COLOR LAYER

red

PHASE PLANE ANALYSIS

- Linear Systems:
\# Classification;
\# Stability.
- Nonlinear Systems:
\# Critical points;
\# Linearization;
\# Global picture.

Phase Plane - Linear Systems

Solutions of $y^{\prime}=$ Ay can be drawn as solution paths $y_{1}(t), y_{2}(t)$ in the phase plane. An equilibrium point or critical point is where $\mathrm{y}^{\prime}=0$ and for linear systems is always 0 . With nonlinear systems, other points apart from the origin can be critical points.

Types are node, saddle, centre, focus. Which one depends on the eigenvalues λ_{1}, λ_{2} of $\mathbf{A}=\left(a_{i j}\right)$, and thus on the characteristic eqn

$$
\lambda^{2}-\left(a_{11}+a_{22}\right) \lambda+\operatorname{det} \mathbf{A}=0
$$

Put $p=a_{11}+a_{22}, q=\operatorname{det} \mathbf{A}=a_{11} a_{22}-a_{12} a_{21}$ and $\Delta=p^{2}-4 q$, so that

$$
p=\lambda_{1}+\lambda_{2}, \quad q=\lambda_{1} \lambda_{2}
$$

and Δ is the discriminant of the quadratic characteristic equation. That is, roots are real if $\Delta \geq 0$ and complex if $\Delta<0$.

Critical point P of $\mathbf{y}^{\prime}=\mathbf{A y}$ is a

- node if $q>0$ and $\Delta \geq 0$;
- saddle point if $q<0$;
- centre if $p=0$ and $q>0$;
- focus if $p \neq 0$ and $\Delta<0$.

To see this: if $q=\lambda_{1} \lambda_{2}>0$, the eigenvalues are real when $(\Delta \geq 0)$ of the same sign, or complex conjugates. The first gives a node, while if the second and $p=0$, then the roots are pure imaginary and a centre results. If $q<0$, eigenvalues are real, of opposite sign and there is a saddle. If $\Delta<0$ the eigenvalues are complex, not pure imaginary when $p \neq 0$, so a focus.

Stability
A critical point P is stable if all solution paths close enough to P remain close for all future time.
P is stable and attractive if P is stable and every path sufficiently close to P approaches P as $t \rightarrow \infty$.

Say P unstable if it is not stable.

The critical point P is:

- stable and attractive if $p<0$ and $q>0$;
- stable if $p \leq 0$ and $q>0$;
- unstable if $p>0$ or $q<0$.
$p<0, q>0 \Rightarrow \lambda_{1}, \quad \lambda_{2}$ both negative or complex conjugate with negative real part, hence stable and attractive node or focus. $p \leq 0, q>0 \Rightarrow \lambda_{1}, \quad \lambda_{2}$ both zero or pure imaginary, hence stable (centre). If $q<0$, then λ_{1}, λ_{2} are real and of opposite sign (saddle); if $p>0$, then either λ_{1}, λ_{2} are both real with at least one positive (unstable saddle or node), or they are conjugates with positive real part (unstable focus).

Stability chart:

Example 1

$$
\mathrm{y}^{\prime}=\mathrm{Ay}=\left[\begin{array}{ll}
1 & -3 \\
2 & -4
\end{array}\right] \mathbf{y}
$$

where $p=a_{11}+a_{22}=-3, q=\operatorname{det} \mathbf{A}=2$,
$\Delta=p^{2}-4 q=1$. So the critical point is a node, and this is stable and attractive, $(\lambda=$ $-2,-1$).
Example 2

$$
\mathbf{y}^{\prime}=\mathbf{A y}=\left[\begin{array}{cc}
-2 & -3 \\
1 & -1
\end{array}\right] \mathbf{y}
$$

where $p=a_{11}+a_{22}=-3, q=\operatorname{det} \mathbf{A}=5$,
$\Delta=p^{2}-4 q=-11$. So the critical point is a focus, and this is stable and attractive.
Example 3

$$
\mathbf{y}^{\prime}=\mathbf{A} \mathbf{y}=\left[\begin{array}{cc}
1 & -3 \\
-5 & 3
\end{array}\right] \mathbf{y}
$$

where $p=a_{11}+a_{22}=4, q=\operatorname{det} \mathbf{A}=-9$,
So the critical point is a saddle, and this is unstable, $(\lambda=-2,6)$.

