Assignment Asterisked Questions

MATH2010

Tutorial Sheet 1 - Week 2

1. Find the general solution of the systems

\[x' = \begin{pmatrix} 3 & -2 \\ 2 & -2 \end{pmatrix} x, \quad x' = \begin{pmatrix} 1 & -2 \\ 3 & -4 \end{pmatrix} x. \]

2. Find the general solutions of the following systems

\[x' = \begin{pmatrix} -1 & -4 & 2 \\ 2 & 5 & -1 \end{pmatrix} x, \quad x' = \begin{pmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \end{pmatrix} x. \]

3. Solve the initial value problems

\[x' = \begin{pmatrix} 5 & -1 \\ 3 & 1 \end{pmatrix} x, \quad x(0) = \begin{pmatrix} 2 \\ -1 \end{pmatrix}, \]
\[x' = \begin{pmatrix} 0 & 0 & 2 \\ 1 & 0 & -11 \end{pmatrix} x, \quad x(0) = \begin{pmatrix} 5 \\ 5 \end{pmatrix}. \]

4. Consider the system \(tx' = Ax \), where \(A \) is a constant matrix. Assuming that \(x = \xi t^r \), where \(\xi \) is a constant vector, show that \(\xi \) and \(r \) must satisfy \((A - rI)\xi = 0 \) in order to obtain nontrivial solution of this system.

5. (BONUS) Use the method from (4) to solve the following systems

\[tx' = \begin{pmatrix} 2 & -1 \\ 3 & -2 \end{pmatrix} x, \]
\[tx' = \begin{pmatrix} 5 & -1 \\ 3 & 1 \end{pmatrix} x. \]

(Here we assume that \(t > 0 \).)

6. Find solutions of the following initial value problems

\[x' = \begin{pmatrix} 1 & -4 \\ 4 & -7 \end{pmatrix} x, \quad x(0) = \begin{pmatrix} 2 \\ 2 \end{pmatrix}, \quad x' = \begin{pmatrix} 2 \\ -3 \end{pmatrix} x, \quad x(0) = \begin{pmatrix} 3 \\ 2 \end{pmatrix}. \]

7. Find the general solution of the system

\[x' = \begin{pmatrix} 10 & -10 & -4 \\ -10 & 1 & -14 \end{pmatrix} x. \]

8. Show that all solutions of the system

\[x' = \begin{pmatrix} a & b \\ c & d \end{pmatrix} x \]

approach 0 as \(t \to \infty \) if and only if \(a + d < 0 \) and \(ad - bc > 0 \).
9 Find the solution of the initial value problem
\[x' = \begin{pmatrix} -3 & -1 & 2 \\ 0 & -4 & 2 \\ 0 & 1 & -5 \end{pmatrix} x, \quad x(0) = \begin{pmatrix} -1 \\ 5 \\ 1 \end{pmatrix}. \]

10 Check that \(r = 2 \) is a triple root of the characteristic equation for the system
\[x' = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & -1 \\ -3 & 2 & 4 \end{pmatrix} x \]
and find three linearly independent solutions of this system.