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Recapitulation - Rabbits in Canberra
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Williams, R.T., Fullagar, P.J., Kogon, C. and Davey, C. (1973) Observations on a naturally

occurring winter epizootic of myxomatosis at Canberra, Australia, in the presence of Rabbit

fleas (spilopsyllus cuniculi dale) and virulent myxoma virus, J. Appl. Ecol. 10, 417–427.
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1 + e−0.349−0.1512 t

Williams, R.T., Fullagar, P.J., Kogon, C. and Davey, C. (1973) Observations on a naturally

occurring winter epizootic of myxomatosis at Canberra, Australia, in the presence of Rabbit

fleas (spilopsyllus cuniculi dale) and virulent myxoma virus, J. Appl. Ecol. 10, 417–427.
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Recapitulation - Growth of yeast
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Carlson, T. (1913) Uber Geschwindigkeit und Grosse der Hefevermehrung

in Wurze. Biochemische Zeitschrift 57, 313–334.
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Recapitulation - Growth of yeast
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xt =
665

1 + e4.16−0.531 t

Carlson, T. (1913) Uber Geschwindigkeit und Grosse der Hefevermehrung

in Wurze. Biochemische Zeitschrift 57, 313–334.
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Sheep in Tasmania
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Davidson, J. (1938) On the growth of the sheep population

in Tasmania, Trans. Roy. Soc. Sth. Austral. 62, 342–346.
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nt = 1670/(1 + e240.81−0.13125 t )

Davidson, J. (1938) On the growth of the sheep population

in Tasmania, Trans. Roy. Soc. Sth. Austral. 62, 342–346.
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Recapitulation - The Verhulst-Pearl model

dn

dt
= rn(1 − n/K).

Here r is the growth rate with unlimited resources and
K is the “natural” population size (the carrying
capacity).

Integration gives

nt =
K

1 +
(

K−n0

n0

)

e−rt
(t ≥ 0).
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Recapitulation - The Verhulst-Pearl model
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Recapitulation - Adding noise

nt =
K

1 +
(

K−n0

n0

)

e−rt
+ something random

or perhaps

dn

dt
= rn

(

1 − n

K

)

+ σ × noise.
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Recapitulation - White noise
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White noise on [0,1] sampled 1000 times
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Recapitulation - Brownian motion
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Recapitulation - Langevin equation

In modern parlance, Langevin described the Brownian
particle’s velocity as an Ornstein-Uhlenbeck (OU)
process.

The Langevin equation (for a particle of unit mass) is

dvt = −µvt dt + σdBt,

being Newton’s law (−µv = Force = mv̇) plus noise.

The (strong) solution to this SDE is the OU process:

vt = v0e
−µt +

∫ t

0 σe−µ(t−s)dBs.
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A different approach

Let’s start from scratch specifying a stochastic model
with variation being an inherent property: a Markovian
model .
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A different approach

We will suppose that nt (integer-valued!) evolves as a
birth-death process with rates

qn,n+1 = λn
(

1 − n
N

)

and qn,n−1 = µn,

where λ is the per-capita birth rate (when N is large),
and µ is per-capita death rate. Here N is the
population ceiling (nt now takes values in
S = {0, 1, . . . , N}).
I will call this model the stochastic logistic (SL) model ,
though it has many names, having been rediscovered
several times since Feller proposed it in 1939.
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A different approach

We will suppose that nt (integer-valued!) evolves as a
birth-death process with rates

qn,n+1 = λn
(

1 − n
N

)

and qn,n−1 = µn,

where λ is the per-capita birth rate (when N is large),
and µ is per-capita death rate. Here N is the
population ceiling (nt now takes values in
S = {0, 1, . . . , N}).
I will call this model the stochastic logistic (SL) model ,
though it has many names, having been rediscovered
several times since Feller proposed it in 1939.

It shares an important property with the deterministic
logistic model: that of density dependence.
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Density dependence

The Verhulst-Pearl model dn
dt

= rn
(

1 − n
K

)

can be
written

1

N

dn

dt
= r

n

N

(

1 − N

K

n

N

)

.

The state nt changes at a rate that depends on nt only
through nt/N .

MASCOS Meeting, 21st September 2009 - Page 16



Density dependence

So, letting xt = nt/N be the “population density”, we
get

dx

dt
= rx

(

1 − x

E

)

, where E = K/N.

This is a convenient space scaling. We could have set
xt = nt/A, where A is habitat area, and then

dx

dt
= rx

(

1 − x

DE

)

, where D = N/A.
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Markovian models

Let (nt, t ≥ 0) be a continuous-time Markov chain
taking values in S ⊆ Zk with transition rates
Q = (qnm, n,m ∈ S). We identify a quantity N , usually
related to the size of the system being modelled.

