
Metapopulations in evolving landscapes

Phil. Pollett

[Joint work with Ross McVinish and Jessica Chan]

The University of Queensland

6th Conference on Mathematical Models
in Ecology and Evolution

City University of London, 10th July 2017

Phil. Pollett (The University of Queensland) Metapopulations in evolving landscapes 1 / 17



Metapopulations

Glanville fritillary butterfly (Melitaea cinxia) in the Åland Islands in Autumn 2005.
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SPOM

A stochastic patch occupancy model (SPOM)

Suppose that there are n patches.

Let X (n)

t = (X
(n)

1,t , . . . ,X
(n)

n,t ), where X
(n)

i,t is a binary variable indicating whether or not
patch i is occupied at time t.

Assume that colonization and extinction happen in distinct, successive phases.

For many species the propensity for colonization and local extinction is markedly different
in different phases of their life cycle. Examples:

The Vernal pool fairy shrimp (Branchinecta lynchi) and the

California linderiella (Linderiella occidentalis), both listed under

the Endangered Species Act (USA)

The Jasper Ridge population of Bay checkerspot butterfly

(Euphydryas editha bayensis), now extinct
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SPOM - Phase structure

Colonization and extinction happen in distinct, successive phases.

t − 1 t t + 1 t + 2

t − 1 t t + 1 t + 2

We will we assume that the population is observed after successive
extinction phases (CE Model).
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SPOM - Phase structure

Colonization: unoccupied patch i becomes occupied with probability c(X̄
(n)

i,t ), where

X̄
(n)

i,t =
1

n

n∑
j=1

X
(n)

j,t D(zi , zj)aj (“connectivity”).

D(z , z̃) ≥ 0 measures ease of movement between patches located at z and at z̃ , aj is a
weight related to the size of the patch j and c : [0,∞)→ [0, 1] (colonisation function).

Examples: D(z , z̃) = exp(−β‖z − z̃‖) and c(x) = 1− exp(−αx), where α, β > 0.

Assumptions:

(A) ai ∈ (0,A] for some A <∞.

(B) zi ∈ Ω where Ω is a compact subset of Rd .

(C) D(z , z̃) is positive, uniformly bounded, and equicontinuous: for every ε > 0 there
exists a δ > 0 such that if ‖z1 − z2‖ < δ, then supz∈Ω |D(z1, z)− D(z2, z)| < ε.

(D) c is increasing and Lipschitz continuous, with c(0) = 0 and c ′(0) > 0.
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weight related to the size of the patch j and c : [0,∞)→ [0, 1] (colonisation function).

Extinction: occupied patch i remains occupied with probability si,t .

Then, given the current state X (n)

t and survival probabilities S (n)

t = (si,t , i = 1, . . . , n),
the X

(n)

i,t+1 (i = 1, . . . , n) are independent with transitions

Pr

(
X

(n)

i,t+1 = 1

∣∣∣∣X (n)

t ,S
(n)

t

)
= si,tX

(n)

i,t + si,t c(X̄
(n)

i,t )
(

1− X
(n)

i,t

)
.

(E) We will assume that (si,t)
∞
t=0, i = 1, . . . , n, are independent Markov chains taking

values in [0, 1] with common (Feller) transition kernel P(s, dr).

Phil. Pollett (The University of Queensland) Metapopulations in evolving landscapes 6 / 17



SPOM - Phase structure

Colonization: unoccupied patch i becomes occupied with probability c(X̄
(n)

i,t ), where

X̄
(n)

i,t =
1

n

n∑
j=1

X
(n)

j,t D(zi , zj)aj (“connectivity”).

D(z , z̃) ≥ 0 measures ease of movement between patches located at z and at z̃ , aj is a
weight related to the size of the patch j and c : [0,∞)→ [0, 1] (colonisation function).

Extinction: occupied patch i remains occupied with probability si,t .

Then, given the current state X (n)

t and survival probabilities S (n)

t = (si,t , i = 1, . . . , n),
the X

(n)

i,t+1 (i = 1, . . . , n) are independent with transitions

Pr

(
X

(n)

i,t+1 = 1

∣∣∣∣X (n)

t ,S
(n)

t

)
= si,tX

(n)

i,t + si,t c(X̄
(n)

i,t )
(

1− X
(n)

i,t

)
.

(E) We will assume that (si,t)
∞
t=0, i = 1, . . . , n, are independent Markov chains taking

values in [0, 1] with common (Feller) transition kernel P(s, dr).

