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» A metapopulation is a population that is confined
to a network of geographically separated habitat
patches (for example a group of islands).

» Individual patches may suffer local extinction.

» Recolonization can occur through dispersal of
Individuals from other patches.
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» A metapopulation is a population that is confined
to a network of geographically separated habitat
patches (for example a group of islands).

s Individual patches may suffer local extinction.

» Recolonization can occur through dispersal of
Individuals from other patches.

o In some instances there I1s an external source of
Immigration (mainland-island configuration).


































Given an appropriate model . ..

» Assessing population viability:

s What is the expected time to (total) extinction* ?
s What is the probabillity of extinction by time ¢* ?

» Can we improve population viability ?
s How do we estimate the parameters of the model ?

» Can we determine the stationary/quasi-stationary
distributions ?

*Or first total extinction in the mainland-island setup.
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We record the number n; of occupied patches at each
time ¢ and suppose that (n;, t > 0) Is a Markov chain in
discrete or continuous time.




We record the number n; of occupied patches at each

time ¢ and suppose that (n;, t > 0) Is a Markov chain in
discrete or continuous time.

In Lecture 1 we looked at the stochastic logistic (SL)
model of Feller*.

*Feller, W. (1939) Die grundlagen der volterraschen theorie des kampfes ums dasein
in wahrscheinlichkeitsteoretischer behandlung. Acta Biotheoretica 5, 11-40.




There are J patches. Each occupied patch becomes
empty at rate ¢ and colonization of empty patches
occurs at rate ¢/J for each occupied-unoccupied pair.

The state space of the Markov chain (n;, t > 0) IS
S =14{0,1,...,J} and the transitions are:
n—mn+l1 atrate  Sn(J —n)
n—mn-—1 atrate en




There are J patches. Each occupied patch becomes
empty at rate ¢ and colonization of empty patches
occurs at rate ¢/J for each occupied-unoccupied pair.

The state space of the Markov chain (n;, t > 0) IS
S =14{0,1,...,J} and the transitions are:
n—mn+l1 atrate  Sn(J —n)
n—mn-—1 atrate en

Mainland-island version (v is the immigration rate):

n—n+1 atrate o(J—n)+5n(J—n)

n—n—1 atrate en
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We identified an approximating deterministic model for
the proportion, X;” = n;/J, of occupied patches at
time ¢. A functional law of large numbers established
convergence of the family (X;”) to the unique
trajectory (z;) satisfying

v =cr(1 —2¢) —exy = cxy (1 — p—x4),

namely

— (1 —p)zo
t To - (1 —p— 330) 6_(6_6)t

being the classical Verhulst* model.

)

*Verhulst, P.F. (1838) Notice sur la loi que la population suit dans son accroisement.
Corr. Math. et Phys. X, 113-121.
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Simulation of SL Model (J =20, ¢ =0.0325, ¢ =0.1625)

— (1—p)zo
zo+(1—p—x0) exp(—(c—e)t)

- l—-p=1—¢€e/c=-4.0 n(0)=18




Simulation of SL Model (J =20, ¢ =0.1625, e =0.0325)
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Theorem If X|” — zp as J — oo, then the family of
processes (X;”) converges uniformly in probability on
finite time intervals to the deterministic trajectory (z;):
for every ¢ > 0,

lim Pr (Sup |X§‘]) — xs‘ > e) = (.

J—00 s<t
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Simulation of SL Model (J =1000, ¢ =0.1625, e =0.0325)
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Many species have life cycles (often annual) that
consist of distinct phases, and the propensity for
colonization and local extinction is different in each

phase.




Many species have life cycles (often annual) that
consist of distinct phases, and the propensity for
colonization and local extinction is different in each

phase. Examples:

The Vernal pool fairy shrimp (Branchinecta lynchi) and
the California linderiella (Linderiella occidentalis), both

listed under the Endangered Species Act (USA)

The Jasper Ridge population of Bay checkerspot
butterfly (Euphydryas editha bayensis), now extinct




Egg ~ 4 days

Larva (caterpillar) ~ 14 days

Pupa (chrysalis) ~ 7 days

Adult (butterfly) ~ 14 days




Colonization is restricted to the adult phase, and there
IS a greater propensity for local extinction in the
non-adult phases.
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Colonization is restricted to the adult phase, and there
IS a greater propensity for local extinction in the
non-adult phases.

We will assume that that colonization (C) and
extinction (E) occur in separate distinct phases.