Definition (Kurtz∗) The model is density dependent if
there is a subset E of Rk and a continuous function
f : Zk × E → R, such that

qn,n+l = Nfl

(

n
N

)

, l 6= 0 (l ∈ Zk).

(So, the idea is the same: the rate of change of nt

depends on nt only through the “density” nt/N .)

∗Kurtz, T. (1970) Solutions of ordinary differential equations as limits of pure
jump Markov processes, J. of Appl. Probab. 7, 49–58.
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Tom Kurtz

Thomas Kurtz (taken in 2003)
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Density dependence

Consider the forward equations for pn(t) := Pr(nt = n).
Let qn =

∑

m 6=n qnm. Then,

p ′
n(t) = −qnpn(t) +

∑

m 6=n pm(t)qmn,
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Density dependence

Consider the forward equations for pn(t) := Pr(nt = n).
Let qn =

∑

m 6=n qnm. Then,

p ′
n(t) = −qnpn(t) +

∑

m 6=n pm(t)qmn,

and so (formally) E(nt) =
∑

n npn(t) satisfies
d
dt

E(nt) = −∑

n qnnpn(t) +
∑

m pm(t)
∑

n6=m nqmn.
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Density dependence

Consider the forward equations for pn(t) := Pr(nt = n).
Let qn =

∑

m 6=n qnm. Then,

p ′
n(t) = −qnpn(t) +

∑

m 6=n pm(t)qmn,

and so (formally) E(nt) =
∑

n npn(t) satisfies
d
dt

E(nt) = −∑

n qnnpn(t) +
∑

m pm(t)
∑

n6=m nqmn.

So if qn,n+l = Nfl(n/N), then
d
dt

E(nt) = −∑

n

∑

l 6=0 Nfl(n/N)npn(t)

+
∑

m pm(t)
∑

l 6=0(m + l)Nfl(m/N)

=
∑

m pm(t)N
∑

l 6=0 lfl(m/N) = NE

(

∑

l 6=0 lfl(nt/N)
)

.
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Density dependence

For an arbitrary density dependent model, define
F : E → R by F (x) =

∑

l 6=0 lfl (x). Then,

d
dt

E(nt) = N E

(

F
(nt

N

))

,

or, setting Xt = nt/N (the density process),

d
dt

E(Xt) = E (F (Xt)) .
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Density dependence

For an arbitrary density dependent model, define
F : E → R by F (x) =

∑

l 6=0 lfl (x). Then,

d
dt

E(nt) = N E

(

F
(nt

N

))

,

or, setting Xt = nt/N (the density process),

d
dt

E(Xt) = E (F (Xt)) .

Warning: I’m not saying that d
dt

E(Xt) = F (E(Xt)).
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Density dependence

For an arbitrary density dependent model, define
F : E → R by F (x) =

∑

l 6=0 lfl (x). Then,

d
dt

E(nt) = N E

(

F
(nt

N

))

,

or, setting Xt = nt/N (the density process),

d
dt

E(Xt) = E (F (Xt)) .

Warning: I’m not saying that d
dt

E(Xt) = F (E(Xt)).

(But, I am hoping for something like that to be true!)
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Density dependence

For the SL model we have S = {0, 1, . . . , N} and

qn,n+1 = λn
(

1 − n
N

)

and qn,n−1 = µn.

Therefore, f+1(x) = λx (1 − x) and f−1(x) = µx,
x ∈ E := [0, 1], and so F (x) = λx (1 − ρ − x), x ∈ E,
where ρ = µ/λ.
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Density dependence

For the SL model we have S = {0, 1, . . . , N} and

qn,n+1 = λn
(

1 − n
N

)

and qn,n−1 = µn.

Therefore, f+1(x) = λx (1 − x) and f−1(x) = µx,
x ∈ E := [0, 1], and so F (x) = λx (1 − ρ − x), x ∈ E,
where ρ = µ/λ.

Now compare F (x) with the right-hand side of the
Verhulst-Pearl model for the density process:

dx
dt

= rx
(

1 − x
E

)

, where E = K/N . (2)

If K ∼ βN for N large, so that K/N → β, then we may
identify β with 1 − ρ and r with λβ, and discover that (2)

can be rewritten as dx/dt = F (x).
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Recall that ...

Recall that (nt, t ≥ 0) is a continuous-time Markov
chain taking values in S ⊆ Zk with transition rates
Q = (qnm, n,m ∈ S), and we have identified a quantity
N , usually related to the size of the system being
modelled.
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Recall that ...

Recall that (nt, t ≥ 0) is a continuous-time Markov
chain taking values in S ⊆ Zk with transition rates
Q = (qnm, n,m ∈ S), and we have identified a quantity
N , usually related to the size of the system being
modelled.

The model is assumed to be density dependent : there
is a subset E of Rk and a continuous function
f : Zk × E → R, such that

qn,n+l = Nfl

(

n
N

)

, l 6= 0 (l ∈ Zk).

