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SYSTEMS OF DEs

• Constant coefficients:

eigenvalue problem;

• Classification of critical point;

# Node;

# Saddle point;

# Centre;

# Focus.

• Nonhomogeneous equations.
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Systems of DEs

Every nth order DE

y(n) = F
(
t, y, y′, . . . , y(n−1)

)
is reduced to a system of n 1st order DEs by

y1 = y, y2 = y′, y3 = y′′, . . . , yn = y(n−1).

The system is

y′1 = y2

y′2 = y3

·
·

y′n−1 = yn

y′n = F (t, y1, y2, . . . , yn).

Example. y′′+ c
my
′+ k

my = 0 becomes

y′1 = 0.y1 + y2

y′2 = −
k

m
y1 −

c

m
y2.
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Let yT = (y1 y2). In matrix form,

y′ =

[
0 1

− k
m − c

m

]
y = Ay.

Characteristic equation is

det(A− λI) =

∣∣∣∣∣ −λ 1

− k
m − c

m − λ

∣∣∣∣∣
= λ2 +

c

m
λ+

k

m
= 0.

Same as for mass on a spring DE. For

solution, try y = xeλt. Then

y′ = λxeλt, or Ax = λx,

and λ is an eigenvalue of A, with eigenvector

x. To illustrate, let m = 1, c = 3, k = 2.

Then λ2+3λ+2 = 0 has roots λ1 = −1, λ2 =

−2 with eigenvectors x(1) = (1 − 1)T and

x(2) = (1 − 2)T .
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Solution is thus

y = c1

[
1
−1

]
e−t + c2

[
1
−2

]
e−2t,

or, in components,

y1 = c1e
−t + c2e

−2t

y2 = −c1e−t − 2c2e
−2t = y′1

Homogeneous, Const Coefficients

y′ = Ay,

where the n× n matrix A is constant. Try

y = xeλt ⇒ y′ = λxeλt = Ay = Axeλt.

This becomes an eigenvalue problem:

Ax = λx .

Solutions are xeλt, where λ is an eigenvalue of

A and x the corresponding eigenvector.
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Assume A has

• basis of eigenvectors x(1), . . . ,x(n)

• corresponding eigenvalues λ1, . . . , λn.

Solutions of DE are

y(1) = x(1)eλ1t, . . . ,y(n) = x(n)eλnt

with Wronskian

W (y(1), . . . ,y(n)) =

∣∣∣∣∣∣∣∣∣∣∣

x
(1)
1 eλ1t · · · x(n)

1 eλnt

x
(1)
2 eλ1t · · · x(n)

2 eλnt

· · · · ·
x

(1)
n eλ1t · · · x(n)

n eλnt

∣∣∣∣∣∣∣∣∣∣∣
= e(λ1t+...+λnt)

∣∣∣∣∣∣∣∣∣∣∣

x
(1)
1 · · · x(n)

1

x
(1)
2 · · · x(n)

2
· · · · ·
x

(1)
n · · · x(n)

n

∣∣∣∣∣∣∣∣∣∣∣
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The exponential 6= 0, nor is the determi-

nant, because the columns are the lin indept

eigenvectors forming a basis. So, when the

constant matrix A has a linearly indept set

of eigenvectors, the corresponding solutions

y(1), . . . ,y(n) are a basis of solutions for y′ =

Ay, and a general solution is

y = c1x(1)eλ1t + . . .+ cnx(n)eλnt.

Example 1: Node

y′ =

 −
3
2

1
2

1
2

−3
2

y;
y′1 = −3

2y1 + 1
2y2

y′2 = 1
2y1 − 3

2y2

Characteristic equation

|A− λI| =
∣∣∣∣∣ −3/2− λ 1/2

1/2 −3/2− λ

∣∣∣∣∣ = λ2+3λ+2

Eigenvalues λ1 = −1, λ2 = −2. Eigenvectors

satisfy (A− λI)x = 0,

(−3/2− λ)x1 + x2/2 = 0.
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For λ1 = −1, −x1 + x2 = 0⇒ x(1) = (1 1)T ;

For λ2 = −2, x1 +x2 = 0⇒ x(2) = (1 −1)T ;

General solution

y =

[
y1
y2

]
= c1y(1) + c2y(2)

= c1

[
1
1

]
e−t + c2

[
1
−1

]
e−2t

Each choice of arbitrary constants c1, c2 gives

a path in the y1, y2−plane. For c2 = 0, c1 > 0

is a ray y1 = y2 in the first quadrant; c2 =

0, c1 < 0 is the ray y1 = y2 in the third

quadrant. For c1 = 0 and c2 < 0 or c2 > 0,

obtain the rays y1 = −y2 in 4th and 2nd

quadrants. If both c1 6= 0, c2 6= 0, there is

a curve tangent to the x(1) direction at 0.
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Improper Node

There are only two directions at 0.
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Proper Node

There are solution curves in any direction at

the origin 0. For example,

y′ =

[
2 0
0 2

]
y

has a proper node at 0 because the general

solution is y = c1(1 0)Te2t + c2(0 1)Te2t,

or c2y1 = c1y2.
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Example 2: Saddle Point

y′ = Ay =

[
7 −8
4 −5

]
y, y(0) =

[
3
0

]

• Node has real eigenvalues of the same

sign, and solution curves all travel in the

same direction: either towards 0 or away

from 0.