Example 4 Mass on a spring.

$$
\begin{aligned}
& y^{\prime \prime}+\frac{c}{m} y^{\prime}+\frac{k}{m} y=0, \text { or, } \mathbf{y}^{\prime}=\left[\begin{array}{cc}
0 & 1 \\
-\frac{k}{m} & -\frac{c}{m}
\end{array}\right] \mathbf{y} \\
& \text { and } p=-c / m, q=k / m, \Delta=(c / m)^{2}-4 k / m
\end{aligned}
$$

No damping: $c=0, p=0, q>0$, centre;

Underdamping: $c^{2}<4 m k, p<0, q>0, \Delta<$ 0 , stable attracting focus;

Critical damping: $c^{2}=4 m k, p<0, q>$ $0, \Delta=0$, stable attracting node;

Overdamping: $c^{2}>4 m k, p<0, q>0, \Delta>$ 0 , stable attracting node.

Phase Plane - Nonlinear Systems

$$
\mathbf{y}^{\prime}=\mathbf{f}(\mathbf{y})=\left[\begin{array}{l}
f_{1}\left(y_{1}, y_{2}\right) \tag{1}\\
f_{2}\left(y_{1}, y_{2}\right)
\end{array}\right]
$$

autonomous system (not involving t explicitly). A point $P:(a, b)$ of the phase plane, at which $f_{1}(a, b)=f_{2}(a, b)=0$, is a critical point or equilibrium. If (1) has several critical points (a, b), for analysis of each we translate the point to the origin 0 by $\widetilde{y_{1}}=y_{1}-a, \widetilde{y_{2}}=$ $y_{2}-b$. So, for discussion, we might as well suppose that 0 is the critical point.

Near 0 we linearize the nonlinear system and consider the stability characteristics of the resulting linear system.

Assuming that $f_{1}\left(y_{1}, y_{2}\right), f_{2}\left(y_{1}, y_{2}\right)$ have Taylor expansions around the critical point $P=$ 0 , they have no constant terms because $f_{1}(0)=f_{2}(0)=0$ Then (19) becomes
$\mathbf{y}^{\prime}=\mathbf{A} \mathbf{y}+\mathbf{h}(y)=\left[\begin{array}{l}a_{11} y_{1}+a_{12} y_{2}+h_{1}\left(y_{1}, y_{2}\right) \\ a_{21} y_{1}+a_{22} y_{2}+h_{2}\left(y_{1}, y_{2}\right)\end{array}\right]$.
If $\operatorname{det} A \neq 0$ the type and stability of P coincides with that of 0 of the linear system

$$
\mathbf{y}^{\prime}=\mathbf{A} \mathbf{y}=\left[\begin{array}{l}
a_{11} y_{1}+a_{12} y_{2} \\
a_{21} y_{1}+a_{22} y_{2}
\end{array}\right]
$$

provided that h_{1}, h_{2} are small near 0. Except if the eigenvalues of \mathbf{A} are equal or pure imaginary, when the nonlinear system may have a focus.

Example: damped pendulum. mass m, rod of length L. DE $m L \theta^{\prime \prime}+m g \sin \theta=0$. Or,

$$
\theta^{\prime \prime}+k \sin \theta=0, \quad k=\frac{g}{L}
$$

Introduce a damping term $c \theta^{\prime}$:

$$
\begin{gathered}
\theta^{\prime \prime}+c \theta^{\prime}+k \sin \theta=0, k>0, \quad c \geq 0 . \\
y_{1}^{\prime}=y_{2} \\
y_{2}^{\prime}=-k \sin y_{1}-c y_{2}
\end{gathered}
$$

Critical points $(0,0),(\pm \pi, 0),(\pm 2 \pi, 0), \ldots$
First, $(0,0)$: linearizing $\sin y_{1} \approx y_{1}$,

$$
\mathbf{y}^{\prime}=\mathbf{A} \mathbf{y}=\left[\begin{array}{cc}
0 & 1 \\
-k & -c
\end{array}\right] \mathbf{y} .
$$

For undamped ($c=0$), a centre, for small damping a focus. Since $\sin y_{1}$ is periodic with period 2π, the critical points ($2 n \pi, 0$), $n=$ $\pm 1, \pm 2, \ldots$ have this same behaviour. Second, $(\pi, 0)$: set $\theta-\pi=y_{1}, y_{1}^{\prime}=\theta^{\prime}=y_{2}$ and linearize

$$
\begin{gathered}
\sin \theta=\sin \left(y_{1}+\pi\right)=-\sin y_{1} \approx-y_{1}, \\
\mathbf{y}^{\prime}=\mathbf{A y}=\left[\begin{array}{cc}
0 & 1 \\
k & -c
\end{array}\right] \mathbf{y} .
\end{gathered}
$$

Now, $p=-c, q=-k, \Delta=c^{2}+4 k$ and

No damping. $c=0, p=0, q<0, \Delta>0$, which is a saddle;

Damping $c>0, p<0, q<0, \Delta>0$, saddle.

