## Assignment Asterisked Questions

## MATH2010

## Tutorial Sheet 3 - Week 4

**1. Find the inverse Laplace transform of the following functions

$$
\frac{2 s+1}{s^{2}-2 s+2}, \quad \frac{8 s^{2}-4 s+2}{s\left(s^{2}+1\right)}, \quad \frac{6}{(s-1)^{4}} .
$$

2. Let $F(s)=\mathcal{L}\{f(t)\}=\int_{0}^{\infty} e^{-s t} f(t) d t$. Assuming that $f$ is continuous on $[0, \infty)$ and that $|f(t)| \leq K e^{a t}$ for $t \geq 0$ and some constants $a>0$ and $K>0$, it is possible to show that it is legitimate to differentiate under the integral sign with respect to the parameter $s$ when $s>a$. Check that

$$
F^{\prime}(s)=\mathcal{L}\{-t f(t)\}, \quad F^{(n)}(s)=\mathcal{L}\left\{(-1)^{n} f(t)\right\} .
$$

Hence evaluate the Laplace transforms of

$$
t^{n} e^{a t}(n \geq 1, \text { integer }) \text { and } t^{2} \sin b t
$$

$* * 3$. Use the Laplace transform to solve the initial value problem

$$
y^{\prime \prime}+\omega^{2} y=\cos 2 t, \omega^{2} \neq 4, y(0)=1, y^{\prime}(0)=0
$$

4. Use the Laplace transform to solve the initial value problem

$$
y^{\prime \prime \prime \prime}-4 y^{\prime \prime \prime}+6 y^{\prime \prime}-4 y^{\prime}+y=0, y(0)=0, y^{\prime}(0)=1, y^{\prime \prime}(0)=0, y^{\prime \prime \prime}(0)=1 .
$$

5. In each of problems (i) through (v) use the differentiation formula $-F^{\prime}(s)=\mathcal{L}\{t f(t)\}$ to find the Laplace transform of the function.
(i) $2 t \cos 2 t$.
**(ii) $t \sin \omega t$.
(iii) $t \sinh 3 t$.
**(iv) $t^{2} e^{t}$.
(v) $t^{2} \cos t$.
