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AN EPIDEMIC MODEL

The state at time ¢:
X (t) - number of susceptibles

Y (t) - number of infectives
State space:

S={(x,y) iz, y=20,1,2,...}
Transition rates @ = (g;;,4,j € S):

if 7= (xz,y), then

vy if j=(z,y—1),

N\

Gij
o ifj=(z+1,y),

0 otherwise.



TRANSITION DIAGRAM
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Transitions of the epidemic model



AN AUTO-CATALYTIC REACTION

Consider the following reaction scheme:
AX B,

where X is a catalyst. Suppose that there are
two stages, namely

A+ XMox and 2x 2B

Let X(t) = number of X molecules at time t.

Suppose that the concentration of A is held
constant; let a be the number of molecules of
A. The state space is S ={0,1,2,...} and the
transition rates are given by

( kiai if =141,

N\

qij kg (5) if j =7 — 2,

O otherwise.

\
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INGREDIENTS
The at time t: X(t) e S=14{0,1,2,...}.

for 5 %=1, is the transition rate from state 7 to
state j and g;; = —q;, where ¢; = >+, g;; (< 00)
is the transition rate out of state .

. Take O to be the sole absorbing
state (thatis, go; = 0). For simplicity, suppose
that C = {1,2,...}is “irreducible” and that we
reach O from C with probability 1.

. p(t) = (p;(t),j5 € S), where
p;(t) = Pr(X(t) = 7).

) az(aj,jES) (aon).

. the state probabilities sat-
isfy p/(t) = p(t)Q, p(0) = a. In particular, since
905 = O,

p;(t) = > pi(t)gj, J€S, t>0.
e’



THE STRUCTURE OF Q

() has non-negative off-diagonal entries, non-
positive diagonal entries, and zero row sums.

In the present setup we have, additionally, that
(i) the first row is zero (because 0 is an ab-
sorbing state) and (ii) the first column has at
least one positive entry (because we must be
able to reach 0 from ().

Example. Birth-death processes

0 O 0 0
p1 —(A1 4+ p1) A1 0

0 (o —(A2 + p2) Ao

Example. The autocatalytic reaction

(o 0 0 0 0
O —kja kia 0 0
ky 0 —(2kia+ ko) 2kia 0

0 3ko 0 —3(kia + k») 3kia

\ :




MODELLING QUASISTATIONARITY

Recall that S = {0}UC, where 0 is an absorbing
state and C' = {1,2,...} is the set of transient
States.

. Define m(t) =
m;(t) = Pr(X(t) = j ),
the chance of being in state j

Question 1. Can we choose the initial distri-
bution a in order that m;(t) = aj, j € C, for
all ¢t > 07

Question 2. Does m(t) - m as t — o0o?

Definition. A distribution m = (m;,j € C)
satisfying m(¢t) = m for all t > 0 is called a

. If m(t) — m then
m IS called a



SOME CALCULATIONS

For 5 € C,

m;(t) = Pr(X(t) =j| X(t) € C)
Pr(X(t) =3j)
Pr(X(t) € C)

pi)  _  pi)
>kecpr(t) 1 —po(t)

T herefore,
p;(t)

1 —po(t)
p;(t)

po(t)
(1 = po(®))?
_ ey Po®
1o T O 0 ®

= > mp(Oar; +mi) Y mpt)aro
keC keC

mjl-(t) =

+ p; (1)

mi(t) = > mp(t)qr; +m;() Y my(t)gko.
keC kel

Since Y jegq;j = 0, this can be written m/(t) =
m(t)A—cym(t), where ¢, = m(t)Al and A is the
restriction of Q to C.



QUASI-STATIONARY DISTRIBUTIONS

Since a is the initial distribution (with ag = 0),

1eC
where p;;(t) = Pr(X(t) = j|X(0) =1i). There-
fore, if m is a quasi-stationary distribution, then

> mpii(t) =g(t)m;, jeC, t>0,

e’
where ¢g(t) = > ,ecpi(t). It is easy to show
that ¢ satisfies: g(s+t) = g(s)g(t), s,t > O,
and 0 < g(t) < 1. Thus, g(t) = e #t, for some
w > 0. The converse is also true.

Proposition. A probability distribution m =
(mj,j € C) is a quasi-stationary distribution if
and only if, for some p > 0, m is a p-invariant
measure, that is

S mipii () = e Mm;, jEC, t>0. (1)
ieC



CAN WE DETERMINE m from Q7

Rewrite (1) as

> mipii(®) = (1 —pj;®) — (1 — e ) m;
1eCi#£y
and use the fact that g;; is the right-hand deriva-
tive of p;;(-) near 0. On dividing by t and let-
ting t | 0, we get (formally)

> muqi; = (¢ —pw)my, j€C,
veCiiy

or, equivalently,

> mgqi; = —pmj, je€C. (2)
1eC
Accordingly, we shall say that m is a u-invariant
measure for (Q whenever (2) holds.

Proposition. If m is a quasi-stationary distri-
bution then, for some p > 0, m is a u-invariant
measure for Q).



IS THE CONVERSE TRUE?

Suppose that, for some p > 0, m is a u-invariant
measure for (Q, that is

> migi; = —pmy, jE€C.
1eC’
Is m a quasi-stationary distribution?

Sum this equation over j € C: we get (for-
mally)

Y omigio=—>_m; Y qii=— > > mig;

ieC icC  jeC jeC ieC

=p Yy, mj=yp.
jel
Theorem. Let m = (m;,j € C) be a proba-
bility distribution over C and suppose that m
IS a p-invariant measure for Q. Then, u <
>_jecmjqjo With equality if and only if m is a
quasi-stationary distribution.



