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Rabbits in Canberra
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Williams, R.T., Fullagar, P.J., Kogon, C. and Davey, C. (1973) Observations on a naturally

occurring winter epizootic of myxomatosis at Canberra, Australia, in the presence of Rabbit

fleas (spilopsyllus cuniculi dale) and virulent myxoma virus, J. Appl. Ecol. 10, 417–427.
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Growth of yeast
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Carlson, T. (1913) Uber Geschwindigkeit und Grosse der Hefevermehrung

in Wurze. Biochemische Zeitschrift 57, 313–334.
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occurring winter epizootic of myxomatosis at Canberra, Australia, in the presence of Rabbit
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Williams, R.T., Fullagar, P.J., Kogon, C. and Davey, C. (1973) Observations on a naturally

occurring winter epizootic of myxomatosis at Canberra, Australia, in the presence of Rabbit

fleas (spilopsyllus cuniculi dale) and virulent myxoma virus, J. Appl. Ecol. 10, 417–427.
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Growth of yeast
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in Wurze. Biochemische Zeitschrift 57, 313–334.
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Growth of yeast
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xt =
665

1 + e4.16−0.531 t

Carlson, T. (1913) Uber Geschwindigkeit und Grosse der Hefevermehrung

in Wurze. Biochemische Zeitschrift 57, 313–334.
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Population growth in USA

Pearl, R. and Reed, L. (1920) On the rate of growth of population of the United States

since 1790 and its mathematical representation, Proc. Nat. Academy Sci. 6, 275–288.
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A precipitation reaction
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+ Cl− ⇋ NaCl
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A precipitation reaction
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dt
= k1(c −X)2 − k2X

Xt =
x1(c − x2)− x2(c − x1)e

−λt

c − x2 − (c − x1)e−λt

λ = k1(x2 − x1) x2 = c2/x1 x1 = 15.5861

Na+
+ Cl− ⇋ NaCl
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−λt
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Sheep in Tasmania
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Davidson, J. (1938) On the growth of the sheep population

in Tasmania, Trans. Roy. Soc. Sth. Austral. 62, 342–346.
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nt = 1670/(1 + e240.81−0.13125 t )

Davidson, J. (1938) On the growth of the sheep population

in Tasmania, Trans. Roy. Soc. Sth. Austral. 62, 342–346.
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A deterministic model

dn

dt
= nf(n).

The net growth rate per individual is a function of the
population size n.

We want f(n) to be positive for small n and negative
for large n.

MASCOS Meeting, 7th September 2009 - Page 14



A deterministic model

dn

dt
= nf(n).

The net growth rate per individual is a function of the
population size n.

We want f(n) to be positive for small n and negative
for large n. Simply set f(n) = r − sn to give

dn

dt
= n(r − sn).
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A deterministic model

dn

dt
= nf(n).

The net growth rate per individual is a function of the
population size n.

We want f(n) to be positive for small n and negative
for large n. Simply set f(n) = r − sn to give

dn

dt
= n(r − sn).

This is the Verhulst∗ model (or logistic model):

∗Verhulst, P.F. (1838) Notice sur la loi que la population suit dans son
accroisement, Corr. Math. et Phys. X, 113–121.
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The Verhulst model

Pierre Francois Verhulst (1804–1849, Brussels, Belgium)
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The Verhulst model

An alternative formulation has r being the growth rate
with unlimited resources and K being the “natural”
population size (the carrying capacity). We put
f(n) = r(1 − n/K) giving

dn

dt
= rn(1 − n/K),

which is the original model with s = r/K.
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The Verhulst model

An alternative formulation has r being the growth rate
with unlimited resources and K being the “natural”
population size (the carrying capacity). We put
f(n) = r(1 − n/K) giving

dn

dt
= rn(1 − n/K),

which is the original model with s = r/K.

Integration gives

nt =
K

1 +
(

K−n0

n0

)

e−rt
(t ≥ 0).
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Verhulst-Pearl model

This formulation is due to Raymond Pearl:

Pearl, R. and Reed, L. (1920) On the rate of growth of population
of the United States since 1790 and its mathematical representation,
Proc. Nat. Academy Sci. 6, 275–288.

Pearl, R. (1925) The biology of population growth, Alfred A. Knopf, New York.

