Assignment Asterisked Questions

MATH2010

Tutorial Sheet 3 - Week 4

****1**. Find the inverse Laplace transform of the following functions

$$\frac{2s+1}{s^2-2s+2}$$
, $\frac{8s^2-4s+2}{s(s^2+1)}$, $\frac{6}{(s-1)^4}$.

2. Let $F(s) = \mathcal{L}{f(t)} = \int_0^\infty e^{-st} f(t) dt$. Assuming that f is continuous on $[0, \infty)$ and that $|f(t)| \leq Ke^{at}$ for $t \geq 0$ and some constants a > 0 and K > 0, it is possible to show that it is legitimate to differentiate under the integral sign with respect to the parameter s when s > a. Check that

$$F'(s) = \mathcal{L}\{-tf(t)\}, \quad F^{(n)}(s) = \mathcal{L}\{(-1)^n f(t)\}.$$

Hence evaluate the Laplace transforms of

$$t^n e^{at}$$
 $(n \ge 1, \text{ integer })$ and $t^2 \sin bt$.

******3. Use the Laplace transform to solve the initial value problem

$$y'' + \omega^2 y = \cos 2t, \ \omega^2 \neq 4, \ y(0) = 1, \ y'(0) = 0$$

4. Use the Laplace transform to solve the initial value problem

$$y'''' - 4y''' + 6y'' - 4y' + y = 0, \ y(0) = 0, \ y'(0) = 1, \ y''(0) = 0, \ y'''(0) = 1.$$

- 5. In each of problems (i) through (v) use the differentiation formula $-F'(s) = \mathcal{L}\{tf(t)\}$ to find the Laplace transform of the function.
 - (i) $2t\cos 2t$.
 - **(ii) $t \sin \omega t$.
 - (iii) $t \sinh 3t$.
- ******(iv) $t^2 e^t$.
 - (v) $t^2 \cos t$.