There are several ways to model this:
» A quasi-birth-death process with two phases

» A non-homogeneous continuous-time Markov
chain (cycle between two sets of transition rates)

» A discrete-time Markov chain
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Colonization is restricted to the adult phase, and there
IS a greater propensity for local extinction in the
non-adult phases.

We will assume that that colonization (C) and
extinction (E) occur in separate distinct phases.

There are several ways to model this:
» A quasi-birth-death process with two phases

s A non-homogeneous continuous-time Markov
chain (cycle between two sets of transition rates)

» A discrete-time Markov chain [

-
m



Recall that there are J patches and that n; is the
number of occupied patches at time ¢. We suppose
that (ns, t =0,1,...) Is a discrete-time Markov chain
taking valuesin S ={0,1,...,J} with a 1-step transition
matrix P = (p;;) constructed as follows.




Recall that there are J patches and that n; is the
number of occupied patches at time ¢. We suppose
that (ns, t =0,1,...) Is a discrete-time Markov chain
taking values in S = {0,1,...,J} with a 1-step transition
matrix P = (p;;) constructed as follows.

The extinction and colonization phases are governed
by their own transition matrices, £ = (¢;;) and C' = (¢;;).

We let P = EC If the census is taken after the
colonization phase or P = CFE If the census Is taken
after the extinction phase.




P=FEC t—1 t t+1 t+2

P=CFE t—1 t t+1 t 42




Suppose that
patch with pro

ocal extinction occurs at any given
pability e (0 < e < 1), Independently of

other occupied patches. So, the number of extinctions
when there are : patches occupied has a binomial
Bin(i, e) distribution, and therefore

€iik = (;) e"(1—e) % (k=0,1,...,1).

We also have e;; =0 1f j > 1.




Suppose that colonization occurs according to the
following mechanism.

If there are i occupied patches, then each unoccupied
patch is colonized with probability ¢; = (i/J)c, where

c € (0,1] Is a fixed maximum colonization potential, the
(hypothetical) probability that a single unoccupied
patch is colonized by the fully occupied network.

So, the unoccupied patches are colonized
iIndependently with the same probability, this
probability being proportional to the number of
patches with the potential to colonize.




Therefore, the number of colonizations when there

are i patches occupied has a binomial Bin(J — ¢, ¢;)
distribution, and so

J—i -
C’i,’i+k — ( o Z)C/]f(l —Ci)J_z_k, (k:O,l,,J—Z),

In particular, ¢y; = dp;. We also have ¢;; = 0, for j < .
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In particular, ¢y; = dp;. We also have ¢;; = 0, for j < .

Notice that 0 Is an absorbing state and C' = {1,...,J} IS
a communicating class.




Therefore, the number of colonizations when there
are i patches occupied has a binomial Bin(J — ¢, ¢;)

distribution, and so

J—i -
Ci,’i+k — ( o Z)C/]f(l —Cz‘)J_z_k, (k:O,l,,J—Z),

In particular, ¢y; = dp;. We also have ¢;; = 0, for j < .
Notice that 0 Is an absorbing state and C' = {1,...,J} IS
a communicating class.

There are other sensible choices for ¢;: for example
ci =c(l—(1—ci/c))orc =1—exp(—if/J).




We can evaluate P elementwise as follows.
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,,_min{i’j} D (1 _ okgi—k (T RN kg J—j
pzy—z k(—e)e ik 3 (—Ck) :

k=1




We can evaluate P elementwise as follows. If P = EC,
then po; = doj, pio = eio = €', i > 1, and, for i, 5 > 1,

,,_min{i’j} D (1 _ okgi—k (T RN kg J—j
ng—z k(—e)e ik 3 (—Ck) :

k=1

If P =CFE, then py; = dy;, and, fori > 1 and j > 0,

Pij = Z]: (i:j>cfi(1—ci)Jk<kk )ekj(l—e)j.

k=max{i,j} —J




We can evaluate P elementwise as follows. If P = EC,
then po; = doj, pio = eio = €', i > 1, and, for i, 5 > 1,

min{i,j } ; | Tt - |
pi= 3 @ (1~ offci=h ( - k) FR)
k=1 J
If P =CFE, then py; = dy;, and, fori > 1 and j > 0,
! J k . .
Pij = Z (k— ) cr Z(1—Cz)']k<]_€_ .)ek](l—e)J.
k=max{i,j} ! J

In particular, for i > 1, pjo = €*(1 — ¢;(1 —e))’ 7.




