A RANDOM GRAPH

The construction. A random (undirected) graph with \(n \) vertices is constructed in the following way: pairs of vertices are selected one at a time in such a way that each pair has the same probability of being selected on any given occasion, and, each selection is made independently of previous selections. If the vertex pair \(\{x, y\} \) is selected, then an edge is constructed which connects \(x \) and \(y \).

Are multiple edges possible? In my model, yes! For example, if the vertex pair \(\{x, y\} \) were to be selected \(k \) times, there would be \(k \) edges connecting \(x \) and \(y \): a multiple edge contributing \(\binom{k}{2} \) cycles of length 2.
Suppose that m edges have been selected. We shall be concerned with the behaviour of the graph in the limit as n and m become large, but in such a way that $m = O(n)$.

The problem. Our problem is to determine the limiting probability that the graph is acyclic.

Motivation. Havas and Majewski* present an algorithm for minimal perfect hashing (used for memory-efficient storage and fast retrieval of items from static sets) based on this random graph. Their algorithm is optimal when the graph is acyclic.

WHY ACYCLIC?

Consider a set W of m words (or keys). Every bijection $h: W \rightarrow I$, where $I = \{0, \ldots, m - 1\}$, is called a minimal perfect hash function. HM find hash functions of the form

$$h(w) = (g(f_1(w)) + g(f_2(w))) \mod m;$$

f_1, f_2 map keys to integers (they identify the pair of vertices of the graph corresponding to the edge w) and g maps integers to I.

Given f_1 and f_2, can g be chosen so that h is a bijection?

If the graph is acyclic then, yes, it is easy to construct g from h. Traverse the graph: if vertex w is reached from vertex u then set

$$g(w) = (h(e) - g(u)) \mod m,$$

where $e = (u, w)$.
EFFICIENCY

HM’s algorithm generates f_1 and f_2 at random until an acyclic graph is found:

$$f_k(w) = \left(\sum_{i=1}^{\lfloor w \rfloor} T_k(i) w[i] \right) \mod m,$$

where T_1 and T_2 are tables of random integers and $w[i]$ denotes the i-th character (an integer) of key i.

The efficiency of the algorithm is determined by the probability $p^{(n)}$ that the graph is acyclic: the expected number of iterations needed to find an acyclic graph will be $1/p^{(n)}$ (typically between 2 and 3).
EVALUATING $p^{(n)}$

Theorem. If n and m tend to ∞ in such a way that $m \sim cn$, where c is a positive constant, the limiting probability p that the graph is acyclic is given by

$$p = \begin{cases}
 e^c \sqrt{1-2c} & \text{if } 0 < c < 1/2 \\
 0 & \text{if } c \geq 1/2
\end{cases}$$

Proof. On request. It uses results from [HM] and Erdös and Renyi*.

Let $X_k^{(n)}$ be the number of cycles of length k and let $p_k^{(n)} = \Pr(X_k^{(n)} = 0)$. Following [HM] write

$$p^{(n)} = \prod_{k=2}^{\infty} p_k^{(n)}, \quad n = 2, 3, \ldots.$$

Now let $q_k^{(n)} = -\log p_k^{(n)}$, so that $0 \leq q_k^{(n)} < \infty$ and

$$p^{(n)} = \exp \left(- \sum_{k=2}^{\infty} q_k^{(n)} \right), \quad n = 2, 3, \ldots.$$

ER show that the distribution of $X_k^{(n)}$ is asymptotically Poisson: in particular,

$$\lim_{n \to \infty} p_k^{(n)} = e^{-\lambda_k}, \text{ where } \lambda_k = (2c)^k / 2k.$$
It follows that
\[\lim_{n \to \infty} q_k(n) = -\log \left(\lim_{n \to \infty} p_k(n) \right) = \lambda_k. \]

So, formally,
\[\lim_{n \to \infty} \sum_{k=2}^{\infty} q_k(n) = \sum_{k=2}^{\infty} \lim_{n \to \infty} q_k(n) = \sum_{k=2}^{\infty} \lambda_k, \]

and hence
\[\lim_{n \to \infty} p(n) = e^{-\lambda}, \text{ where } \lambda = \sum_{k=2}^{\infty} \lambda_k. \quad (1) \]

By Fatou’s Lemma, we always have
\[\liminf_{n \to \infty} \sum_{k=2}^{\infty} q_k(n) \geq \sum_{k=2}^{\infty} \liminf_{n \to \infty} q_k(n) = \sum_{k=2}^{\infty} \lambda_k, \]

from which it follows immediately that
\[\limsup_{n \to \infty} p(n) \leq e^{-\lambda}; \]

this argument is valid even if the sum in (??) is divergent. We deduce immediately that if \(c \geq 1/2, p(n) \to 0. \)
When $c < 1/2$, we have $0 < \lambda_k < 1$ and
\[
\lambda = \sum_{k=2}^{\infty} \lambda_k = -c + \frac{1}{2} \ln \left(\frac{1}{1 - 2c} \right).
\]

From Markov’s inequality we have $\Pr(X_k^{(n)} \geq 1) \leq \mathbb{E}X_k^{(n)}$ and so $p_k^{(n)} = \Pr(X_k^{(n)} = 0) \geq 1 - \mathbb{E}X_k^{(n)}$. By Lemma 2 of [HM], we have, for each fixed $k \geq 2$, that $\mathbb{E}X_k^{(n)} \uparrow \lambda_k$ as $n \to \infty$. In particular, for each $k \geq 2$, the sequence $\{\mathbb{E}X_k^{(n)}\}$ is bounded above by λ_k.