• Saddle point has two real eigenvalues of

opposite sign: so there is an attractive

direction (λ2 < 0) and a repelling direc-

tion (λ1 > 0).

Characteristic eqn

det(A−λI) =

∣∣∣∣∣ 7− λ −8
4 −5− λ

∣∣∣∣∣ = λ2−2λ−3 = 0,

λ1 = 3, λ2 = −1. Eigenvectors given by

(7− λ)x1 − 8x2 = 0.
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λ1 = 3⇒ 4x1 = 8x2, x(1) = (2 1)T

λ2 = −1⇒ 8x1 = 8x2, x(2) = (1 1)T

General solution

y =

[
y1
y2

]
= c1y(1) + c2y(2)

= c1

[
2
1

]
e3t + c2

[
1
1

]
e−t

Take c2 = 0 to give two outward rays, then

c1 = 0 giving the inward rays. For other

c1, c2, the path is first attracted (when c1e
3t

small) to 0, then repelled (when e3t term

grows and e−t → 0).
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Initial conditions y1(0) = 3, y2(0) = 0 give

y(0) = c1

[
2
1

]
+c2

[
1
1

]
=

[
3
0

]
,

2c1 + c2 = 3
c1 + c2 = 0

and c1 = 3, c2 = −3. Solution:

y = 3

[
2
1

]
e3t − 3

[
1
1

]
e−t

Another saddle at 0 given by

y′ =

[
1 0
0 −2

]
y,

with general solution

y = c1

[
1
0

]
et + c2

[
0
1

]
e−2t

or y1 = c1e
t, y2 = c2e

−2t ⇒ y2
1y2 = const.
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Centre Eigenvalues pure imaginary:

y′ =

[
0 −6

3/2 0

]
y.

det(A− λI) =

∣∣∣∣∣ −λ −6
3/2 −λ

∣∣∣∣∣ = λ2 + 9 = 0,

so, eigenvalues λ = ±3i. Eigenvector con-

straint −λx1 − 6x2 = 0. For λ = 3i, −3ix1 −
6x2 = 0 and x(1) = (2 − i)T . Similarly, for

λ = −3i, x(2) = (2 i)T . general solution

y = c1

[
2
−i

]
e3it + c2

[
2
i

]
e−3it.
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This solution is complex and we obtain a real

solution as follows. Since eiθ = cos θ + i sin θ,[
2
−i

]
e3it =

[
2 cos 3t
sin 3t

]
+ i

[
2 sin 3t
− cos 3t

]
,[

2
i

]
e−3it =

[
2 cos 3t
sin 3t

]
− i

[
2 sin 3t
− cos 3t

]
.

The real and imaginary parts

u =

[
2 cos 3t
sin 3t

]
, v =

[
2 sin 3t
− cos 3t

]
are thus a basis of solutions because

W (u,v) =

∣∣∣∣∣ 2 cos 3t 2 sin 3t
sin 3t − cos 3t

∣∣∣∣∣ = −2 6= 0.

General solution

y(t) = A

[
2 cos 3t
sin 3t

]
+B

[
2 sin 3t
− cos 3t

]
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Focus (Spiral Point) Complex eigenvalues

(nonzero real part) give a spiral of solutions

around 0, either → 0 as t → ∞ or being

repelled from 0 as t→∞.

y′ =

[
−1 1
−4 −1

]
y .

Characteristic equation

det(A−λI) =

∣∣∣∣∣ −1− λ 1
−4 −1− λ

∣∣∣∣∣ = λ2+2λ+5 = 0

gives eigenvalues λ = −1 ± 2i. Eigenvectors

determined by (−1 − λ)x1 + x2 = 0. If λ =

−1 + 2i, −2ix1 + x2 = 0 and x(1) = (1 2i)T .

If λ = −1 − 2i, 2ix1 + x2 = 0 and x(2) =

(1 − 2i)T . General solution

y = c1

[
1
2i

]
e(−1+2i)t + c2

[
1
−2i

]
e(−1−2i)t.