Phil. Pollett (The University of Queensland) Metapopulations in evolving landscapes 6 / 17



SPOM - Phase structure

Colonization: unoccupied patch i becomes occupied with probability c(X̄
(n)

i,t ), where

X̄
(n)

i,t =
1

n

n∑
j=1

X
(n)

j,t D(zi , zj)aj (“connectivity”).

D(z , z̃) ≥ 0 measures ease of movement between patches located at z and at z̃ , aj is a
weight related to the size of the patch j and c : [0,∞)→ [0, 1] (colonisation function).

Extinction: occupied patch i remains occupied with probability si,t .

Then, given the current state X (n)

t and survival probabilities S (n)

t = (si,t , i = 1, . . . , n),
the X

(n)

i,t+1 (i = 1, . . . , n) are independent with transitions

Pr

(
X

(n)

i,t+1 = 1

∣∣∣∣X (n)

t ,S
(n)

t

)
= si,tX

(n)

i,t + si,t c(X̄
(n)

i,t )
(

1− X
(n)

i,t

)
.

(E) We will assume that (si,t)
∞
t=0, i = 1, . . . , n, are independent Markov chains taking

values in [0, 1] with common (Feller) transition kernel P(s, dr).

Phil. Pollett (The University of Queensland) Metapopulations in evolving landscapes 6 / 17



SPOM - Phase structure

Colonization: unoccupied patch i becomes occupied with probability c(X̄
(n)

i,t ), where

X̄
(n)

i,t =
1

n

n∑
j=1

X
(n)

j,t D(zi , zj)aj (“connectivity”).

D(z , z̃) ≥ 0 measures ease of movement between patches located at z and at z̃ , aj is a
weight related to the size of the patch j and c : [0,∞)→ [0, 1] (colonisation function).

Extinction: occupied patch i remains occupied with probability si,t .

Then, given the current state X (n)

t and survival probabilities S (n)

t = (si,t , i = 1, . . . , n),
the X

(n)

i,t+1 (i = 1, . . . , n) are independent with transitions

Pr

(
X

(n)

i,t+1 = 1

∣∣∣∣X (n)

t ,S
(n)

t

)
= si,tX

(n)

i,t + si,t c(X̄
(n)

i,t )
(

1− X
(n)

i,t

)
.

(E) We will assume that (si,t)
∞
t=0, i = 1, . . . , n, are independent Markov chains taking

values in [0, 1] with common (Feller) transition kernel P(s, dr).

Phil. Pollett (The University of Queensland) Metapopulations in evolving landscapes 6 / 17



Example: climax community species
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Our approach - random measures

Define sequences (σn,t) and (µn,t) of random measures by

σn,t(B) =
1

n

n∑
i=1

ai1{(si,t , zi )∈B}, B ∈ B([0, 1]× Ω),

µn,t(B) =
1

n

n∑
i=1

aiX
(n)

i,t 1{(si,t , zi )∈B}, B ∈ B([0, 1]× Ω).
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Our approach - random measures

Equivalently, define (σn,t) and (µn,t) by∫
h(s, z)σn,t(ds, dz) =

1

n

n∑
i=1

aih(si,t , zi ), h ∈ C+([0, 1]× Ω),

∫
h(s, z)µn,t(ds, dz) =

1

n

n∑
i=1

aiX
(n)

i,t h(si,t , zi ), h ∈ C+([0, 1]× Ω),

where C+(D) is the space of continuous functions h : D 7→ [0,∞).

For example (h ≡ 1),
∫
µn,t(ds, dz) = 1

n

∑n
i=1 aiX

(n)

i,t , the proportion of occupied patches
at time t weighted according to patch size.
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Executive summary

The landscape (s
(n)
i,t , ai , zi ) at time t is summarized by σn,t . The metapopulation

(occupancy process) is summarized by µn,t .

Large metapopulation. First we let n get large.

If (time t = 0) σn,0
d→ σ0, then σn,t

d→ σt for all t, and σt+1 = G(σt).

Similarly if µn,0
d→ µ0, then µn,t

d→ µt for all t, and µt+1 = H(µt , σt).

Landscape in equilibrium. Next we see that if the survival probability model (S (n)

t ) is
stationary, then σt → σ as t →∞. We find that µt is absolutely continuous with respect
to σ, and the corresponding Radon-Nikodym derivative φt := ∂µt/∂σ satisfies a simplified
recursion φt+1 = R(φt). We learn that if a given patch with survival probability s is
located at z , then φt(s, z) is the large-metapopulation probability that it is occupied.