For the C E-model,
E(z =1 =(e+(1—e)2)'(1—(1—e)g(l—2))"""

Thus, given n; = i, n;,1 has the same distribution as
B1 + By, where B; and B, are two independent
random variables with B; ~ Bin(i,1 — ¢) and

By ~ Bin(J — i, (1 — e)¢).




For the C E-model,
E(z" ny =i) = (e+ (1 —e)2)'(1 — (1 —e)ei(1 — 2))7 7

Thus, given n; = i, n;,1 has the same distribution as
B1 + By, where B; and B, are two independent
random variables with B; ~ Bin(i,1 — ¢) and

By ~ Bin(J — i, (1 — e)¢).

It is as If each of the i occupied patches remains
occupied with probability 1 — e and each of the J —i
unoccupied patches becomes occupied with
probabllity (1 — e)¢;, all J patches being affected
iIndependently.

-
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For the EC-model, the best we can do Is
E(z" ny = 1) = E{2P (1= ep(1 - 2)) P},

where B ~ Bin(z,1 — e).




However, note the large-J asymptotics when ¢; = ic/J.
Write pi” (z) = E(2"!|n; = i).

For the C'E-model,

lim p\” (2) = [e + (1 — e)zexp(—c(1 —e)(1 — 2))]".

J—00

For the EC-model,

lim p\” (2) = [e + (1 — e)zexp(—c(1 — 2))]".

J—00




However, note the large-J asymptotics when ¢; = ic/J.
erte pij)(Z) — E(Znt+1 ’nt — Z)

For the C E-model,

lim pi”(2) =[e+ (1 — €)zexp(—c(1 —e)(1 — NI

J—00

For the EC-model,

lim pi” (2) =[e + (1 — e)zexp(—c(1 — 2))]*

J—00

Branching!




Now S = {0,1,...}.




Now S = {0,1,...}.

The number of extinctions when there are i patches
occupied follows the Bin(i, e) law (as before), but in the
colonization phase the number of colonizations when
there are i patches occupied follows a Poisson(ic) law
(previously a binomial Bin(J —i,ic/J) law).




Now S = {0,1,...}.

The number of extinctions when there are i patches
occupied follows the Bin(i, e) law (as before), but in the
colonization phase the number of colonizations when
there are i patches occupied follows a Poisson(ic) law
(previously a binomial Bin(J —i,ic/J) law).

The effect is . ..

Theorem Both infinite patch models are Galton-
Watson branching processes.




The occupied patches independently produce
“offspring” according to the following distributions.




The occupied patches independently produce
“offspring” according to the following distributions.

For the EC-model, p;g = e and

o)1

j—1)!

the interpretation being that each individual “dies” with
probability e or otherwise Is joined by a random
number of new offspring that follows a Poisson(c) law.

pi; = (1 —e¢) eXp(—C)( (j > 1),




For the C' E-model, p1g = eexp(—¢(1 —¢)) and

c(1—e))—1
p1; = (1 —e)exp(—c(l — e))( ((1] — BT
Feenp(—c(1 eIl

The individual survives with probability 1 — e or dies
with probability ¢, and there is a random number of
new offspring that follows a Poisson(c(1 — ¢e)) law.




For the C' E-model, p1g = eexp(—¢(1 —¢)) and

g—1

(c(1 —¢))
(7 —1)!
(c(1—¢))

g

p1j = (1 —e)exp(—c(l —e))

+eexp(—c(l —e)) (1 =1).
The individual survives with probability 1 — e or dies

with probability ¢, and there is a random number of
new offspring that follows a Poisson(¢(1 — ¢e)) law.

We can now invoke the encylopaedic theory of
branching processes.
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For both the £EC and C E models, the mean number of
offspring x Is given by = (14 ¢)(1 —e).




For both the EC and CE models, the mean number of
offspring p 1s given by = (1 +¢)(1 —e). The
corresponding variance o? is:

For the EC-model 62 = (1 —e)((1 +¢)%e +c).
For the CE-model 0% = (e + ¢)(1 —e).




For both the EC and CE models, the mean number of
offspring p 1s given by = (1 +¢)(1 —e). The
corresponding variance o? is:

For the EC-model 02 = (1 —e)((1 + ¢)?¢e +¢).
For the CE-model 0% = (e + ¢)(1 —e).

