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Growth of yeast
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Carlson, T. (1913) Uber Geschwindigkeit und Grosse der Hefevermehrung in Wurze. Bio-
chemische Zeitschrift 57, 313-334.
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Sheep in Tasmania

Growth of Tasmanian sheep population from 1818 to 1936
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Davidson, J. (1938) On the growth of the sheep population in Tasmania. Trans. Roy. Soc.
Sth. Austral. 62, 342-346.
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Sheep in Tasmania

Growth of Tasmanian sheep population from 1818 to 1936
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A deterministic model

dn

— = nf(n).

o (n)

The net growth rate per individual is a function of the population size n.

We want f(n) to be positive for small n and negative for large n.
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A deterministic model

dn

— = nf(n).

o (n)

The net growth rate per individual is a function of the population size n.

We want f(n) to be positive for small n and negative for large n. Simply set
f(n) = r — sn to give

% = n(r — sn).
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A deterministic model

dn
dt
The net growth rate per individual is a function of the population size n.

nf(n).

We want f(n) to be positive for small n and negative for large n. Simply set
f(n) = r — sn to give

% = n(r — sn).
This is the Verhulst model (or logistic model):

Verhulst, P.F. (1838) Notice sur la loi que la population suit dans son accroisement. Corr. Math.
et Phys. X, 113-121.

QACEMI

Populations Models: Part |



...
The Verhulst model

Pierre Francois Verhulst (1804—1849, Brussels, Belgium)
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The Verhulst model

Soit p Ia population : représentons par dp 1'accroissement in-
finiment petit qu'elle recoit pendant un teraps infiniment courtd,
Si la populalivn croissait en progression géométrique, nous au-
rions I'équation = /. mp, Mais comme la vitesse d’accroisse-
nuent de la popuhuon est retardéo par 'augmentation méme du
nombre des habitans, nous devrons retrancher de mp une fonc-
tion inconnue de p; de maniére que la formule i intégrer de-
viendra

dj
;"3 = mp — 9(p)-

L’hypothése la plus simple que l'on puisse faire sur la forme
de la fonction ¢, est de supposcr ¢ (p)==np*, On trouve alors
pour intégrale de Péquation ci-dessus

1
t = — [log. p—log.(m—np)] -+ constante,
m

et il suffira de trois observations pour déterminer lés deux

cocfliciens constans m ct n ct Ia constante arbitraire. J
SYACEMS
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...
The Verhulst model

116 CUNRESPONDANCE
Eu résolvant la dernidre équation par rapport a p, il vient
mp’ emt
P=wiamay O
cn désignant par p’ Ia population qui réponda t==10,ct parela
base des logarithumes népériens. Si I'on faitt=c , on voit quela
valeur de p correspondante st P= nﬂ' Telle est doue la limite
supéricurc de la population.
Au lieu dc supposer gp===xp’, on pcut prendre gp = np®,
z étant quclconque, ou gp=n log. p. Toutes ces hypothéscs sa-
tisfont égalcient bien aux faits observés ; mais elles doanent des
valeurs trés-différentes pour Ja limite supéricure dela population,
J'ai suppos¢ successivement
gp="np’; p =np*, gp =np', sp=mnlog. p;
et les différences entre les populations calculées et celles que
fournit 'observation ont été sensiblement les mémes.
QACEMJ'
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The Verhulst model

MATHENATIQUE ET PHVSIQUE.

w1
—

n7

Tableax des progris de la population do Ia France depuis 1817
juequ'a 1831 , daprés I Anmuaire pour 1034,

Populations Model

st | amtsrtorane. || P05 | o ".:-E“
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“We will give the name logistic to the curve” - Verhulst 1845

Cette équation étant intégrée donne, en observant que /=0 répond
ap=h,

_ 1 [pm—n) i
s_alog.{m;)]. W

Nous donnerons le nom de logistique  la courbe (voyes la figure)

tenu compte de la propriété dont jonissent les denrées alimentaires, de se multiplier dans une
progression plus rapide que Tespéce humaine, lorsque le sol est nouvellement cultivé. Mais cet
age d'or de la société n'existe plus depuis longtemps pour les nations européennes. Quant aux res-
sources qu'un grand peuple peut tirer du commerce étranger pour se procurer des subsistances,
il nous suffia de rappeler que, d'aprés les calculs de M. Moreau de Jonnés, la récolte de la France,
en blé seulement, est de 70 millions d'hectolitres, et que pour transporter une pareille masse, il
faudrait 88,000 navires de eent tonneanx! Qu'on juge alors de la quantité des autres denrées ali-
mentaires. Lors méme qu'une partie considérable de la population franaise pourrait étre nourric
de blés étrangers, jamais un gonvernement sage ne consentira i faire dépendre T'existence de mil-
lions de citoyens du bon vouloir des souverains étrangers.