We set F (x) =
∑

l 6=0 lfl (x), x ∈ E.
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The density process

We now formally define the density process (X (N)

t ) by
X (N)

t = nt/N , t ≥ 0. We hope that (X (N)

t ) becomes more
deterministic as N gets large.

MASCOS Meeting, 21st September 2009 - Page 25



The density process

We now formally define the density process (X (N)

t ) by
X (N)

t = nt/N , t ≥ 0. We hope that (X (N)

t ) becomes more
deterministic as N gets large.

To simplify the statement of results, I’m going to
assume that the state space S is finite.
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A law of large numbers

The following functional law of large numbers
establishes convergence of the family (X (N)

t ) to the
unique trajectory of an appropriate approximating
deterministic model.

Theorem (Kurtz∗) Suppose F is Lipschitz on E (that
is, |F (x) − F (y)| < ME |x − y|). If limN→∞ X (N)

0 = x0, then
the density process (X (N)

t ) converges uniformly in
probability on [0, t] to (xt), the unique (deterministic)
trajectory satisfying

d
ds

xs = F (xs), xs ∈ E, s ∈ [0, t].

∗Kurtz, T. (1970) Solutions of ordinary differential equations as limits of pure
jump Markov processes, J. of Appl. Probab. 7, 49–58.
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A law of large numbers

Theorem (Kurtz∗) Suppose F is Lipschitz on E (that
is, |F (x) − F (y)| < ME |x − y|). If limN→∞ X (N)

0 = x0, then
the density process (X (N)

t ) converges uniformly in
probability on [0, t] to (xt), the unique (deterministic)
trajectory satisfying

d
ds

xs = F (xs), xs ∈ E, s ∈ [0, t].

∗Kurtz, T. (1970) Solutions of ordinary differential equations as limits of pure
jump Markov processes, J. of Appl. Probab. 7, 49–58.

(If S is an infinite set, we have the additional conditions
supx∈E

∑

l 6=0 |l|fl(x) < ∞ and limd→∞
∑

|l|>d |l|fl(x) = 0,
x ∈ E.)
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A law of large numbers

Convergence uniformly in probability on [0, t] means
that for every ǫ > 0,

limN→∞ Pr
(

sups≤t

∣

∣X (N)

t − xt

∣

∣ > ǫ
)

= 0.
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A law of large numbers

Convergence uniformly in probability on [0, t] means
that for every ǫ > 0,

limN→∞ Pr
(

sups≤t

∣

∣X (N)

t − xt

∣

∣ > ǫ
)

= 0.

The conditions of the theorem hold for the SL model:
since F (x) = λx(1 − ρ − x), we have, for all
x, y ∈ E = [0, 1], that

|F (x) − F (y)| = λ|x − y||1 − ρ − (x + y)| ≤ (1 + ρ)λ|x − y|.

That is, F is Lipschitz on E.
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A law of large numbers

So, provided X (N)

0 → x0 as N → ∞, the population
density (X (N)

t ) converges (uniformly in probability on
finite time intervals) to the solution (xt) of the
deterministic model

dx

dt
= λx(1 − ρ − x) (xt ∈ E).
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The SL model (N = 20)

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Simulation of SL Model (N =20, λ =0.1625, µ =0.0325)

t

x
t

MASCOS Meeting, 21st September 2009 - Page 30



The SL model (N = 50)
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The SL model (N = 100)
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The SL model (N = 200)
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The SL model (N = 500)
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The SL model (N = 1 000)
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The SL model (N = 10 000)
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Simulation of the SL model
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A central limit law

In a later paper Kurtz∗ proved a functional central limit
law which establishes that, for large N , the
fluctuations about the deterministic trajectory follow a
Gaussian diffusion, provided that some mild extra
conditions are satisfied.

He considered the family of processes {(Z(N)

t )} defined
by

Z(N)
s =

√
N

(

X (N)
s − xs

)

, 0 ≤ s ≤ t.

∗Kurtz, T. (1971) Limit theorems for sequences of jump Markov processes
approximating ordinary differential processes. J. Appl. Probab. 8, 344–356.
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The SL model (N = 20)
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The SL model (N = 50)
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The SL model (N = 100)

0 10 20 30 40 50 60 70 80 90 100
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Simulation of SL Model (N =100, λ =0.1625, µ =0.0325)

t

Z
(N

)
t

=
√

N
(X

(N
)

t
−

x
t
)

MASCOS Meeting, 21st September 2009 - Page 41



The SL model (N = 200)
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The SL model (N = 500)
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The SL model (N = 1 000)
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The SL model (N = 10 000)
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Recapitulation - Brownian motion
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The SL model (N = 10 000)
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A central limit law

Theorem Suppose that F is Lipschitz and has
uniformly continuous first derivative on E, and that the
k × k matrix G(x), defined for x ∈ E by
Gij(x) =

∑

l 6=0 liljfl(x), is uniformly continuous on E.