Notice that 0%, — 02, = c(2+ ¢)e(1 —¢) > 0.
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For both the EC and CE models, the mean number of
offspring p 1s given by = (1 +¢)(1 —e). The
corresponding variance o? is:

For the EC-model 02 = (1 —e)((1 + ¢)?¢e +¢).
For the CE-model 02 = (e + ¢)(1 — e).
Notice that 0%, — 02, = c(2+ ¢)e(1 —¢) > 0.

Recall that, given ng =4, E(n;) = iut and

ot fu=1 (e=c/(1+¢))

V Nng) = '
i {i(f(ut—l)utl/(u—l) Tp#1 (e#c¢/(1+c)).




Theorem For both models extinction occurs with
probability 1 if and only if e > ¢/(1 + ¢); otherwise the
extinction probability » is the unique solution to s = p(s)
on the interval (0, 1), where:

EC-model: p(s) =e+ (1 —e)sexp(—c(1 — s))

C E-model: p(s) = (e+ (1 —¢e)s) exp(—c(1 —e)(1 — s))




Theorem For both models extinction occurs with
probability 1 if and only if e > ¢/(1 + ¢); otherwise the
extinction probability » is the unique solution to s = p(s)
on the interval (0, 1), where:

EC-model: p(s) =e+ (1 —e)sexp(—c(1 — s))
C E-model: p(s) = (e+ (1 —¢e)s) exp(—c(1 —e)(1 — s))

And much more ...
» The expected time to extinction.

» Yaglom’s theorem on limiting-conditional
(quasi-stationary) distributions.




Recall that . ..

In the extinction phase the number of extinctions when
there are i patches occupied follows a Bin(i, e) law.

In the colonization phase the number of colonizations
when there are i patches occupied follows a binomial
Bin(J —i,¢;) law, where ¢; = ic/J.
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In the extinction phase the number of extinctions when
there are i patches occupied follows a Bin(i, e) law.

In the colonization phase the number of colonizations

when there are : patches occupied follows a binomial
Bin(J —i,¢;) law, where ¢; = ic/J.
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we study deterministic and Gaussian approximations.




Recall that . ..

In the extinction phase the number of extinctions when
there are i patches occupied follows a Bin(i, e) law.

In the colonization phase the number of colonizations
when there are : patches occupied follows a binomial
Bin(J —i,¢;) law, where ¢; = ic/J.

Exact analytical results are difficult to come by—later
we study deterministic and Gaussian approximations.

Numerical procedures are routine.




Metapopulation simulation P = EC' (J =100, ng =95, e =0.44, ¢ =0.8)
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Metapopulation simulation P = CE (J =100, ng =95, e =0.44, ¢ =0.8)
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Extinction probability (J =100, t =40, e

=0.44, ¢ =0.9)
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Expected extinction time (J =100, e =0.44, ¢ =0.8)
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Metapopulation simulation P = EC' (J =100, ng =95, ¢ =0.3, ¢ =0.8)
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Metapopulation simulation P = CE (J =100, nyp =95, ¢ =0.3, ¢ =0.8)
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We can model this behaviour using a limiting
conditional distribution (lcd) (m;,j =1,...,.J); often
called a quasi-stationary distribution (gsd)*.

lcd:

tlim Pr(n; = jlny # 0) = m;.
gsd:
Pr(ng =7)=m; = Pr(ng =jne #0)=m; (V¢ >0).

*In the infinite state space setting, the distinction between Icd and
is both subtle and interesting.




Metapopulation simulation P = EC' (J =100, ng =95, ¢ =0.3, ¢ =0.8)
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Metapopulation simulation P = CE (J =100, nyp =95, ¢ =0.3, ¢ =0.8)
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In the extinction phase the number of extinctions when
there are i patches occupied follows a Bin(i, e) law.

In the colonization phase the number of colonizations
when there are i patches occupied follows a binomial

Bin(J —i,c) law.




In the extinction phase the number of extinctions when
there are i patches occupied follows a Bin(i, e) law.

In the colonization phase the number of colonizations
when there are i patches occupied follows a binomial
Bin(J — ¢, ¢) law. Now the colonization probability ¢

does not depend on how many patches are occupied.




In the extinction phase the number of extinctions when
there are i patches occupied follows a Bin(i, e) law.

In the colonization phase the number of colonizations
when there are i patches occupied follows a binomial
Bin(J — ¢, ¢) law. Now the colonization probability ¢

does not depend on how many patches are occupied.

This greatly simplifies the analysis!




