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Williams, R.T., Fullagar, P.J., Kogon, C. and Davey, C. (1973) Observations on a naturally
occurring winter epizootic of myxomatosis at Canberra, Australia, in the presence of Rabbit

fleas (spilopsyllus cuniculi dale) and virulent myxoma virus, J. Appl. Ecol. 10, 417-427.
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in Wurze. Biochemische Zeitschrift 57, 313—-334.
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Showing result of fitting equation (xviii) to population data.

Pearl, R. and Reed, L. (1920) On the rate of growth of population of the United States
since 1790 and its mathematical representation, Proc. Nat. Academy Sci. 6, 275-288.
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Davidson, J. (1938) On the growth of the sheep population
in Tasmania, Trans. Roy. Soc. Sth. Austral. 62, 342-346.
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The net growth rate per individual is a function of the
population size n.

We want f(n) to be positive for small » and negative
for large n.
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z—? =nf(n).
The net growth rate per individual is a function of the
population size n.

We want f(n) to be positive for small » and negative
for large n. Simply set f(n) = r — sn to give

dn
dt

= n(r — sn).

This Is the Verhulst* model (or logistic model):

*Verhulst, P.F. (1838) Notice sur la loi que la population suit dans son
accroisement, Corr. Math. et Phys. X, 113-121.
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Pierre Francois Verhulst (1804—1849, Brussels, Belgium)




The Verhulst model

Soit p Ia population : représentons par dp 1'accroissement in-
finiment petit qu'elle recoit pendant un terups infiniment courtdt,
Si la population croissait en progression géométriquc, nous au-
rions I'équation gf = mp, Mais comme- la vilesse d’accrotsse-
ment de la population est retardée par I'augmentation méme du
nombre des habitans, nous devrons retrancher de mp une fonc-
tion inconnue de p; de maniére que la formule a intégrer de-
viendra

dp

dt e ”IP — ?(P)'

L’hypothése la plus simplc que I'on puisse faire sur la forme
de la fonction ¢, est de supposer ¢ {p)=np>, On trouve alors
pour intégrale dc Péquation ci-dessus

1
b= — [log. p—log.(m—np)] +- constante,

ct il suffira de trois observations pour déterminer lés deux
cocfliciens constans » ct n ct Ia constante arbitraire.

MASCOS Meetina. 7th' Sentember 2000 - Pade 16



I The Verhulst model

118 CUNRESPONDANCE

Eu résolvant la dernidre dquation par rapport a p, il vient

TR ()

cn désignant par p’ la population qui répond @ =0, ct parela
base des logarithues népériens. Si I'on faiti=co , on voit quela
valeur de p correspondante cst P="=. Tello cst done la limize
supérieure de la population.

Au lieu dc supposer gp==np*, on peut prendre op = np*,
z étant quclconque, ou gpp=n log. p. Toutes ces hypothéscs sa-
tisfont également bicn aux faits observes; mais elles donnent des
valeurs trés-différentes pour Ja limite supéricure dela population,

J'ai supposc successivement

¢p="np*, op=np*, gp =npt, gp=mnlog. p;
et les différences eatro les populations calculées et cclles que
fournit 'observation ont été sensiblement les mémes.

m p’ emt

T np’emt - om—mp

P
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Tableaw des progrds de la population de la France depwis 1817

MATHENATIQEL ET PHYSIQUE.

n7

jusqu’'a 1831 , d’apris I' Annuaire pour 1034,

S e ye— u":;m Aol a.?g,.u:u_
1817 n,:sm n,nﬂl.;: 0,0000 | 7,4763490
1818 so.::wlﬁg a,m +0,0004 | 7,4708585 ||
1819 188 30, 40,0018 | 7,48278:5

' 1820 :’:“ﬁ ﬁ +o:|s 1:43“401

183,227 187,300

1621 ""Z?i,’?"u ao,m,?: 40,0021 |  7,4884310
1822 aomﬁ a,g,m +0,0014 | 74911453

1823 :1,m 31,% 40,0012 | 7,4037807

1824 u,a?m,ag sm 0,0000 | 7,4963719

1825 sn,:m tl,f:’ﬁ —0,0012 | 7,4988350
1826 n,vm u,'lt;e,‘; —0,0011 | 7,5013368

1627 al,gg::% n% —0,0005 | 7,5037257

1828 u,ig,’ﬁ a,:&m —0,0011 | 7,5060547

1829 a,:::ﬁg: % —0,0002 | 7,6083251

1830 u,:g,omm u,:::gz 0,0000 | 7,5105385

183t 32,580,934 32,680,934 0,0000 | 7,5120965

1r jany. |(Chiffre du recenst.)




An alternative formulation has r being the growth rate
with unlimited resources and K being the “natural”
population size (the carrying capacity). We put

f(n) =r(1—n/K) giving

d
d—? =rn(l —n/K),

which is the original model with s = r/K.




