
present at that patch — two cases:

‘constant” ¢(n) = ¢lioy pi=v/(PAo) (< 1)
“linear”  ¢(n) = ¢n r.=v/(¢\o)
Ao — common external emigration/removal probability
Aij = (1=20)/(J = 1)




Closed network

J  — number of patches
N  — number of individuals (fixed)

¢(n) — common propagation rate when n individuals
present at that patch — two cases:

‘constant” ¢(n) = ¢ly,~0
“linear”  ¢(n) = ¢n
Aij = 1/(J—1)




Propagation Open network* Closed network
rates wi(n) (n > 0) ™ (n) (neS™)
N+J—1\""
Constant (1—p)p" +J
J—1
Linear -7 ok N
e —_— J—
n! nl!ng!---nj! J
Ny, ..., n are independent




Closed constant

cm) = —Z=m(J ~m) (m=1,....J)
cm) = —C=(—m) (m=1,.....)
e(m) = (= m) + Z 22 m(T =) (m=0......)
e(m) = w(-m)+ 25 (1 g =m) (m=0,....)




Closed constant

m(m — 1)

e(m):¢N(N+m—1)(N+m—2) (m=1,...,J, N > 2)
Closed linear
e(m) :(bNmbm_blﬂEé\]fV)_ D (m=1,...,J, N >2)

b (N) = S0 (DR (M) (m = k)Y (m=1,...,J) bo(N) = dno

Open constant

Open linear




Closed constant
m(m — 1)

¢
cm) = F—gmlI=m) - elm) = N o N = 2)

Closed linear

c(m) = 2 ~m) e(m) = qwmbm—b;fgv - )
cim) =v(J —m) + ﬁm(J —m) e(m)=-em
Constant C = ¢(1 — )\0)/(1 — ,0) € = ¢(1 — ,0)

Linear c=¢(1—=X)r/(1—e™") e=¢re"/(1—¢e")




Closed constant

) B m(m — 1)
[c(m) = m(J - ”’L)} em) =N N m - DN+ m—2)

A 3

“Correct” logistic grovvth]




Closed constant
m(m — 1)

¢
cm) = F—gmlI=m) - elm) = N o N = 2)

Closed linear

c(m) = 2 ~m) e(m) = qwmbm—b;fgv - )
cim) =v(J —m) + ﬁm(J —m) e(m)=-em
Constant C = ¢(1 — )\0)/(1 — ,0) € = ¢(1 — ,0)

Linear c=¢(1—=X)r/(1—e™") e=¢re"/(1—¢e")




[The SL model with immigration]

. /

elm) = v = m) + 3 m(J —m)c(m) = em

Constant C = ¢(1 — )\0)/(1 — ,0) € = gb(l — ,0)
Linear c=¢(1—=X)r/(1—e™") e=¢re"/(1—¢e")




Closed constant
m(m — 1)

¢
cm) = F—gmlI=m) - elm) = N o N = 2)

Closed linear

c(m) = 2 ~m) e(m) = qwmbm—b;fgv - )
cim) =v(J —m) + ﬁm(J —m) e(m)=-em
Constant C = ¢(1 — )\0)/(1 — ,0) € = ¢(1 — ,0)

Linear c=¢(1—=X)r/(1—e™") e=¢re"/(1—¢e")




For the open network with linear propagation rates
(only), we can do much better.

We can evaluate the expected colonization rate and

the expected local extinction rate as time-dependent
guantities. This yields a corresponding time-inhomo-
geneous SL model:

c(m) =v(J —m)+ J—_tlm(J —m)  eq(m) =em.

Here ¢, = ¢(1 — Xg)ri /(1 — e "), ep = pre " /(1 —e™ ™),
where r; = v(1 — e~ /(o).




We have not attempted to account for local population
dynamics (within patches).

Here is a simple embellishment that separates
emigration from death:

¢(n,n +ej) = v;
q(n,m —e;) = din; + ¢i(n;) Mo
q(n, n —e; + ej) — gbz(nz))\w




We have not attempted to account for local population
dynamics (within patches).

Here is a simple embellishment that separates
emigration from death:

g(n,n+ej) =,

per-capita death rate




For example, with linear propagation rates . ..
¢(n,m+e;) =v,
g(n,n —e;) = ding + dinihio = diniAjg
g(n,n —e; + ej) = piniAij
where \/, = \io + d;/¢;.

(This can be accommodated within the present setup
with some minor adjustments.)




And, something a little more complicated ...
Let S =1{0,..., N1} x---x{0,..., N} and define
non-zero transition rates as
q(n,n+e;) = vi + bigt(Ni — ni)
g(n,m —e; +ej) = gi(n;) A
q(n,n — e;) = din; + ¢;i(ni) Mo

Here N; Is the population ceiling at patch .




And, something a little more complicated ...

Let S =1{0,..., N1} x---x{0,..., N} and define
non-zero transition rates as

qg(n,n — e;)

Here N; Is the population ceiling~at patch,:.

Local population dynamics
are in accordance with the

stochastic logistic model.
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