Metapopulation in equilibrium. Finally, we find the fixed points φ∞ := ∂µ∞/∂σ of R,
and distinguish between the (complementary) cases (i) where there is only the trivial
fixed point ∂µ∞/∂σ = 0, being globally stable (evanescence), and (ii) where there is a
unique non-zero fixed point and all non-zero trajectories converge to it (persistence).
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Limiting behaviour of the landscape (n large)

(F) Assume that σn,0
d→ σ0 for some non-random measure σ0.

This will be satisfied, for example, if the random vectors (ai , si,0, zi ), i = 1, 2, . . . , are iid.

Lemma 1 σn,t
d→ σt for all t = 1, 2, . . . , where σt is defined by the recursion G:∫

h(s, z)σt+1(ds, dz) =

∫
h(s, z)

∫
P(r , ds)σt(dr , dz), h ∈ C+([0, 1]× Ω).

[Recall that P(s, dr) is the common transition kernel of the (si,t)
∞
t=0, i = 1, . . . , n.]

For a large population (n large), σt(ds, dz) describes the landscape at time t.
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Limiting behaviour of the metapopulation (n large)

Theorem 1 Suppose that µn,0
d→ µ0 for some non-random measure µ0. Then, µn,t

d→ µt

for all t = 1, 2, . . ., where µt is defined by the recursion H: for h ∈ C+([0, 1]× Ω),∫
h(s, z)µt+1(ds, dz) =

∫
sPh(s, z)(1−c(ψt(z)))µt(ds, dz)

+

∫
sPh(s, z)c(ψt(z))σt(ds, dz),

where

Ph(s, z) =

∫
h(r , z)P(s, dr) and ψt(z) =

∫
D(z , z̃)µt(ds̃, dz̃).

[Recall that c( · ) is the colonization function.]

Think of ψt(z) as being the large-metapopulation (n→∞) connectivity at time t for a
patch located at z , and c(ψt(z)) as being the corresponding potential of the
metapopulation to colonize that patch.
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patch located at z , and c(ψt(z)) as being the corresponding potential of the
metapopulation to colonize that patch.
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Limiting behaviour of the metapopulation (n large)
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When the landscape is in equilibrium

(G) Assume that the survival probability model is stationary, aperiodic, and Harris

positive recurrent with invariant measure ν: ν(dr) =
∫ 1

0
ν(ds)P(s, dr).

Lemma 2 As t →∞, σt converges to a product measure σ = ν × σ̄0, where
σ̄0(A) = σ0([0, 1]× A), for measurable A ⊂ Ω.

Let P∗ be the dual (or time-reverse) transition kernel:∫
A

ν(dx)P(x ,B) =

∫
B

ν(dx)P∗(x ,A), measurable A,B ⊂ [0, 1].

Theorem 2 The limiting measure µt is absolutely continuous with respect to σ and the
corresponding Radon-Nikodym derivative φt := ∂µt/∂σ satisfies the recursion R:

φt+1(s, z) =

∫ 1

0

r φt(r , z)P∗(s, dr) + c(ψt(z))

∫ 1

0

r (1− φt(r , z))P∗(s, dr),

where (now we may write) ψt(z) =
∫
D(z , z̃)

∫
φt(s̃, z̃)ν(ds̃)σ̄0(dz̃).
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When the landscape is in equilibrium

In addition to providing a simplified recursion

φt+1(s, z) =

∫ 1

0

r φt(r , z)P∗(s, dr) + c(ψt(z))

∫ 1

0

r (1− φt(r , z))P∗(s, dr).

to describe large-metapopulation behaviour, the Radon-Nikodym derivative has a nice
interpretation as the probability that a given patch is occupied when the number of
patches is large:

Corollary The limiting occupancy of a single patch follows a Markov chain (Xi,t , si,t)
∞
t=0

with time dependent transition probabilities: For fixed i , X
(n)

i,0

p→ Xi,0 implies that

X
(n)