An alternative formulation has r being the growth rate
with unlimited resources and K being the “natural”
population size (the carrying capacity). We put
f(n) =r(1—n/K) giving

dn

i rn(l —n/K),
which is the original model with s = r/K.
Integration gives

ny —




This formulation is due to Raymond Peatrl:

Pearl, R. and Reed, L. (1920) On the rate of growth of population
of the United States since 1790 and its mathematical representation,
Proc. Nat. Academy Sci. 6, 275-288.

Pearl, R. (1925) The biology of population growth, Alfred A. Knopf, New York.

Pearl, R. (1927) The growth of populations, Quart. Rev. Biol. 2, 532-548.




Verhulst-Pearl model

Raymond Pearl (1879-1940, Farmington, N.H., USA)

[\Y| eeting. eptembper - Padge



Pearl was widely known for his lust for life and his love
of food, drink, music and parties. He was a key
member of the Saturday Night Club. Prohibition made
no dent in Pearl’s drinking habits (which were
legendary).




Pearl was widely known for his lust for life and his love
of food, drink, music and parties. He was a key
member of the Saturday Night Club. Prohibition made
no dent in Pearl’s drinking habits (which were
legendary).

In 1926, his book, Alcohol and Longevity,
demonstrated that drinking alcohol in moderation is
associated with greater longevity than either
abstaining or drinking heauvily.

Pearl, R. (1926) Alcohol and Longevity, Alfred A. Knopf, New York.
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Trajectories of the logistic model: K = 1670, r = 0.007
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Davidson, J. (1938) On the growth of the sheep population
in Tasmania, Trans. Roy. Soc. Sth. Austral. 62, 342-346.
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We really need to account for the variation observed.
A common approach to stochastic modelling in
Applied Mathematics can be summarised as follows:

“| suspect that the world is not deterministic - |
should add some noise”




We really need to account for the variation observed.

A common approach to stochastic modelling in
Applied Mathematics can be summarised as follows:

“| suspect that the world is not deterministic - |
should add some noise”

*Zen Maxim (for survival in a modern university): Before you criticize someone,
you should walk a mile in their shoes. That way, when you criticize them, you're
a mile away and you have their shoes.




INn our case,

K
1+ (K_"O) e "t

no

+ something random

Ny —

or perhaps

dn .
— =1Trn (1— —) + o X holse.




The usual model for “noise” is white noise (or pure
Gaussian noise).

Imagine a random process (&, t > 0) with & ~ N(0,1)
forall t and &, ..., & independent for all finite
sequences of times t4, ..., t,.




White noise on [0, 1] sampled 1000 times
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The white noise process (&, t > 0) is formally defined
as the derivative of standard Brownian motion
(B, t > 0).

Brownian motion (or Wiener process) can be
constructed by way of a random walk. A particle starts
at 0 and takes small steps of size +A or —A with equal
probability p = 1/2 after successive time steps of

size h. If A ~ V/h, as h — 0, then the limit process is
standard Brownian motion.
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Random walk simulation: h = 2.5e-005, A = 0.005




The white noise process (&, t > 0) is formally defined
as the derivative of standard Brownian motion
(B, t > 0).

Brownian motion (or Wiener process) can be
constructed by way of a random walk. A particle starts
at 0 and takes small steps of size +A or —A with equal
probability p = 1/2 after successive time steps of

size h. If A ~ V/h, as h — 0, then the limit process is
standard Brownian motion.




This construction permits us to write dB; = &+/dt, with
the interpretation that a change in B; In time dt Is a
Gaussian random variable with E(dB;) = 0,

Var(dBt) = dt and COV(dBt, dBS) =0 (S 7é t).




This construction permits us to write dB; = &+/dt, with
the interpretation that a change in B; In time dt Is a
Gaussian random variable with E(dB;) = 0,

Var(dBt) = dt and COV(dBt, dBS) =0 (S 7é t).

The correct interpretation is by way of the 1t0 integral:

By = [, dBs = [} & ds.




General Brownian motion (W, t > 0), with drift x and
variance o2, can be constructed in the same way but

with A ~ ovh and p = 3 (1 + (u/a)\/ﬁ), and we may
write
dW; = pdt + o dBy,

with the interpretation that a change in 1W; in time dt IS
a Gaussian random variable with E(dW;) = udt,
Var(dW;) = o*dt and Cov(dW;, dWy) = 0.




dW; = pdt + o dBy,

This stochastic differential equation (SDE) can be
Integrated to give W; = ut + o B;.




dW; = pdt + o dBy,

This stochastic differential equation (SDE) can be
Integrated to give W; = ut + o B;.

It does not require an enormous leap of faith for us
now to write down, and properly interpret, the SDE

dn; = rng (1 —ng/K) dt + odBy

as a model for growth.




The idea (indeed the very idea of an SDE) can be
traced back to Paul Langevin’s 1908 paper “On the
theory of Brownian Motion”:

Langevin, P. (1908) Sur la théorie du mouvement brownien, Comptes
Rendus 146, 530-533.