Verhulst, P.F. (1845) Recherches mathématiques sur la loi d’accroissement de la population.

Nouveaux mémoires de I'’Académie Royale des Sciences et Belles-Lettres de Bruxelles
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...
The Verhulst model

An alternative formulation has r being the growth rate with unlimited resources and K
being the “natural” population size (the carrying capacity). We put f(n) = r(1 — n/K)
giving

dn

— =m(l—-n/K

& = m(1 - n/K),
which is the original model with s = r/K.
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...
The Verhulst model

An alternative formulation has r being the growth rate with unlimited resources and K
being the “natural” population size (the carrying capacity). We put f(n) = r(1 — n/K)
giving

dn

— =m(l—-n/K

& = m(1 - n/K),
which is the original model with s = r/K.

Integration gives
K

1+ (—K;O”O) et

ng =
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...
The Verhulst model

An alternative formulation has r being the growth rate with unlimited resources and K
being the “natural” population size (the carrying capacity). We put f(n) = r(1 — n/K)
giving

% = (1 — n/K),
which is the original model with s = r/K.
Integration gives
K
ne= ——7r—~ (t>0).
—ng —
1+ (—no ) et

This formulation is due to Raymond Pearl:

Pearl, R. and Reed, L. (1920) On the rate of growth of population of the United States since
1790 and its mathematical representation. Proc. Nat. Academy Sci. 6, 275-288.

Pearl, R. (1925) The biology of population growth, Alfred A. Knopf, New York.
Pearl, R. (1927) The growth of populations. Quart. Rev. Biol. 2, 532-548.
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Population growth in USA
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Showing result of fitting equation (xviii) to population data.

Pearl, R. and Reed, L. (1920) On the rate of growth of population of the United States since

1790 and its mathematical representation. Proc. Nat. Academy Sci. 6, 275-288. g
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Verhulst-Pearl model

Raymond Pearl (1879-1940, Farmington, N.H., USA) *ACEMJ‘
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Pearl was a “social drinker”

Pearl was widely known for his lust for life and his love of food, drink, music and parties.
He was a key member of the Saturday Night Club. Prohibition made no dent in Pearl’s
drinking habits (which were legendary).
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Pearl was a “social drinker”

Pearl was widely known for his lust for life and his love of food, drink, music and parties.
He was a key member of the Saturday Night Club. Prohibition made no dent in Pearl’s
drinking habits (which were legendary).

In 1926, his book, Alcohol and Longevity, demonstrated that drinking alcohol in
moderation is associated with greater longevity than either abstaining or drinking heavily.

Pearl, R. (1926) Alcohol and Longevity, Alfred A. Knopf, New York.
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Verhulst-Pearl model

Trajectories of the logistic model: K = 1670, r = 0.007
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Sheep in Tasmania

Growth of Tasmanian sheep population from 1818 to 1936
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Davidson, J. (1938) On the growth of the sheep population in Tasmania. Trans. Roy. Soc.

Sth. Austral. 62, 342-346.
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Sheep in Tasmania

Growth of Tasmanian sheep population from 1818 to 1936
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A stochastic model

We really need to account for the variation observed.

A common approach to stochastic modelling in Applied Mathematics can be summarised
as follows:

“I suspect that the world is not deterministic - | should add some noise”
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A stochastic model

We really need to account for the variation observed.

A common approach to stochastic modelling in Applied Mathematics can be summarised
as follows:

“I suspect that the world is not deterministic - | should add some noise”

Zen Maxim (for survival in a modern university): Before you criticize someone, you should
walk a mile in their shoes. That way, when you criticize them, you'll be a mile away and

you'll have their shoes.
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Coin tossing (fair coin)

Coin tossing: N=100
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Coin tossing (fair coin)

Let p: be the proportion of “Heads” after t tosses. Then,

1 .
pr = 5 + something random.
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Coin tossing (fair coin)

Let p: be the proportion of “Heads” after t tosses. Then,

1 .
pr = 5 + something random.

In fact, the Central Limit Theorem, as applied to coin tossing (de Moivre (~1733)),
shows that, as t — oo,

1
2\ﬁ (Pt - 5

) 2 Z ~ N(0,1).

