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PHASE PLANE ANALYSIS

• Linear Systems:

# Classification;

# Stability.

• Nonlinear Systems:

# Critical points;

# Linearization;

# Global picture.
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Phase Plane – Linear Systems

Solutions of y′ = Ay can be drawn as solution

paths y1(t), y2(t) in the phase plane. An

equilibrium point or critical point is where

y′ = 0 and for linear systems is always 0. With

nonlinear systems, other points apart from the

origin can be critical points.

Types are node, saddle, centre, focus.

Which one depends on the eigenvalues λ1, λ2

of A = (aij), and thus on the characteristic

eqn

λ2 − (a11 + a22)λ+ det A = 0.

Put p = a11+a22, q = det A = a11a22−a12a21

and ∆ = p2 − 4q, so that

p = λ1 + λ2, q = λ1λ2

and ∆ is the discriminant of the quadratic

characteristic equation. That is, roots are real

if ∆ ≥ 0 and complex if ∆ < 0.
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Critical point P of y′ = Ay is a

• node if q > 0 and ∆ ≥ 0;

• saddle point if q < 0;

• centre if p = 0 and q > 0;

• focus if p 6= 0 and ