Assignment Asterisked Questions

MATH2010

Tutorial Sheet 1 - Week 2

$* * 1$. Find the general solution of the systems

$$
x^{\prime}=\left(\begin{array}{ll}
3 & -2 \\
2 & -2
\end{array}\right) x, \quad x^{\prime}=\left(\begin{array}{ll}
1 & -2 \\
3 & -4
\end{array}\right) x
$$

2. Find the general solutions of the following systems

$$
x^{\prime}=\left(\begin{array}{rrr}
-1 & -4 & 2 \\
2 & 5 & -1 \\
2 & 2 & 2
\end{array}\right) x, \quad x^{\prime}=\left(\begin{array}{rrr}
1 & 0 & -1 \\
1 & 2 & 1 \\
2 & 2 & 3
\end{array}\right) x .
$$

3. Solve the initial value problems

$$
\begin{gathered}
x^{\prime}=\left(\begin{array}{rr}
5 & -1 \\
3 & 1
\end{array}\right) x, \quad x(0)=\binom{2}{-1}, \\
x^{\prime}=\left(\begin{array}{rrr}
0 & 0 & 2 \\
1 & 0 & -11 \\
4 & -4 & -22
\end{array}\right) x, \quad x(0)=\left(\begin{array}{l}
5 \\
5 \\
5
\end{array}\right) .
\end{gathered}
$$

4. Consider the system $t x^{\prime}=A x$, where A is a constant matrix. Assuming that $x=\xi t^{r}$, where ξ is a constant vector, show that ξ and r must satisfy $(A-r I) \xi=0$ in order to obtain nontrivial solution of this system.
**5. (BONUS) Use the method from (4) to solve the following systems

$$
\begin{aligned}
t x^{\prime} & =\left(\begin{array}{ll}
2 & -1 \\
3 & -2
\end{array}\right) x, \\
t x^{\prime} & =\left(\begin{array}{rr}
5 & -1 \\
3 & 1
\end{array}\right) x .
\end{aligned}
$$

(Here we assume that $t>0$.)
$* * 6$. Find solutions of the following initial value problems

$$
x^{\prime}=\left(\begin{array}{ll}
1 & -4 \\
4 & -7
\end{array}\right) x, \quad x(0)=\binom{2}{2}, x^{\prime}=\left(\begin{array}{rr}
2 & \frac{3}{2} \\
-\frac{3}{2} & -1
\end{array}\right) x, \quad x(0)=\binom{3}{2} .
$$

7. Find the general solution of the system

$$
x^{\prime}=\left(\begin{array}{rrr}
10 & -10 & -4 \\
-10 & 1 & -14 \\
-4 & -14 & -2
\end{array}\right) x
$$

8. Show that all solutions of the system

$$
x^{\prime}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) x
$$

approach 0 as $t \rightarrow \infty$ if and only if $a+d<0$ and $a d-b c>0$.
**9 Find the solution of the initial value problem

$$
x^{\prime}=\left(\begin{array}{rrr}
-3 & -1 & 2 \\
0 & -4 & 2 \\
0 & 1 & -5
\end{array}\right) x, \quad x(0)=\left(\begin{array}{r}
-1 \\
5 \\
1
\end{array}\right)
$$

10 Check that $r=2$ is a triple root of the characteristic equation for the system

$$
x^{\prime}=\left(\begin{array}{rrr}
1 & 1 & 1 \\
2 & 1 & -1 \\
-3 & 2 & 4
\end{array}\right) x
$$

and find three linearly independent solutions of this system.