Let (xt) be the unique deterministic trajectory starting
at x0 and suppose that limN→∞

√
N

(

X (N)

0 − x0

)

= z.

Then, {(Z(N)

t )} converges weakly in D[0, t] (the space of
right-continuous, left-hand limits functions on [0, t]) to a
Gaussian diffusion (Zt) with initial value Z0 = z and
with mean and covariance given by µs := E(Zs) = Msz,
where Ms = exp(

∫ s

0 Bu du) and Bs = ∂F (xs), and

Vs := Cov(Zs) = Ms

(∫ s

0 M−1
u G(xu)(M−1

u )T du
)

MT
s .
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A central limit law

The functional central limit theorem tells us that, for
large N , the scaled density process Z(N)

t can be
approximated over finite time intervals by the
Gaussian diffusion (Zt).

In particular, for all t > 0, X (N)

t has an approximate
normal distribution with Cov(X (N)

t ) ≃ Vt/N .

We would usually take x0 = X (N)

0 , thus giving
E(X (N)

t ) ≃ xt.
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A central limit law

For the SL model we have F (x) = λx(1 − ρ − x), and
the solution to dx/dt = F (x) is

x(t) = (1−ρ)x0

x0+(1−ρ−x0)e−λ(1−ρ)t .

We also have F ′(x) = λ(1 − ρ − 2x) and

G(x) =
∑

l l
2fl(x) = λx(1 + ρ − x) = F (x) + 2µx,

giving

Mt = exp
(

∫ t

0 F ′(xs) ds
)

= (1−ρ)2e−λ(1−ρ)t

(x0+(1−ρ−x0)e−λ(1−ρ)t)2
.

We can evaluate

Vt := Var(Zt) = M2
t

(

∫ t

0 G(xs)/M
2
s ds

)

numerically, or ...
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Or ....

Vt = x0

(

ρx3
0 + x2

0(1 + 5ρ)(1 − ρ − x0)e
−λ(1−ρ)t

+ 2x0(1 + 2ρ)(1 − ρ − x0)
2(λ(1 − ρ)t)e−2λ(1−ρ)t

−
(

(1− ρ− x0)[3ρx2
0 + (2 + ρ)(1− ρ)x0 − ((1 + 2ρ))(1− ρ)2]

+ ρ(1 − ρ)3
)

e−2λ(1−ρ)t

−(1+ρ)(1−ρ−x0)
3e−3λ(1−ρ)t

)/(

x0+(1−ρ−x0)e
−λ(1−ρ)t

)4
.
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The SL model
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The OU approximation

If the initial point x0 of the deterministic trajectory is
chosen to be an equilibrium point of the deterministic
model, we can be far more precise about the
approximating diffusion.
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The OU approximation

Corollary If xeq satisfies F (xeq) = 0, then, under the
conditions of the theorem, the family {(Z(N)

t )}, defined
by

Z(N)
s =

√
N(X (N)

s − xeq), 0 ≤ s ≤ t,

converges weakly in D[0, t] to an OU process (Zt) with
initial value Z0 = z, local drift matrix B = ∂F (xeq) and
local covariance matrix G(xeq). In particular, Zs is
normally distributed with mean and covariance given
by µs := E(Zs) = eBsz and

Vs := Cov(Zs) =
∫ s

0 eBuG(xeq)e
BT u du .
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The OU approximation

Note that

Vs =
∫ s

0 eBuG(xeq)e
BT u du = V∞ − eBsV∞eBT s,

where V∞, the stationary covariance matrix, satisfies

BV∞ + V∞BT + G(xeq) = 0.
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The OU approximation

Note that

Vs =
∫ s

0 eBuG(xeq)e
BT u du = V∞ − eBsV∞eBT s,

where V∞, the stationary covariance matrix, satisfies

BV∞ + V∞BT + G(xeq) = 0.

We conclude that, for N large, X (N)

t has an
approximate Gaussian distribution with
Cov(X (N)

t ) ≃ Vt/N .
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The OU approximation

Note that

Vs =
∫ s

0 eBuG(xeq)e
BT u du = V∞ − eBsV∞eBT s,

where V∞, the stationary covariance matrix, satisfies

BV∞ + V∞BT + G(xeq) = 0.

We conclude that, for N large, X (N)

t has an
approximate Gaussian distribution with
Cov(X (N)

t ) ≃ Vt/N .

For the SL model, Var(X (N)

t ) ≃ ρ(1 − e−2λ(1−ρ)t)/N .
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The OU approximation

This brings us “full circle” to the approximating SDE

dnt = −α(nt − K) dt +
√

2NαρdBt,

where α = λ(1 − ρ).
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The SL model
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