He derived a “dynamic theory” of Brownian Motion
three years after Einstein’s ground breaking paper on
Brownian Motion:

Einstein, A. (1905) On the movement of small particles suspended in
stationary liquids required by the molecular-kinetic theory of heat, Ann.
Phys. 17, 549-560 [English translation by Anna Beck in The Collected
Papers of Albert Einstein, Princeton University Press, Princeton, USA,
1989, Vol. 2, pp. 123-134.]

m



Langevin introduced a “stochastic force” (his phrase
“complementary force”—complimenting the viscous
drag 1) pushing the Brownian particle around Iin
velocity space (Einstein worked in configuration

space).




In modern terminology, Langevin described the
Brownian particle’s velocity as an Ornstein-Uhlenbeck

(OU) process and its position as the time integral of its
velocity, while Einstein described its position as a

Wiener process.
The Langevin equation (for a particle of unit mass) is

dv; = — vy dt + od By.

This is Newton’s law (—uv = Force = mo) plus noise.




In modern terminology, Langevin described the
Brownian particle’s velocity as an Ornstein-Uhlenbeck

(OU) process and its position as the time integral of its
velocity, while Einstein described its position as a

Wiener process.
The Langevin equation (for a particle of unit mass) is
dv; = — vy dt + od By.

This is Newton’s law (—uv = Force = mo) plus noise.
The (strong) solution to this SDE is the OU process.




In modern terminology, Langevin described the
Brownian particle’s velocity as an Ornstein-Uhlenbeck
(OU) process and its position as the time integral of its
velocity, while Einstein described its position as a

Wiener process.
The Langevin equation (for a particle of unit mass) is
dv; = —pvy dt + odBy.

This is Newton’s law (—uv = Force = mo) plus noise.
The (strong) solution to this SDE is the OU process.

Warning: [, vsds # By; this functional is not even
Markovian.

B
m



Langevin

Paul Langevin (1872 — 1946, Paris, France)




Einstein said of Langevin

“... It seems to me certain that he would have
developed the special theory of relativity if that had not
been done elsewhere, for he had clearly recognized

the essential points.”




In 1910 he had an affair with Marie Curie.




Langevin was a dark horse

In 1910 he had an affair with Marie Curie.
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Langevin was a dark horse

In 1910 he had an affair with Marie Curie.

The person on the right is not Langevin, but
Langevin’s PhD supervisor Pierre Curie.
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To solve dvy = —puwvy dt + od By, consider the process
= veelt,
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dy; = e*dvy + pettvdt.
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To solve dvy = —puwvy dt + od By, consider the process
y: = viett. Differentiation (1t calculus!) gives
dy; = e*dvy + pettvdt.

But, from Langevin’s equation we have that
eMdvy = —pettv; dt + oettd By,

and hence that dy; = cet'dB;.




To solve dvy = —puwvy dt + od By, consider the process
y: = viett. Differentiation (1t calculus!) gives
dy; = e*dvy + pettvdt.

But, from Langevin’s equation we have that
eMdvy = —pettv; dt + oettd By,

and hence that dy; = ce#'dB;. Integration gives

yr = yo + [y oe"*dB,,




To solve dvy = —puwvy dt + od By, consider the process
yr = vett. Differentiation (1t calculus!) gives
dy; = e*dvy + pettvdt.

But, from Langevin’s equation we have that
eMdvy = —pettv; dt + oettd By,
and hence that dy; = ce#'dB;. Integration gives
e = yo + [ oetdBs,
and so (the Ornstein-Uhlenbeck process)

vy = vge M+ fg Ue_u(t_s)dBS.




The Ornstein-Uhlenbeck process:
v = vpe M+ fg oge Ht=s) B,

We can deduce much from this. For example, v; IS a
Gaussian process with E(v;) = vgpe #* and
Var(v;) = &-(1 — =21, and

Cov(vg, Vpts) = Var(vt)e_“|3|.




We had just added noise to our logistic model:

dng = rny ( — %) dt + o dBy. (1)




We had just added noise to our logistic model:
dng = rny ( — %) dt + o dBy. (1)

So, what is wrong with (1)?
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Solution to SDE (one sample path)
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Mean path of SDE solution with + 2 standard deviations (1000 runs)
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Mean path of SDE solution with + 2 standard deviations (1000 runs)
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So, what is wrong with the model?
dn; = rng ( — %) dt + o dB;.
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So, what is wrong with the model?
dn; = rng ( — %) dt + o dB;.

For a start:

» O s reflecting;

» The mean path of the SDE solution does not follow
a logistic curve,

» The variance in the solution is large for the non-
equilibrium phase — is this okay?

. hot to mention the fact that n; IS a continuous
variable, yet population size is an integer-valued
process!

-
m



Since the variance is not uniform over time, we should
at least have

dny = rng (1 — %) dt + o(ng) dBy,
If not

dny = rng (1 — %) dt + o(nyg, t) dBy.
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