i,t

p→ Xi,t for all t = 1, 2, . . . , where

Pr (Xi,t+1 = 1 | Xi,t , si,t) = si,tXi,t + si,tc(ψt(zi )) (1− Xi,t) ,

and, if
Pr (Xi,0 = 1 | si,0 = s, zi = z) = φ0(s, z),

then
Pr (Xi,t = 1 | si,t = s, zi = z) = φt(s, z).
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When the landscape is in equilibrium
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USA light polution - proxy for patch weight
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Potential patch positions (zi )
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Patch weights (n = 540)
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Evolution of φt(s, z) (t = 0)
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Evolution of φt(s, z) (t = 1)
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Evolution of φt(s, z) (t = 2)
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Evolution of φt(s, z) (t = 3)
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Evolution of φt(s, z) (t = 4)
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Evolution of φt(s, z) (t = 5)
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Evolution of φt(s, z) (t = 6)
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Evolution of φt(s, z) (t = 7)
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Evolution of φt(s, z) (t = 8)
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Evolution of φt(s, z) (t = 9)
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Evolution of φt(s, z) (t = 10)
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Evolution of φt(s, z) (t = 11)
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Evolution of φt(s, z) (t = 12)
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Evolution of φt(s, z) (t = 13)
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Evolution of φt(s, z) (t = 14)
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Evolution of φt(s, z) (t = 15)
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Evolution of φt(s, z) (t = 16)
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Evolution of φt(s, z) (t = 17)
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Evolution of φt(s, z) (t = 18)
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Evolution of φt(s, z) (t = 19)
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Evolution of φt(s, z) (t = 20)
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Evolution of φt(s, z) (t = 21)
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Evolution of φt(s, z) (t = 22)
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Evolution of φt(s, z) (t = 23)
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Evolution of φt(s, z) (t = 24)
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Evolution of φt(s, z) (t = 25)
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Evolution of φt(s, z) (t = 26)
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Evolution of φt(s, z) (t = ∞)
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When the landscape is in equilibrium
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Simulation (t = 0) - initial occupancy X (n)

0
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Simulation (t = 0) - initial occupancy probability φ0(s, z)
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Simulation (t = 0)
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Simulation (t = 1)
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Simulation (t = 2)
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Simulation (t = 3)
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Simulation (t = 4)
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Simulation (t = 5)
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Simulation (t = 6)
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Simulation (t = 7)
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Simulation (t = 8)
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Simulation (t = 9)
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Simulation (t = 10)
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Simulation (t = 11)
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Simulation (t = 12)
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Simulation (t = 13)
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Simulation (t = 14)
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Simulation (t = 15)
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Simulation (t = 16)
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Simulation (t = 17)
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Simulation (t = 18)
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Simulation (t = 19)
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Simulation (t = 20)
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Simulation (t = 21)
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Simulation (t = 22)
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Simulation (t = 23)
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Simulation (t = 24)
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Simulation (t = 25)
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Simulation (t = 26)
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Simulation (t large)
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The limiting metapopulation in equilibrium

The fixed points φ∞ := ∂µ∞/∂σ of the simplified recursion satisfy

φ∞(s, z) = c (ψ(z))

∫
r P∗(s, dr) + (1− c (ψ(z)))

∫
r φ∞(r , z)P∗(s, dr),

where ψ(z) =
∫
D(z , z̃)µ∞(ds̃, dz̃) =

∫
D(z , z̃)φ∞(s̃, z̃)σ(ds̃, dz̃).

Think of ψ(z) as being the equilibrium large-metapopulation connectivity for a patch
located at z , and c (ψ(z)) as being the corresponding equilibrium potential of the
population to colonize that patch.

Based on the spectral radius of a certain bounded linear operator, we are able to
distinguish between the (complementary) cases (i) where the simplified recursion has only
the trivial fixed point ∂µ∞/∂σ(s, z) = 0, this fixed point being globally stable
(evanescence), and (ii) where it has a unique non-zero fixed point and all non-zero
trajectories converge to this fixed point (persistence).
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Occupancy simulation - proportion of time occupied
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Positions: zi ∈ [−3, 3]2.

Tweaked spatial Poisson process.

Ease of movement:

D(z, z̃) = 5 exp(−‖z − z̃‖).

Areas:

ai = 6πR2
i , where R2

i ∼exp(5000).
Eai ' 0.00377.

Colonization function:

c(x) = 1− exp(−5x).

Survival probabilities:
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Occupancy simulation - proportion of time occupied
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Occupancy simulation - proportion of time occupied
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Occupancy simulation - proportion of time occupied
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Occupancy simulation - proportion of time occupied
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Occupancy simulation - proportion of time occupied
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Occupancy simulation - proportion of time occupied
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Occupancy simulation - proportion of time occupied
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Occupancy simulation - proportion of time occupied
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Occupancy simulation - proportion of time occupied
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Occupancy simulation - proportion of time occupied
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Occupancy simulation - proportion of time occupied
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Theoretical - proportion of time occupied
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