Pearl, R. (1927) The growth of populations, Quart. Rev. Biol. 2, 532–548.
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Verhulst-Pearl model

Raymond Pearl (1879–1940, Farmington, N.H., USA)
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Pearl was a “social drinker”

Pearl was widely known for his lust for life and his love
of food, drink, music and parties. He was a key
member of the Saturday Night Club. Prohibition made
no dent in Pearl’s drinking habits (which were
legendary).
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Pearl was a “social drinker”

Pearl was widely known for his lust for life and his love
of food, drink, music and parties. He was a key
member of the Saturday Night Club. Prohibition made
no dent in Pearl’s drinking habits (which were
legendary).

In 1926, his book, Alcohol and Longevity,
demonstrated that drinking alcohol in moderation is
associated with greater longevity than either
abstaining or drinking heavily.

Pearl, R. (1926) Alcohol and Longevity , Alfred A. Knopf, New York.
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Verhulst-Pearl model
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Sheep in Tasmania
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Sheep in Tasmania
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(With the deterministic trajectory subtracted)
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A stochastic model

We really need to account for the variation observed.

A common approach to stochastic modelling in
Applied Mathematics can be summarised as follows:

“I suspect that the world is not deterministic - I
should add some noise”
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A stochastic model

We really need to account for the variation observed.

A common approach to stochastic modelling in
Applied Mathematics can be summarised as follows:

“I suspect that the world is not deterministic - I
should add some noise”

∗Zen Maxim (for survival in a modern university): Before you criticize someone,
you should walk a mile in their shoes. That way, when you criticize them, you’re
a mile away and you have their shoes.
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Adding noise

In our case,

nt =
K

1 +
(

K−n0

n0

)

e−rt
+ something random

or perhaps

dn

dt
= rn

(

1 − n

K

)

+ σ × noise.
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Noise?

The usual model for “noise” is white noise (or pure
Gaussian noise).

Imagine a random process (ξt, t ≥ 0) with ξt ∼ N(0, 1)

for all t and ξt1 , . . . , ξtn
independent for all finite

sequences of times t1, . . . , tn.
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White noise
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Brownian motion

The white noise process (ξt, t ≥ 0) is formally defined
as the derivative of standard Brownian motion
(Bt, t ≥ 0).

Brownian motion (or Wiener process) can be
constructed by way of a random walk. A particle starts
at 0 and takes small steps of size +∆ or −∆ with equal
probability p = 1/2 after successive time steps of
size h. If ∆ ∼

√
h, as h → 0, then the limit process is

standard Brownian motion.
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Symmetric random walk: ∆ =
√

h
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Brownian motion

The white noise process (ξt, t ≥ 0) is formally defined
as the derivative of standard Brownian motion
(Bt, t ≥ 0).

Brownian motion (or Wiener process) can be
constructed by way of a random walk. A particle starts
at 0 and takes small steps of size +∆ or −∆ with equal
probability p = 1/2 after successive time steps of
size h. If ∆ ∼

√
h, as h → 0, then the limit process is

standard Brownian motion.
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Brownian motion

This construction permits us to write dBt = ξt

√
dt, with

the interpretation that a change in Bt in time dt is a
Gaussian random variable with E(dBt) = 0,
Var(dBt) = dt and Cov(dBt, dBs) = 0 (s 6= t).

MASCOS Meeting, 7th September 2009 - Page 33



Brownian motion

This construction permits us to write dBt = ξt

√
dt, with

the interpretation that a change in Bt in time dt is a
Gaussian random variable with E(dBt) = 0,
Var(dBt) = dt and Cov(dBt, dBs) = 0 (s 6= t).

The correct interpretation is by way of the Itô integral:

Bt =
∫ t

0 dBs =
∫ t

0 ξs ds.
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Brownian motion

General Brownian motion (Wt, t ≥ 0), with drift µ and
variance σ2, can be constructed in the same way but

with ∆ ∼ σ
√

h and p = 1
2

(

1 + (µ/σ)
√

h
)

, and we may

write

dWt = µ dt + σ dBt,

with the interpretation that a change in Wt in time dt is
a Gaussian random variable with E(dWt) = µdt,
Var(dWt) = σ2dt and Cov(dWt, dWs) = 0.
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Brownian motion

dWt = µ dt + σ dBt,

This stochastic differential equation (SDE) can be
integrated to give Wt = µt + σBt.
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Brownian motion

dWt = µ dt + σ dBt,

This stochastic differential equation (SDE) can be
integrated to give Wt = µt + σBt.