(STAT1201: the normal approximation to the binomial distribution.)
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Coin tossing (fair coin)

Let p: be the proportion of “Heads” after t tosses. Then,

1 .
pr = 5 + something random.

In fact, the Central Limit Theorem, as applied to coin tossing (de Moivre (~1733)),
shows that, as t — oo,

2Vt (pt - %) B 7 ~ N(O,1).

(STAT1201: the normal approximation to the binomial distribution.)

So, it would not be completely unreasonable for us to write
1 1

=5z
pr N
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A stochastic model

We really need to account for the variation observed.

A common approach to stochastic modelling in Applied Mathematics can be summarised
as follows:

“I suspect that the world is not deterministic - | should add some noise”

Zen Maxim (for survival in a modern university): Before you criticize someone, you should
walk a mile in their shoes. That way, when you criticize them, you'll be a mile away and

you'll have their shoes.
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A stochastic model

We really need to account for the variation observed.

A common approach to stochastic modelling in Applied Mathematics can be summarised
as follows:

“I suspect that the world is not deterministic - | should add some noise”

Zen Maxim (for survival in a modern university): Before you criticize someone, you should
walk a mile in their shoes. That way, when you criticize them, you'll be a mile away and
you'll have their shoes.

In our case,
K

1 + (K_”O) e—rt

no

+ something random

or (much better)

@*rn(lfﬂ)Jarnoise
dt K ’

*ACEMJ'
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Noise?

The usual model for “noise” is white noise (or pure Gaussian noise).

Imagine a random process (&, t > 0) with & ~ N(0,1) for all t and &, ... &,
independent for all finite sequences of times ti, ..., t,.

*ACEMJ'
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...
White noise

White noise on [0, 1] sampled 1000 times
T T T T T
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Brownian motion

The white noise process (&, t > 0) is loosely defined as the derivative of standard
Brownian motion (Bg, t > 0).

Brownian motion (or Wiener process) can be constructed by way of a random walk. A
particle starts at 0 and takes small steps of size +A or —A with equal probability
p = 1/2 after successive time steps of size h.

Populations Models: Part |



Symmetric random walk: A =1

Random walk simulation: h = 0.01, A =1
12 T T T T T
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Symmetric random walk: A =1

Random walk simulation: h = 0.0001, A =1
50 T T T T T

40 E

10

X

0.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9 1
t QACEMJ‘

Populations Model



Brownian motion

The white noise process (&, t > 0) is loosely defined as the derivative of standard
Brownian motion (Bg, t > 0).

Brownian motion (or Wiener process) can be constructed by way of a random walk. A
particle starts at 0 and takes small steps of size +A or —A with equal probability
p = 1/2 after successive time steps of size h.
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Brownian motion

The white noise process (&, t > 0) is loosely defined as the derivative of standard
Brownian motion (Bg, t > 0).

Brownian motion (or Wiener process) can be constructed by way of a random walk. A
particle starts at 0 and takes small steps of size +A or —A with equal probability

p = 1/2 after successive time steps of size h.

If A ~+/h, as h — 0, then the limit process is standard Brownian motion.

Populations Models: Part |



...
Symmetric random walk: A = v/h

Random walk simulation: h = 2.5¢-005, A = 0.005
T T T T T
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Brownian motion

The white noise process (&, t > 0) is loosely defined as the derivative of standard
Brownian motion (Bg, t > 0).

Brownian motion (or Wiener process) can be constructed by way of a random walk. A
particle starts at 0 and takes small steps of size +A or —A with equal probability
p = 1/2 after successive time steps of size h.

If A ~+/h, as h — 0, then the limit process is standard Brownian motion.
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Brownian motion

The white noise process (&, t > 0) is loosely defined as the derivative of standard
Brownian motion (Bg, t > 0).

Brownian motion (or Wiener process) can be constructed by way of a random walk. A
particle starts at 0 and takes small steps of size +A or —A with equal probability
p = 1/2 after successive time steps of size h.

If A ~+/h, as h — 0, then the limit process is standard Brownian motion.

This construction permits us to write dB; = £/ dt, with the interpretation that a change
in B in time dt is a Gaussian random variable with E(dB;) = 0, Var(dB;) = dt and
Cov(dB:, dBs) =0 (s # t).