Transform to 1st order DE in phase plane

 Above, to draw the phase plane trajectories, we eliminated t from $y_{1}(t), y_{2}(t)$. Another way is to take $y=y_{1}$ as the independent variable directly in the DE $F\left(y, y^{\prime}, y^{\prime \prime}\right)=0$, set $y^{\prime}=y_{2}$ and use$$
y^{\prime \prime}=y_{2}^{\prime}=\frac{d y_{2}}{d t}=\frac{d y_{2}}{d y_{1}} \frac{d y_{1}}{d t}=\frac{d y_{2}}{d y_{1}} y_{2}
$$

The result is a first order DE in the phase plane:

$$
F\left(y_{1}, y_{2}, \frac{d y_{2}}{d y_{1}} y_{2}\right)=0
$$

Example. Undamped pendulum $\theta^{\prime \prime}+k \sin \theta=0$. Putting $\theta=y_{1}, \theta^{\prime}=y_{2}$, $\theta^{\prime \prime}=y_{2} \frac{d y_{2}}{d y_{1}}$ gives

$$
\frac{d y_{2}}{d y_{1}} y_{2}=-k \sin y_{1} \Rightarrow \frac{1}{2} y_{2}^{2}=k \cos y_{1}+C
$$

Additional Example: $\S 4.5 \# 2 . y^{\prime \prime}+y-y^{3}=$ 0 ; Find type and stability of the critical points and sketch the solution curves in the phase plane.
Critical Points: First make a system.

$$
\begin{gathered}
y_{1}=y, y_{2}=y^{\prime}, y_{2}^{\prime}=y^{\prime \prime}=-y+y^{3} . \\
y_{1}^{\prime}=y_{2}=f_{1} \\
y_{2}^{\prime}=-y_{1}+y_{1}^{3}=f_{2} .
\end{gathered}
$$

For critical points, $f_{1}=0, f_{2}=0$. So $y_{2}=0$ and $-y_{1}+y_{1}^{3}=0, y_{1}\left(-1+y_{1}^{2}\right)=0$ and $y_{1}=0,+1,-1$.

$$
(00), \quad(10), \quad(-1,0)
$$

Linearization: At a critical point y^{*} the system is approximated by the LINEAR SYSTEM $\mathrm{y}^{\prime}=\mathrm{Jy}$,

$$
\mathbf{J}=\left[\begin{array}{ll}
\partial f_{1} / \partial y_{1} & \partial f_{1} / \partial y_{2} \\
\partial f_{2} / \partial y_{1} & \partial f_{2} / \partial y_{2}
\end{array}\right]_{\mathbf{y}^{*}}
$$

That is, $\quad \mathbf{J}=\left[\begin{array}{c}\nabla f_{1} \\ \nabla f_{2}\end{array}\right]_{\mathbf{y}^{*}}$
Study linearization at each y^{*} :

$$
\begin{aligned}
\left(\begin{array}{lll}
0 & 0
\end{array}\right): \quad \mathbf{J} & =\left[\begin{array}{cc}
0 & 1 \\
-1+3 y_{1}^{2} & 0
\end{array}\right]_{00} \\
& =\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]
\end{aligned}
$$

So $p=0, q=1$, CENTRE.

$$
(\pm 10): \quad \mathbf{J}=\left[\begin{array}{ll}
0 & 1 \\
2 & 0
\end{array}\right]
$$

Here, $p=0, q=-2$, SADDLE. Eigenvalues are $\lambda= \pm \sqrt{2}$, eigenvector eqn $-\lambda x_{1}+x_{2}=0$ and get $(1 \lambda)^{T}$.