It follows that $\{q_k^{(n)}\}$ is bounded above by $d_k := -\log(1 - \lambda_k)$. Further, since $\lambda_k < 1$,
\[
\sum_{k=2}^{\infty} d_k = -\log \left(\prod_{k=2}^{\infty} (1 - \lambda_k) \right) < \infty.
\]

Thus, by Dominated Convergence, we have
\[
\lim_{n \to \infty} \sum_{k=2}^{\infty} q_k^{(n)} = \sum_{k=2}^{\infty} \lim_{n \to \infty} q_k^{(n)} = \lambda,
\]

and, hence, $p^{(n)} \to e^{-\lambda}$.
THE FIVE STAGES OF EVOLUTION
PRIMORDIAL STEW: \(m(n) = o(n) \)

If \(m(n)/n \to 0 \), then (with limiting probability 1) all components are trees.

Trees of order \(k \) appear when \(m \) reaches order \(n^{(k-2)/(k-1)} \). In particular, \(T_k \), the number of trees of order \(k \), has a (limiting) Poisson distribution with mean \(\lambda_k = (2\rho)^{k-1}k^{k-2}/k! \), where

\[
\rho = \lim_{n \to \infty} m(n)n^{(k-1)/(k-2)}.
\]

Finally, if \(m(n)n^{(k-1)/(k-2)} \to \infty \), the number of trees of order \(k \) is asymptotically normally distributed with mean and variance equal to

\[
\mu_n = n^{k^{k-2}/k!} \left(\frac{2m(n)}{n} \right)^{k-1} e^{-2km(n)/n}.
\]

To be precise, \((T_k - \mu_n)/\sqrt{\mu_n} \to N(0,1) \). This result holds in the next two stages of evolution; we only require \(\mu_n \to \infty \).
\textbf{SPOOKY:} \(m(n) \sim cn, \text{ where} \)
\[0 < c < 1/2 \]

Cycles of all orders start to appear: \(C_k \), the number of cycles of order \(k \), has a (limiting) Poisson distribution with mean \(\lambda_k = (2c)^k/(2k) \).

Furthermore, with limiting probability 1, all components are either trees or consist of exactly one cycle (\(k \) vertices and \(k \) edges), the latter having a Poisson distribution with mean

\[\lambda_k = \frac{(2ce^{-2c})^k k^3}{k!} \sum_{i=0}^{k} \frac{k^i}{i!}, \]

where \(k \) is the order of the cycle.

The largest component is a tree; it has

\[\frac{1}{2c - 1 - \log 2c} \left(\log n - \frac{5}{2} \log \log n \right) \]

vertices (with probability tending to 1).
A MONSTER APPEARS:

\[m(n) \sim cn, \text{ where } c \geq 1/2 \]

When \(m(n) \sim n \) \((c = 1/2)\), the largest component has (with probability tending to 1) \(n^{2/3} \) vertices. When \(m(n) \sim cn \) with \(c > 1/2 \), a giant component appears: the largest component in the graph has \(G(c)n \) vertices, where \(G(c) = 1 - \frac{X(c)}{2c} \) and

\[
X(c) = \sum_{i=1}^{\infty} \frac{i^{i-1}}{i!} (2ce^{-2c})^i.
\]

Note that \(G(1/2) = 0 \) and \(G(c) \to 1 \) as \(c \to \infty \).

Almost all the other vertices belong to trees: the total number of vertices belonging to trees is almost surely \(n(1 - G(c)) + o(n) \).

For \(c > 1/2 \), the expected number of components in the graph is asymptotically

\[
\frac{n}{2c} \left(X(c) - \frac{1}{2} X^2(c) \right).
\]
CONNECTEDNESS:

\[m(n) \sim cn \log n, \text{ where } 0 < c \leq 1/2 \]

The graph is becoming connected: if

\[m(n) = \frac{n}{2k} \log n + \frac{k-1}{2k} n \log \log n + \alpha n + o(n), \]

then (with probability tending to 1) there are only trees of order \(\leq k\) outside the giant component, the limiting distribution of the number of trees of order \(l\) being Poisson with mean \(e^{-2\alpha l}/(l.l!)\). For example \((k = 1)\), if

\[m(n) = \frac{n}{2} \log n + \alpha n + o(n), \]

there are (almost surely) only isolated vertices outside the giant component, the number of these having a limiting Poisson distribution with mean \(e^{-2\alpha}\). And, the chance that the graph is indeed connected tends to \(\exp(-e^{-2\alpha})\) (which itself tends to 1 as \(\alpha\) grows).
ASYMPTOTIC REGULARITY:

\[m(n) \sim \omega(n)n \log n, \ \text{where} \ \omega(n) \to \infty \]

The whole graph becomes regular: with probability tending to 1, the graph becomes connected and the orders of all vertices are equal.