AN EXAMPLE

The birth-death-catastrophe process. Let
S =1{0,1,2,...} and suppose that

4i+1 = apr, 1 2> 0,

q;i.i = —pt, 1 > 0,
Gii k= piby, 1>2, k=1,2...i—1,

q;,0 — p? Ziozz bka 1 2> 1,

where p,a > 0, b; > O for at least one + > 1 and
a + Zg’;l b, = 1. Jumps occur at a constant
“per-capita” rate p and, at a jump time, a birth
occurs with probability a, or otherwise a catas-
trophe occurs, the size of which is determined
by the probabilities b;, 1 > 1.

Clearly, 0 is an absorbing state and C = {1,2,...}
IS an irreducible class.

So, does the process admit a quasi-stationary
distribution?



CALCULATIONS

On substituting the transition rates into the
equations > ;ccm;q;; = —pmy, j € C, we get:

oo
—(p—p)mi + > kpby_ymy =0,
k=2

and, for 53 > 2,

o0
(G—Dpamj_1—(Gp—p)mi+ > kpby_jmy = 0.
k=j+1
If we try a solution of the form m; = ¢/, the
first equation tells us that u = —p(f'(¢¥) — 1),
where

f&)=a+ > bs'Th  s| <1,
1eC

and, on substituting both of these quantities
in the second equation, we find that f(¢) = ¢.
This latter equation has a unique solution o
on [0,1]. Thus, by setting t = o we obtain a
positive p-invariant measure m = (m;,j € C)
for ), which satisfies Zjecmj — 1 whenever
o< 1.



The condition o < 1 is satisfied only in the
subcritical case, that is, when (the drift) D =
a— > ;cctb; < 0; this also guarantees that ab-
sorption occurs with probability 1.

Further, it is easy to show that } ;.o m;q,0 = u:

>iec™migio = 27=1(1 — 0)0Z Lpi 302, by,
= P21 bp Y1 (1 = 0)io’™

= p(1— f'(0)) = p.

Proposition. The subcritical birth-death-catas-

trophe process has a geometric quasi-stationary

distribution m = (m;, j € C'). This is given by
mj=(1—a)0j_1, j e C,

where o is the unique solution to f(¢t) = ¢ on
the interval [0, 1].



SOME RECENT TECHNOLOGY

Theorem. If the equations

> yigi; =vy;, j€C,

1eC
have no non-trivial, non-negative solution such
that > ,ccy; < oo, for some (and then all) v >
0, then p-invariant probability measures for

() are quasistationary distributions.

[More generally, writing «; for the probability of
absorption starting in 7, we have the following:

Theorem. If the equations

> yigi; =vy;,  j€C,

1eC
have no non-trivial, non-negative solution such
that ¥} ,co yia; < oo, for some (and then all) v >
0, then p-invariant measures for Q satisfying

> iec mia; < oo, are p-invariant for P.]



COMPUTATIONAL METHODS

Finite S. Mandl (1960) showed that the re-
striction of Q to C has eigenvalues with nega-
tive real parts and the one with maximal real
part (called —u above) is real and has multiplic-
ity 1, and, the corresponding left eigenvector
I = (l;,j € C) has positive entries; this is, of
course, a p-invariant measure for Q (unique up
to constant multiples). Since S is finite, the
quasi-stationary distribution m = (m,: € C)
exists and is given by

_ b -
m; = Zkeclk, 5 € C.
Infinite S. Truncate the restriction of Q to
an n X n matrix, Q(”), and construct a se-
quence, {I{M}, of eigenvectors and hope that
this converges to a p-invariant measure [ for

(), et cetera.




HOW SHOULD WE EVALUATE m?

Consider once again our epidemic model.

First truncate C to

Cy={(z,y) :z2=0,.... N—1,y=1,...,N}

and restrict @ to Cy. Use the transformation
i = x4+ N(y — 1) to convert the restricted g-
matrix into an n x n matrix, Q = (g¢;;,%,] =
0,1,...,n—1), where n = NZ2.

Evaluation of the eigenvectors of () is not com-
pletely trivial. For example, if (as well shall as-
sume) N = 100, that is n = 10%, Q needs 400
Mbytes of storage.

However, for N large, this matrix is large and
sparse. Does this help?



THE ARNOLDI METHOD
We need to solve Az = Az, where A = Q7.

Using an initial estimate of x, the basic Arnoldi
method produces an mxm (upper-Hessenberg)
matrix Hy,, and an n X m matrix V;,, with

and such that if z;, IS an eigenvector of H,,
then, for m large, Vi,zm IS close to an eigen-
vector of A.

We solve for z,, using standard (dense-matrix)
methods.



AN ITERATIVE ARNOLDI
METHOD

Take m small (we found that m = 20 worked
best). Then, using an initial estimate v of the
eigenvector z, apply the basic Arnoldi method
(to obtain H,, and V;;) and set X to be the
dominant eigenvalue of H,, if this is real, or
set \ equal to zero otherwise.

Now solve

(Hp — X)up = 2
with z chosen at random and repeat the pro-
cedure with a new initial estimate, given by
v1 = Vmu1/||Vmuil|2.

Continue until the residual, ||Avy — Avillo, is
sufficiently small.



Convergence of the lterative Arnoldi Method (20 inner iterations)
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