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SPOM - Phase structure

For many species the propensity for colonization and local
extinction is markedly different in different phases of their
life cycle. Examples:

The Vernal pool fairy shrimp (Branchinecta lynchi) and

the California linderiella (Linderiella occidentalis), both

listed under the Endangered Species Act (USA)

The Jasper Ridge population of Bay checkerspot

butterfly (Euphydryas editha bayensis), now extinct
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We will we assume that the population is observed after
successive extinction phases (CE Model).
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Examples of c(x)

c(x) = cx, where c ∈ (0, 1] is the maximum colonization
potential.

c(x) = c, where c ∈ (0, 1] is a fixed colonization
potential—mainland colonization dominant.

c(x) = c0 + cx, where c0 + c ∈ (0, 1] (mainland and island
colonization).

c(x) = 1− exp(−xβ) (β > 0).
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Colonization and extinction happen in distinct, successive
phases.

Colonization: unoccupied patches become occupied
independently with probability c(n−1

∑n

i=1X
(n)
i,t ), where

c : [0, 1] → [0, 1] is continuous, increasing and concave.

Extinction: occupied patch i remains occupied
independently with probability Si (random).
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A deterministic limit

Theorem [BP] If N (n)
0 /n

p→ x0 (a constant), then

N
(n)
t /n

p→ xt, for all t ≥ 1,

with (xt) determined by xt+1 = f(xt), where

f(x) = s(x+ (1− x)c(x)).

[BP] Buckley, F.M. and Pollett, P.K. (2010) Limit theorems for discrete-time
metapopulation models. Probability Surveys 7, 53-83.



Stability

xt+1 = f(xt), where f(x) = s(x+ (1− x)c(x)).

Stationarity : c(0) > 0. There is a unique fixed point
x∗ ∈ [0, 1]. It satisfies x∗ ∈ (0, 1) and is stable.

Evanescence: c(0) = 0 and 1 + c ′(0) ≤ 1/s. Now 0 is the
unique fixed point in [0, 1]. It is stable.

Quasi stationarity : c(0) = 0 and 1 + c ′(0) > 1/s. There
are two fixed points in [0, 1]: 0 (unstable) and x∗ ∈ (0, 1)

(stable).

[Notice that if c(0) = 0, we require c ′(0) > 0 for quasi
stationarity.]
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CE Model - Quasi stationarity
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A Gaussian limit

Theorem [BP] Further suppose that c(x) is twice
continuously differentiable, and let

Z
(n)
t =

√
n(N

(n)
t /n− xt).

If Z(n)
0

d→ z0, then Z
(n)
• converges weakly to the Gaussian

Markov chain Z• defined by

Zt+1 = f ′(xt)Zt + Et (Z0 = z0),

with (Et) independent and Et ∼ N(0, v(xt)), where

v(x) = s
[

(1− s)x+ (1− x)c(x)
(

1− sc(x)
)]

.
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CE Model - Quasi stationarity
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CE Model - Quasi-stationary distribution
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CE Model - Gaussian approximation
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probabilities are random and patch dependent , and we
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Returning to the general case, where patch survival
probabilities are random and patch dependent , and we
keep track of which patches are occupied . . .

X
(n)
i,t+1

d
= Bin

(

X
(n)
i,t + Bin

(

1−X
(n)
i,t , c

(

1
n

∑n

j=1X
(n)
j,t

)

)

, Si

)

First, . . .

Notation: If σ is a probability measure on [0, 1) and let s̄k
denote its k-th moment, that is,

s̄k =
∫ 1

0
xkσ(dx).



A deterministic limit

Theorem Suppose there is a probability measure σ and
deterministic sequence {d(0, k)} such that

1
n

∑n

i=1 S
k
i

p→ s̄k and 1
n

∑n

i=1 S
k
i X

(n)
i,0

p→ d(0, k)

for all k = 0, 1, . . . , T . Then, there is a (deterministic)
triangular array {d(t, k)} such that, for all t = 0, 1, . . . , T and
k = 0, 1, . . . , T − t,

1
n

∑n

i=1 S
k
i X

(n)
i,t

p→ d(t, k),

where

d(t+ 1, k) = d(t, k + 1) + c (d(t, 0)) (s̄k+1 − d(t, k + 1)) .
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Remarks

Typically, we are only interested in d(t, 0), being the
asymptotic proportion of occupied patches at time t:
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Remarks

Typically, we are only interested in d(t, 0), being the
asymptotic proportion of occupied patches at time t:

1
n

∑n

i=1X
(n)
i,t

p→ d(t, 0).

However, we may still interpret the ratio d(t, k)/d(t, 0)

(k ≥ 1) as the k-th moment of the conditional distribution
of the patch survival probability given that the patch is
occupied. (From these moments, the conditional
distribution could then be reconstructed.)
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Theorem Suppose there is a probability measure σ and
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k = 0, 1, . . . , T − t,
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i X
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i,t

p→ d(t, k),

where

d(t+ 1, k) = d(t, k + 1) + c (d(t, 0)) (s̄k+1 − d(t, k + 1)) .



Homogeneous case

When s̄k = s̄k1 for all k, that is the patch survival
probabilities are the same, then it is possible to simplify

d(t+ 1, k) = d(t, k + 1) + c (d(t, 0)) (s̄k+1 − d(t, k + 1)) .

We can show by induction that d(t, k) = s̄k1xt, where

xt+1 = s̄1 (xt + (1− xt) c(xt)) .

Compare this with the earlier [BP] result....



A deterministic limit

Theorem [BP] If N (n)
0 /n

p→ x0 (a constant), then

N
(n)
t /n

p→ xt, for all t ≥ 1,

with (xt) determined by xt+1 = f(xt), where

f(x) = s(x+ (1− x)c(x)).

[BP] Buckley, F.M. and Pollett, P.K. (2010) Limit theorems for discrete-time
metapopulation models. Probability Surveys 7, 53-83.



Stability

Theorem Any fixed point d = (d(0), d(1), . . . ) is given by

d(k) =
∫ 1

0
c(ψ)xk+1

1−x+c(ψ)x
σ(dx),

where ψ (= d(0)) solves

R(ψ) =
∫ 1

0
c(ψ)x

1−x+c(ψ)x
σ(dx) = ψ. (1)

If c(0) > 0, there is a unique ψ > 0. If c(0) = 0 and

c ′(0)
∫ 1

0
x

1−xσ(dx) ≤ 1,

then ψ = 0 is the unique solution to (1). Otherwise, (1) has
two solutions, one of which is ψ = 0.



Stability

Theorem If c(0) = 0 and

c ′(0)
∫ 1

0
x

1−xσ(dx) ≤ 1,

then d(k) ≡ 0 is a stable fixed point. Otherwise, the
non-zero solution to

R(ψ) =
∫ 1

0
c(ψ)x

1−x+c(ψ)x
σ(dx) = ψ

provides the stable fixed point through

d(k) =
∫ 1

0
c(ψ)xk+1

1−x+c(ψ)x
σ(dx).



CE Model (homogeneous) - Evanescence
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CE Model - Evanescence
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CE Model - Quasi stationarity
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CE Model - Quasi stationarity
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CE Model - Quasi stationarity
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CE Model - Quasi stationarity
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CE Model - Quasi stationarity
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CE Model - Quasi stationarity
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