Global Picture: Find the solution curves in the form of $y_{2}=$ a function of y_{1}.

$$
\begin{aligned}
\frac{d y_{2}}{d y_{1}} & =\frac{f_{2}\left(y_{1}, y_{2}\right)}{f_{1}\left(y_{1}, y_{2}\right)} \\
& =\frac{-y_{1}+y_{1}^{3}}{y_{2}} \\
\int y_{2} d y_{2} & =\int\left(-y_{1}+y_{1}^{3}\right) d y_{1}+C \\
\frac{1}{2} y_{2}^{2} & =-\frac{1}{2} y_{1}^{2}+\frac{1}{4} y_{1}^{4}+C \\
2 y_{2}^{2} & =-2 y_{1}^{2}+y_{1}^{4}+4 C \\
& =\left(1-y_{1}^{2}\right)^{2}+4 C-1, \text { or } \\
2 y_{1}^{2}+2 y_{2}^{2} & =y_{1}^{4}+4 C .
\end{aligned}
$$

If y_{1} is small, this is approximately like a circle. If y_{1} is large, $2 y_{1}^{2}-\left(1-y_{1}^{2}\right)^{2}=K$ is approximately like a hyperbola.

van der Pol equation

$$
y^{\prime \prime}-\mu\left(1-y^{2}\right) y^{\prime}+y=0, \quad \mu=\text { constant }>0
$$

Damping coefficient $\mu\left(1-y^{2}\right)<0$ for small oscillations, $y^{2}<1$, producing negative damping. It is positive for larger oscillations, $y^{2}>$ 1 , producing positive damping. There must be a periodic solution separating the regions of different damping, called a limit cycle.

Put $y=y_{1}, y^{\prime}=y_{2}, y^{\prime \prime}=y_{2} d y_{2} / d y_{1}$:

$$
\frac{d y_{2}}{d y_{1}} y_{2}-\mu\left(1-y_{1}^{2}\right) y_{2}+y_{1}=0 .
$$

Isoclines are the curves $d y_{2} / d y_{1}=k=$ const,

$$
\begin{aligned}
\frac{d y_{2}}{d y_{1}} & =\mu\left(1-y_{1}^{2}\right)-\frac{y_{1}}{y_{2}}=k \Rightarrow \\
y_{2} & =\frac{y_{1}}{\mu\left(1-y_{1}^{2}\right)-k}
\end{aligned}
$$

Critical Points: Another Example

Find and classify the critical points of

$$
\begin{aligned}
\frac{d x}{d t} & =f(x, y)=-6 y+2 x y-8 \\
\frac{d y}{d t} & =g(x, y)=y^{2}-x^{2}
\end{aligned}
$$

Critical points where $y^{2}=x^{2}$ and $-6 y+$ $2 x y-8=0$. From the first, $y= \pm x$. If $y=x, 2 x^{2}-6 x-8=0$, and $x=-1,4$. Substituting $y=-x$ gives $2 x^{2}-6 x+8=0$, which has no real solution. Hence, the only critical points are $(-1,-1),(4,4)$.

The linearised matrix at a critical point $P=$ $\left(x_{0}, y_{0}\right)$ is

$$
\left[\begin{array}{ll}
\frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \\
\frac{\partial g}{\partial x} & \frac{\partial g}{\partial y}
\end{array}\right]_{\left(x_{0}, y_{0}\right)}=\left[\begin{array}{cc}
2 y_{0} & 2 x_{0}-6 \\
-2 x_{0} & 2 y_{0}
\end{array}\right]
$$

The linearised matrix at $(-1,-1)$ is thus
$\left[\begin{array}{cc}-2 & -8 \\ 2 & -2\end{array}\right], p=a+d=-4, q=a d-b c=20$,
and $\Delta=p^{2}-4 q=-64$. This is a focus, and it is stable because $p<0$. The linearised matrix at $(4,4)$ is

$$
\left[\begin{array}{cc}
8 & 2 \\
-8 & 8
\end{array}\right], p=16, q=80, \Delta=-64
$$

and this is also a focus, but unstable because $p>0$.

CHAOS

Some systems which occur in physical processes are difficult to analyse because of

- Apparently random behaviour;
- Exceptional sensitivity to initial conditions ("butterfly effect").

These systems behave in a very erratic manner as shown in the drawings below. Also, if a very small error is made in the initial conditions, it is magnified by the system as time goes on and drifts away from the "true" solution at an exponential rate.

Lorenz equations

$$
\begin{array}{ll}
x^{\prime}=\sigma(y-x) & (x, y, z) \in \Re^{3} \\
y^{\prime}=\rho x-y-x z, & \sigma, \rho, \beta>0 . \\
z^{\prime}=-\beta z+x y &
\end{array}
$$

This system was used to describe the instability of weather patterns, but was later found to be chaotic for wide ranges of values of the parameters σ, ρ, β.