It does not require an enormous leap of faith for us
now to write down, and properly interpret, the SDE

dnt = rnt (1 − nt/K) dt + σdBt

as a model for growth.
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Adding noise

The idea (indeed the very idea of an SDE) can be
traced back to Paul Langevin’s 1908 paper “On the
theory of Brownian Motion”:

Langevin, P. (1908) Sur la théorie du mouvement brownien, Comptes
Rendus 146, 530–533.

He derived a “dynamic theory” of Brownian Motion
three years after Einstein’s ground breaking paper on
Brownian Motion:

Einstein, A. (1905) On the movement of small particles suspended in
stationary liquids required by the molecular-kinetic theory of heat, Ann.
Phys. 17, 549–560 [English translation by Anna Beck in The Collected
Papers of Albert Einstein, Princeton University Press, Princeton, USA,
1989, Vol. 2, pp. 123–134.]
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Langevin

Langevin introduced a “stochastic force” (his phrase
“complementary force”–complimenting the viscous
drag µ) pushing the Brownian particle around in
velocity space (Einstein worked in configuration
space).
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Langevin

In modern terminology, Langevin described the
Brownian particle’s velocity as an Ornstein-Uhlenbeck
(OU) process and its position as the time integral of its
velocity, while Einstein described its position as a
Wiener process.

The Langevin equation (for a particle of unit mass) is

dvt = −µvt dt + σdBt.

This is Newton’s law (−µv = Force = mv̇) plus noise.
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Langevin

In modern terminology, Langevin described the
Brownian particle’s velocity as an Ornstein-Uhlenbeck
(OU) process and its position as the time integral of its
velocity, while Einstein described its position as a
Wiener process.

The Langevin equation (for a particle of unit mass) is

dvt = −µvt dt + σdBt.

This is Newton’s law (−µv = Force = mv̇) plus noise.
The (strong) solution to this SDE is the OU process.
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Langevin

In modern terminology, Langevin described the
Brownian particle’s velocity as an Ornstein-Uhlenbeck
(OU) process and its position as the time integral of its
velocity, while Einstein described its position as a
Wiener process.

The Langevin equation (for a particle of unit mass) is

dvt = −µvt dt + σdBt.

This is Newton’s law (−µv = Force = mv̇) plus noise.
The (strong) solution to this SDE is the OU process.

Warning:
∫ t

0 vs ds 6= Bt; this functional is not even
Markovian.
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Langevin

Paul Langevin (1872 – 1946, Paris, France)
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Langevin

Einstein said of Langevin

“... It seems to me certain that he would have
developed the special theory of relativity if that had not
been done elsewhere, for he had clearly recognized
the essential points.”
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Langevin was a dark horse

In 1910 he had an affair with Marie Curie.
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Langevin was a dark horse

In 1910 he had an affair with Marie Curie.
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Langevin was a dark horse

In 1910 he had an affair with Marie Curie.

The person on the right is not Langevin, but
Langevin’s PhD supervisor Pierre Curie.
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Solution to Langevin’s equation

To solve dvt = −µvt dt + σdBt, consider the process
yt = vte

µt.
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Solution to Langevin’s equation

To solve dvt = −µvt dt + σdBt, consider the process
yt = vte

µt. Differentiation (Itô calculus!) gives
dyt = eµtdvt + µeµtvtdt.
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Solution to Langevin’s equation

To solve dvt = −µvt dt + σdBt, consider the process
yt = vte

µt. Differentiation (Itô calculus!) gives
dyt = eµtdvt + µeµtvtdt.

But, from Langevin’s equation we have that

eµtdvt = −µeµtvt dt + σeµtdBt,
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Solution to Langevin’s equation

To solve dvt = −µvt dt + σdBt, consider the process
yt = vte

µt. Differentiation (Itô calculus!) gives
dyt = eµtdvt + µeµtvtdt.

But, from Langevin’s equation we have that

eµtdvt = −µeµtvt dt + σeµtdBt,

and hence that dyt = σeµtdBt.
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Solution to Langevin’s equation

To solve dvt = −µvt dt + σdBt, consider the process
yt = vte

µt. Differentiation (Itô calculus!) gives
dyt = eµtdvt + µeµtvtdt.

