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Colonization and extinction happen in distinct,
successive phases.

Colonization: unoccupied patches become occupied
iIndependently with probability ¢(n;/N), where

c:[0,1] — [0, 1] IS continuous, increasing and concave,
and ¢’(0) > 0.

Extinction: occupied patches remain occupied
Independently with probabillity s.
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We have the following Chain Binomial structure:

Nii1 2 Bin (nt -+ Bin (N — Ny, c(nt/N)) , s)




We have the following Chain Binomial structure:

nis1 = Bin (nt + Bin(N— . c(nt/N)) , S)




We have the following Chain Binomial structure:

Nti1 = Bin(nt + Bin (N — ng. c(nt/N)) , 3)




We have the following Chain Binomial structure:

Npy1 = Bin(nt -~ Bin (N — nt,c(nt/N)),s)




We have the following Chain Binomial structure:

Ney1 = Bin(nt + Bin (N — Ny, c(nt/N)) , S)




We have the following Chain Binomial structure:

0. Bin (nt + Bin (N — Ny, c(nt/N)) , s)




We have the following Chain Binomial structure:

Nii1 2 Bin (nt -+ Bin (N — Ny, c(nt/N)) , s)




CE Model simulation (N =100, ng =95, s =0.56, ¢(z) = cx with ¢ =0.7)
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CE Model simulation (N =100, ng =5, s =0.8, ¢(x) = cx with ¢ =0.7)

© o % ° °
) ° 0q0®
LN ‘ ... ¢ ° ‘o.~.o * :‘ : o“. ° ®e :
P Rand ®e° Me® o
° e ° °
°°® i o & i
° °
o°, g
‘ ‘
10 20 30 40 50 60 70 80 90
t




CE Model simulation (N =100, ng =95, s =0.56, ¢(z) = cx with ¢ =0.7)

100 l T T T T T T T T T

d e® o o° { 2 °
o o o o

® ° 90%0,0,000,00,° o
o | | | | | | | | |

0 5 10 15 20 25 30 35 40 45

50




CE Model simulation (N =100, ng =5, s =0.8, ¢(x) = cx with ¢ =0.7)

100 T T T T T T T T T

90 .

60 o °® o ° o % & . ° -

401 .

30 -

0 10 20 30 40 50 60 70 80 90 100




1ool T T T T T T T T T T

CE Model simulation (N =100, ng =95, s =0.56, ¢(z) = cx with ¢ =0.7)
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CE Model simulation (N =100, ng =95, s =0.56, ¢(z) = cx with ¢ =0.7)
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CE Model simulation (N =100, ng =5, s =0.8, ¢(x) = cx with ¢ =0.7)
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Prelude If ¢(0) =0 and ¢ has a continuous second
derivative near 0, then, for fixed n,

Bin(N — n,c(n/N)) = Poi(mn), as N — oo,

where m = ¢’(0).
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We have the following structure:

Ni+1 = Bin(nt + Poi(mnt),s)

Claim The process (n;, t =0,1,...) IS a branching
process (Galton-Watson process) whose offspring
distribution has pgf G(z) = (1 — s + sz)e ™s(1=2),

(We think of the census times as marking the
‘generations’, the ‘particles’ being the occupied
patches, and the ‘offspring’ being the occupied

patches that they notionally replace in the succeeding
generation.)

m
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Claim The process (n, t =0,1,...) Is a branching
process (Galton-Watson process) whose offspring
distribution has pgf G(z) = (1 — s + sz)e ™s1=2),

The mean number of offspring is x = (1 + m)s.

So, for example, E(n¢|ng) = nou® (t > 1).




We have the following structure:

Ni+1 = Bin(nt + Poi(mnt),s)

Claim The process (n, t =0,1,...) Is a branching
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We have the following structure:
Ni+1 = Bin(nt + Poi(mnt),s)

Claim The process (n;, t =0,1,...) IS a branching
process (Galton-Watson process) whose offspring
distribution has pgf G(z) = (1 — s + sz)e ™s(1=2),

Theorem Extinction occurs with probabillity 1 if and
only if m < (1 — s)/s; otherwise total extinction occurs
with probability n", where n is the unigue fixed point of
G on the interval (0, 1).




CE Model simulation (N =100, ng =95, s =0.56, ¢(z) = cx with ¢ =0.7)
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CE Model simulation (N =100, ng =5, s =0.8, ¢(x) = cx with ¢ =0.7)
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Assume the following structure:
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where m(n) > 0.
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where m(n) > 0. A moment ago we had m(n) = mn.
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N¢il = Bin(nt -+ Poi(m(nt)), S)

We will consider what happens when the initial
number of occupied patches ny, becomes large.

For some index N write m(n) = Nu(n/N), and assume
1 1S continuous with bounded first derivative.

We may take N to be simply ny or, more generally,
following Klebaner*, we may interpret N as being a
‘threshold’ with the property that ng/N — 29 as N — oc.

*Klebaner (1993) Population-dependent branching processes with a threshold.
Stochastic Process. Appl. 46, 115-127.
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For example, u(xz) might be of the form
o u(x) =rx(a—2x) (0 <z <a) (logistic growth);
o u(z) = ze"17%) (¢ > 0) (Ricker dynamics);

o u(z) = Mz/(1 +azx)® (x > 0) (Hassell dynamics).
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By choosing i appropriately, we may allow for a
degree of regulation in the colonisation process.

For example, u(xz) might be of the form
o u(x) =rx(a—2x) (0 <z <a) (logistic growth);

We can establish a law of large numbers for
X" =n;/N, the number of occupied patches at
census ¢t measured relative to the threshold.

-
m



Theorem For the infinite-patch CE model with
parameters s and u(x), let X, = n;/N be the number
of occupied patches at census ¢ relative to the
threshold N.

Suppose that 1 Is continuous with bounded first
derivative.

If X" = zgas N — oo, then X 5 z, for all t > 1,
where (z;) Is determined by z;y1 = f(x¢) (t > 0), where

f(x) = sz + p(z)),




Bifurcation diagram for the infinite-patch deterministic CE model with Ricker
growth dynamics: z,,+1 = 0.3z, (1 + e"(1=Zn)) (r ranges from 0 to 7.2).
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Simulation (open circles) of the infinite-patch CE model with Ricker growth dy-

namics, together with the corresponding limiting deterministic trajectories (solid

circles). Here s = 0.3, N =200and (&) r = 0.84, (b) r =1 (c) r =4, (d) r = 5.
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