Assignment Asterisked Questions

MATH2010

Tutorial Sheet 4 - Week 5

- 1. (a) Sketch the following functions and find their Laplace transforms.
 - **(i) tu(t-1)
 - (ii) $u(t-\pi)\cos t$
- **(b) Using the Second Shift Theorem, solve

$$y'' - 5y' + 6y = r(t), \ y(0) = 1, \ y'(0) = -2,$$

where
$$r(t) = 4e^t$$
 if $0 < t < 2$ and $r(t) = 0$ if $t > 2$.

2. Use the Laplace transform to solve the initial value problem

$$y'''' - 4y''' + 6y'' - 4y' + y = 0, y(0) = 0, y'(0) = 1, y''(0) = 0, y'''(0) = 1.$$

- 3. Using the differentiation formula $-F'(s) = \mathcal{L}[tf(t)]$ or the integration formula $\mathcal{L}^{-1}[\int_s^\infty F(\sigma) d\sigma] = f(t)/t$ to find f(t) if F(s) is:
 - (i) $\frac{4}{(s+1)^2}$,
- **(ii) $\frac{4s}{(s^2+4)^2}$,
 - (iii) $\frac{s}{(s^2+1)^2}$,
 - (iv) $\ln \frac{s}{s-1}$,
- **(v) $\operatorname{arccot}(s/\omega)$, BONUS!!.
- 4. Use the convolution of Laplace transforms, solve

$$y(t) = t + e^t - \int_0^t y(\tau) \cosh(t - \tau) d\tau.$$

5. Sketch the following functions, which are assumed to have period 2π , and find the Laplace transforms.

**(a)
$$f(t) = \begin{cases} 1, & \text{if } 0 < t < \pi \\ -1, & \text{if } \pi < t < 2\pi. \end{cases}$$

(b)
$$f(t) = \begin{cases} t, & \text{if } 0 < t < \pi \\ \pi - t, & \text{if } \pi < t < 2\pi. \end{cases}$$