[Recall that & ~ N(0,1) for all t and &, ...,&:, independent for all finite sequences of
times t, ..., tn.]
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Brownian motion

This construction permits us to write dB; = £/ dt, with the interpretation that a change
in B in time dt is a Gaussian random variable with E(dB;) = 0, Var(dB;) = dt and
Cov(dBt,dBs) =0 (s # t).
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Brownian motion

This construction permits us to write dB; = £/ dt, with the interpretation that a change
in B in time dt is a Gaussian random variable with E(dB;) = 0, Var(dB;) = dt and
Cov(dBt,dBs) =0 (s # t).

The correct (modern) interpretation is by way of the It6 integral:

B = [/ dB. = [; & ds.
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Brownian motion

This construction permits us to write dB; = £/ dt, with the interpretation that a change
in B in time dt is a Gaussian random variable with E(dB;) = 0, Var(dB;) = dt and
Cov(dBt,dBs) =0 (s # t).

The correct (modern) interpretation is by way of the It6 integral:

B = [/ dB. = [; & ds.

2

General Brownian motion (W, t > 0), with drift ;& and variance o<, can be constructed

in the same way but with A ~ ov/h and p =} (1 + (u/a)\/ﬁ), and we may write
dW; = pdt + o dB:,

with the interpretation that a change in W; in time dt is a Gaussian random variable with
E(dW;) = udt, Var(dW;) = o*dt and Cov(dW;, dW,) = 0.
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Brownian motion

dW; = pdt + o dB:,

This stochastic differential equation (SDE) can be integrated to give W;: = ut + o Bs.

QACEMI
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Brownian motion

dW; = pdt + o dB:,

This stochastic differential equation (SDE) can be integrated to give W;: = ut + o Bs.

It does not require an enormous leap of faith for us now to write down, and properly
interpret, the SDE
dn; = rn; (1 — nt/K) dt + odB;

as a model for growth.

*ACEMJ'
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...
Adding noise

The idea (indeed the very idea of an SDE) can be traced back to Paul Langevin's 1908
paper “On the theory of Brownian Motion":

Langevin, P. (1908) Sur la théorie du mouvement brownien. Comptes Rendus 146, 530-533.

He derived a “dynamic theory” of Brownian Motion three years after Einstein's ground
breaking paper on Brownian Motion:

Einstein, A. (1905) On the movement of small particles suspended in stationary liquids required
by the molecular-kinetic theory of heat. Ann. Phys. 17, 549-560. [English translation by Anna
Beck in The Collected Papers of Albert Einstein, Princeton University Press, Princeton, USA,
1989, Vol. 2, pp. 123-134.]

QACEMJ'
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Langevin

Langevin introduced a “stochastic force” (his phrase “complementary
force” —complimenting the viscous drag p) pushing the Brownian particle around in
velocity space (Einstein worked in configuration space).

*ACEMJ'
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Langevin

Langevin introduced a “stochastic force” (his phrase “complementary
force” —complimenting the viscous drag p) pushing the Brownian particle around in
velocity space (Einstein worked in configuration space).

In modern terminology, Langevin described the Brownian particle’s velocity as an
Ornstein-Uhlenbeck (OU) process and its position as the time integral of its velocity,
while Einstein described its position as a Wiener process.

The Langevin equation (for a particle of unit mass) is

dvy = —pve dt + odB;.
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Langevin

Langevin introduced a “stochastic force” (his phrase “complementary
force” —complimenting the viscous drag p) pushing the Brownian particle around in
velocity space (Einstein worked in configuration space).

In modern terminology, Langevin described the Brownian particle’s velocity as an
Ornstein-Uhlenbeck (OU) process and its position as the time integral of its velocity,

while Einstein described its position as a Wiener process.

The Langevin equation (for a particle of unit mass) is

dvy = —pve dt + odB;.

This is Newton's law (—uv = Force = mv) plus noise. The solution to this SDE is the
OU process.

QACEMI
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Langevin

Paul Langevin (1872 — 1946, Paris, France)
ﬁAcst
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Langevin

Einstein said of Langevin

“... It seems to me certain that he would have developed the special theory of relativity if
that had not been done elsewhere, for he had clearly recognized the essential points.”

*ACEMJ'
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Langevin was a dark horse

In 1910 he had an affair with Marie Curie.

SYACEMS
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Langevin was a dark horse

In 1910 he had an affair with Marie Curie.