But, from Langevin’s equation we have that

eµtdvt = −µeµtvt dt + σeµtdBt,

and hence that dyt = σeµtdBt. Integration gives

yt = y0 +
∫ t

0 σeµsdBs,
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Solution to Langevin’s equation

To solve dvt = −µvt dt + σdBt, consider the process
yt = vte

µt. Differentiation (Itô calculus!) gives
dyt = eµtdvt + µeµtvtdt.

But, from Langevin’s equation we have that

eµtdvt = −µeµtvt dt + σeµtdBt,

and hence that dyt = σeµtdBt. Integration gives

yt = y0 +
∫ t

0 σeµsdBs,

and so (the Ornstein-Uhlenbeck process)

vt = v0e
−µt +

∫ t

0 σe−µ(t−s)dBs.
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Solution to Langevin’s equation

The Ornstein-Uhlenbeck process:

vt = v0e
−µt +

∫ t

0 σe−µ(t−s)dBs.

We can deduce much from this. For example, vt is a
Gaussian process with E(vt) = v0e

−µt and
Var(vt) = σ2

2µ
(1 − e−2µt), and

Cov(vt, vt+s) = Var(vt)e
−µ|s|.
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Where were we?

We had just added noise to our logistic model:

dnt = rnt

(

1 − nt

K

)

dt + σ dBt. (1)
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Where were we?

We had just added noise to our logistic model:

dnt = rnt

(

1 − nt

K

)

dt + σ dBt. (1)

So, what is wrong with (1)?
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Sheep in Tasmania
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nt = 1670/(1 + e240.81−0.13125 t )
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Solution to SDE (Run 1)
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Solution to SDE (one sample path)

dnt = rnt

(

1 − nt

K

)

dt + σdBt

K = 1670, r = 0.13125, σ = 90

n0 = 73, t0 = 1818

(Solution to the deterministic model is in green)
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Solution to SDE (Run 2)

1820 1840 1860 1880 1900 1920 1940
0

500

1000

1500

2000

t

n
t

Solution to SDE (one sample path)

dnt = rnt
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K = 1670, r = 0.13125, σ = 90

n0 = 73, t0 = 1818

(Solution to the deterministic model is in green)
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Solution to SDE (Run 3)

1820 1840 1860 1880 1900 1920 1940
0

500

1000

1500

2000

t

n
t

Solution to SDE (one sample path)

dnt = rnt

(

1 − nt

K

)

dt + σdBt

K = 1670, r = 0.13125, σ = 90

n0 = 73, t0 = 1818

(Solution to the deterministic model is in green)
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Solution to SDE (Run 4)
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dt + σdBt

K = 1670, r = 0.13125, σ = 90

n0 = 73, t0 = 1818

(Solution to the deterministic model is in green)
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Solution to SDE (Run 5)
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K = 1670, r = 0.13125, σ = 90

n0 = 73, t0 = 1818

(Solution to the deterministic model is in green)
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Solution to SDE
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dnt = rnt

(

1 − nt

K

)

dt + σdBt

K = 1670, r = 0.13125, σ = 90

n0 = 73, t0 = 1818

(Solution to the deterministic model is in green)
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Solution to SDE
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(With the solution to the deterministic model subtracted)
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Logistic model with noise

So, what is wrong with the model?

dnt = rnt

(

1 − nt

K

)

dt + σ dBt.
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So, what is wrong with the model?

dnt = rnt

(

1 − nt

K

)
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For a start:

0 is reflecting;

The mean path of the SDE solution does not follow
a logistic curve;

The variance in the solution is large for the non-
equilibrium phase – is this okay?
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Logistic model with noise

So, what is wrong with the model?

dnt = rnt

(

1 − nt

K

)

dt + σ dBt.

For a start:

0 is reflecting;

The mean path of the SDE solution does not follow
a logistic curve;

The variance in the solution is large for the non-
equilibrium phase – is this okay?

. . . not to mention the fact that nt is a continuous
variable, yet population size is an integer-valued
process!
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The variance!

Since the variance is not uniform over time, we should
at least have

dnt = rnt

(

1 − nt

K

)

dt + σ(nt) dBt,
if not

dnt = rnt

(

1 − nt

K

)

dt + σ(nt, t) dBt.
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