The behaviour of both models can be summarized In
terms of a single pair of parameters (p, q):

EC-model: p=1—e(l—c)and¢g=c¢

CE-model: p=1—-—eand ¢=(1—¢)c




The behaviour of both models can be summarized In
terms of a single pair of parameters (p, q):

EC-model: p=1—e(l—c)and¢g=c¢
CE-model: p=1—-—eand ¢=(1—¢)c

Proposition Given n; = ¢, n;.1 has the same
distribution as B; + By, where By and B, are two
Independent random variables with B, ~ Bin(¢, p) and

By ~ Bln(J — i,q).




Proposition Given n; = i, nsy1 has the same
distribution as By + B», where By and B, are two
Independent random variables with B, ~ Bin(¢, p) and
By ~ Bln(J — i,q).

It is as If each of the i currently occupied patches
remains occupied with probability p and each of

the J — i currently unoccupied patches become
occupied with probability ¢ (all patches being affected
iIndependently).




Proposition Given n; = i, nsy1 has the same
distribution as By + B», where By and B, are two
Independent random variables with B, ~ Bin(¢, p) and

By ~ Bln(J — i,q).

It is as If each of the i currently occupied patches

remains occupied with probabi
the J — i currently unoccupied
occupied with probability ¢ (all

Ity p ano
patches

each of
hbecome

patches

peing affected

iIndependently). Thus the process has some of the

character of an urn model.




Proposition Given n; = i, nsy1 has the same
distribution as By + B», where By and B, are two
Independent random variables with B, ~ Bin(¢, p) and
By ~ Bln(J — i,q).

It is as If each of the i currently occupied patches
remains occupied with probability p and each of

the J — i currently unoccupied patches become
occupied with probability ¢ (all patches being affected
iIndependently). Thus the process has some of the
character of an urn model.

We can improve on this result . ..

-
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Reparameterize by settinga =p — ¢ = (1 —e)(1 — ¢),
being the same for both models (0 < a < 1), and
¢* = q/(1 —a). Define sequences (p;) and (q;) by

¢ =q¢(1—ad) and p =q+d (t > 0).




Reparameterize by settinga =p — ¢ = (1 —e)(1 — ¢),
being the same for both models (0 < a < 1), and
¢* = q/(1 —a). Define sequences (p;) and (q;) by

¢ =q¢(1—ad) and p =q+d (t > 0).

Theorem Given ng = i patches occupied initially, the
number n; occupied at time ¢ has the same distribution
as B; + By, where B; and B, are independent random
variables with B; ~ Bin(i,p;) and By ~ BIn(J — i, ¢;).
The limiting distribution of n; Is Bin(J, ¢*).




Theorem Given ng = ¢ patches occupied initially, the
number n; occupied at time ¢ has the same distribution
as B; + Bs, where B; and B, are independent random
variables with B; ~ Bin(i,p;) and By ~ BIn(J — i, ¢;).
The limiting distribution of n; Is Bin(J, ¢*).

It is as If each of the i initially occupied patches
remains occupied with probability p; and each of

the J — i initially unoccupied patches become
occupied with probability ¢; (all patches being affected
Independently). The limiting expected proportion
occupied is ¢*.




We have In particular that
E(nino = i) = ipt + (J — i)qr = ia" + Jqu

(— Jg"ast — oo)
and

var(ni|ng = i) = ipi(1 — pt) + (J —i)qe(1 — qt)
=ia' (1 —a")(1 — 2¢%) + Jq: (1 — 1)

(= J¢"(1—qg")ast — ).




Mainland-Island simulation P = EC (J =100, ng =95, e =0.6, ¢ =0.6)
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Mainland-Island simulation P = EC (J =100, ng =95, e =0.6, ¢ =0.6)
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Mainland-Island simulation P = CE (J =100, ng =95, e =0.6, ¢ =0.6)
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Now suppose that ¢ = d/.J (imagine that a fixed
external colonization potential d is distributed evenly
among all J patches).




Now suppose that ¢ = d/.J (imagine that a fixed
external colonization potential d is distributed evenly
among all J patches).

In the limit as J — oo, the number of unoccupied
patches that are colonized has a Poisson distribution
with mean d (all unoccupied patches being affected
Independently).




Now suppose that ¢ = d/.J (imagine that a fixed
external colonization potential d is distributed evenly

among all J patches).

In the limit as J — oo, the number of unoccupied
patches that are colonized has a Poisson distribution
with mean d (all unoccupied patches being affected
Independently).