The person on the right is Langevin's PhD supervisor Pierre Curie.
SYACEMS
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Solution to Langevin's equation

To solve dvi = —puv; dt + odB;, consider the process y; = vie"’.
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Solution to Langevin's equation

To solve dvi = —puv: dt + odB;, consider the process y; = v:e"’. Differentiation (It6
calculus!) gives dy; = e*'dv; + pe*v,dt.
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Solution to Langevin's equation

To solve dvi = —puv: dt + odB;, consider the process y; = v:e"’. Differentiation (It6
calculus!) gives dy; = e*'dv; + pe*v,dt.

But, from Langevin's equation we have that

e*tdvy = —pettve dt + oettdB;,
and hence that dy; = ce"'dB;.

*ACEMJ'
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Solution to Langevin's equation

To solve dvi = —puv: dt + odB;, consider the process y; = v:e"’. Differentiation (It6
calculus!) gives dy; = e*'dv; + pe*v,dt.

But, from Langevin's equation we have that

e“tht = 7‘Llleutvt dt =+ UeutdBt,

and hence that dy; = ce"'dB;. Integration gives

ye =yo+ [ oe"*dB,
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Solution to Langevin's equation

To solve dvi = —puv: dt + odB;, consider the process y; = v:e"’. Differentiation (It6
calculus!) gives dy; = e*'dv; + pe*v,dt.

But, from Langevin's equation we have that
e“tht = 7‘Llleutvt dt =+ UeutdBt,
and hence that dy; = ce"'dB;. Integration gives

ye =yo+ [ oe"*dB,
and so (the Ornstein-Uhlenbeck process)

Ve = e Mt 4 fot oce M=) 4B, .
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Solution to Langevin's equation

To solve dvi = —puv: dt + odB;, consider the process y; = v:e"’. Differentiation (It6
calculus!) gives dy; = e*'dv; + pe*v,dt.

But, from Langevin's equation we have that
e*tdvy = —pettve dt + oettdB;,
and hence that dy; = ce"'dB;. Integration gives
ye =yo+ [ oe"*dB,
and so (the Ornstein-Uhlenbeck process)

Ve = e Mt 4 fot oce M=) 4B, .

We can deduce much from this. For example, v; is a Gaussian process with

E(v:) = ve ** and Var(v) = %(1 — &2, and

Cov(v, Vets) = Var(vt)e_“‘sl.
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Where were we?

We had just added noise to our logistic model:

dn; = rn; (1 _ %) dt + o dB;.
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Where were we?

We had just added noise to our logistic model:

dn; = rn; (1 _ %) dt + o dB;.

A simple numerical method for solving SDEs like this is the Euler-Maruyama method.

In Matlab ...

n =n + rxn*x(1-n/K)*h + sigma*sqrt(h)*randn;
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Sheep in Tasmania

Number of sheep (thousands)

Growth of Tasmanian sheep population from 1818 to 1936
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I
Solution to SDE (Run 1)

Solution to SDE (one sample path)
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(Solution to the deterministic model is in green)
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I
Solution to SDE (Run 2)

Solution to SDE (one sample path)
T T
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dng = rny (1 K) dt + 0dBy
K =1670, r =0.13125, 0 =90
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(Solution to the deterministic model is in green)
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...
Solution to SDE (Run 3)
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Solution to SDE (one sample path)
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dng = rny (1 — %) dt + 0dBy
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(Solution to the deterministic model is in green)
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I
Solution to SDE (Run 4)

Solution to SDE (one sample path)
T T
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(Solution to the deterministic model is in green)
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...
Solution to SDE (Run 5)

Solution to SDE (one sample path)
T T

T
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dng = rny (1 K) dt + 0dBy
K =1670, r =0.13125, 0 =90
500 ]
no =73, to = 1818
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(Solution to the deterministic model is in green)
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...
Solution to SDE

Mean path of SDE solution with + 2 standard deviations (1000 runs)
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(Solution to the deterministic model is in green)
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Logistic model with noise

A significant problem with this approach (deterministic dynamics plus noise) is that
variation is not, but should be, an integral component of the dynamics.
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A significant problem with this approach (deterministic dynamics plus noise) is that
variation is not, but should be, an integral component of the dynamics.

Arguably a better approach is to use a continuous-time Markov chain to model n;.
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Logistic model with noise

A significant problem with this approach (deterministic dynamics plus noise) is that
variation is not, but should be, an integral component of the dynamics.

Arguably a better approach is to use a continuous-time Markov chain to model n;.

This will be dealt with in Part Il or, if you prefer, STAT3004 “Probability Models &
Stochastic Processes”.
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