A real solution is obtained as before:
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[
1
2i

]
e(−1+2i)t =

[
e−t cos 2t
−2e−t sin 2t

]

+ i

[
e−t sin 2t

2e−t cos 2t

]
[

1
−2i

]
e(−1−2i)t =

[
e−t cos 2t
−2e−t sin 2t

]

− i

[
e−t sin 2t

2e−t cos 2t

]
.

Real and imaginary parts are real solutions,

and are a basis because the Wronskian∣∣∣∣∣ e−t cos 2t e−t sin 2t
−2e−t sin 2t 2e−t cos 2t

∣∣∣∣∣ = 2e−2t 6= 0.

General solution

y = A

[
e−t cos 2t
−2e−t sin 2t

]
+B

[
e−t sin 2t

2e−t cos 2t

]
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In components, y1 = e−t(A cos 2t+B sin 2t),

and y2 = 2e−t(B cos 2t−A sin 2t).

Eliminate t, y2
1 + y2

2/4 = (A2 + B2)e−2t, a

spiral.
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No Basis of Eigenvectors

If A does not have a basis of eigenvectors,

with for example a double eigenvalue µ for

which there is only one eigenvector x, we only

have one solution y(1) = xeµt. To obtain a

second lin indept soln, try

y(2) = xteµt + ueµt u = ?

in the DE y(2) ′ = Ay(2). That is,

d

dt
(xteµt + ueµt) = xeµt + µxteµt + µueµt

= A(xteµt + ueµt).

Since Ax = µx, dividing by eµt,

x + µu = Au ⇒ (A− µI)u = x,

which can be solved for u.
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Example. y′ =

[
3 1
−1 1

]
y.

Characteristic eqn λ2 − 4λ + 4 = 0 with

double root λ = 2. Eigenvectors satisfy

(3 − λ)x1 + x2 = 0 and so x(1) = (1 − 1)T .

But

(A− 2I)u =

[
1 1
−1 −1

]
u =

[
1
−1

]
,

and u = (0 1)T works, giving

y = c1y(1) + c2y(2)

= c1

[
1
−1

]
e2t + c2

([
1
−1

]
t+

[
0
1

])
e2t.
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Nonhomogeneous Systems

We will also solve these later with Laplace

Transforms. Here are a few examples of

solution by Undetermined Coefficients:

Example 1

y′ =

[
−1 4
1 2

]
y +

[
2t2 + 6t

4t2 + 6t+ 1

]
+

[
3
1

]
e−t.

General solution of homog eqn

yh = c1e
−2t

[
−4
1

]
+ c2e

3t
[

1
1

]

Look for yp = u+vt+wt2+ze−t and determine

the vectors u, v, w, z. Substituting,

y′p = v + 2wt =

[
−1 4
1 2

]
(u + vt+ wt2)

+

[
2t2 + 6t

4t2 + 6t+ 1

]
.
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Equating terms in t2,

0 = −w1 + 4w2 + 2, 0 = w1 + 2w2 + 4

⇒ w1 = −2, w2 = −1.

Using the terms in t:

2w1 = −v1 + 4v2 + 6, 2w2 = v1 + 2v2 + 6

⇒ v1 = −2, v2 = −3,

and from the constant terms

v1 = −u1 + 4u2, v2 = u1 + 2u2 + 1

⇒ u1 = −2, u2 = −1.

So, the general solution is

y = yh + yp

= c1e
−2t

[
−4
1

]
+ c2e

3t
[

1
1

]

+

[
−2− 2t− 2t2

−1− 3t− t2

]
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Example 2: Modification Rule

y′ =

 −
3
2

1
2

1
2

−3
2

y +

[
3
1

]
e−t .

General solution of homog eqn is a node (see

Example on node):

yh = c1e
−t
[

1
1

]
+ c2e

−2t
[

1
−1

]
Since λ = −1 is an eigenvalue of A, we must

modify the function yp to try as

yp = ute−t + ve−t.

y′p = ue−t − ute−t − ve−t

= A(ute−t + ve−t) +

[
3
1

]
e−t

Cancelling e−t and equating the coefficients

of t gives Au = −u, so u is an eigenvector of

A, and must be of the form u = α(1 1)T .

+ 22



+ +

Equating the constant terms gives

Av +

[
3
1

]
= −v + α

[
1
1

]
,

−
v1

2
+
v2

2
= α− 3

v1

2
−
v2

2
= α− 1 .

These eqns have a solution only if

α− 3 = −(α− 1),

and α = 2, & then v1−v2 = 2. Any solution of

this will do, say v1 = 2, v2 = 0, so v = (2 0)T

and

yp = 2te−t
[

1
1

]
+ e−t

[
2
0

]

y = c1e
−t
[

1
1

]
+ c2e

−2t
[

1
−1

]

+2te−t
[

1
1

]
+ e−t

[
2
0

]
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