Thus, the analogous infinite-patch model has ¢;; = 0
for j <iand ¢;; = exp(=d)d?~*/(j —i)! (j =i, +1,...).




Now suppose that ¢ = d/.J (imagine that a fixed
external colonization potential d is distributed evenly

among all J patches).

In the limit as J — oo, the number of unoccupied
patches that are colonized has a Poisson distribution
with mean d (all unoccupied patches being affected
Independently).

Thus, the analogous infinite-patch model has ¢;; = 0
for j <iand ¢;; = exp(=d)d?~*/(j —i)! (j =i, +1,...).

Note that in contrast with our earlier infinite-state
models, state 0 is no longer absorbing.




Let m = d for the EC-model and m = (1 — e)d for the
C' E-model.




Let m = d for the EC-model and m = (1 — e)d for the
C' E-model.

Proposition Given n; = ¢, n;.1 has the same
distribution as B + M, where B and M are two
iIndependent random variables with B ~ Bin(i, 1 — e)
and M ~ Poisson(m).




Let m = d for the EC-model and m = (1 — e)d for the
C' E-model.

Proposition Given n; = ¢, n;.1 has the same
distribution as B + M, where B and M are two
iIndependent random variables with B ~ Bin(i, 1 — e)
and M ~ Poisson(m).

It is as If each of the i currently occupied patches
remains occupied with probability 1 — e and a Poisson
distributed number of unoccupied patches become
occupied, the mean number being m (all patches
being affected independently).

-
m



Indeed we observe that . ..

Proposition The process (n;) Is a Galton-Watson
process with immigration: each occupied patch has a
Bernoulli Bin(1,1 — e) distributed number of offspring
and in each generation there is a Poisson(m) number
of immigrants. The mean number of offspringis 1 — e
(< 1) and the mean number of Immigrants is m (< o).




Indeed we observe that . ..

Proposition The process (n;) Is a Galton-Watson
process with immigration: each occupied patch has a
Bernoulli Bin(1,1 — e) distributed number of offspring
and in each generation there is a Poisson(m) number
of immigrants. The mean number of offspringis 1 — e
(< 1) and the mean number of Immigrants is m (< o).

Again we can invoke general theory.




Theorem For the infinite-patch model with
parameters e and m, given ny = i patches occupied
initially, the number n; occupied at time ¢ has the same
distribution as B; + M;, where B, and M, are two
iIndependent random variables with B; ~ Bin(z, (1 — e)?)
and M; ~ Poisson(m;), where m; = (m/e)(1 — (1 —e)?).
The limiting distribution of n; Is Poisson(m/e).




Theorem For the infinite-patch model with

parameters e

and m, given ny = i patches occupied

initially, the number n; occupied at time ¢ has the same
distribution as B; + M;, where B, and M, are two
iIndependent random variables with B; ~ Bin(z, (1 — e)?)
and M; ~ Poisson(m;), where m; = (m/e)(1 — (1 —e)?).
The limiting distribution of n; Is Poisson(m/e).

It is as If each of the i initially occupied patches

remains occu
Poisson distri
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nied with probability (1 — e)! and a
puted number unoccupied patches

nied, the mean number being m; (all
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Mainland-Island simulation P = EC (ng =10, e =0.6, d =10)
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Mainland-Island simulation P = EC (ng =10, e =0.6, d =10)
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Mainland-Island simulation P = CE (ng =10, e =0.6, d =10)
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Mainland-Island simulation P = CE (ng =10, e =0.6, d =10)
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A measure of persistence for the Mainland-Island
models Is the expected time to first total extinction of
the island network.




Theorem For the J-patch Mainland-Island model
with parameters p and ¢, given ng = ¢ patches
occupied initially, the expected time to first enter
state 0 Is given by

()it % ()ev

(1+ba™) = (1= a")'(1+ba")"~"]

<

1430 2 1 — itk

- (J - z) b*(1 — 8,00k0)

7
I

0

Mz T

i
-

where a =p—qgand b= q/(1 —p).




Theorem For the infinite-patch Mainland-Island
model with parameters ¢ and m, given ny = i patches
occupied initially, the expected time to first enter
state 0 Is always finite and is given by

pio = i: <Z> (—1)7*1 i(l — e} exp (%(1 — e)")
n=0

=1
o

=Y - -emyen(

n=0

m

(1 — e)"’) .
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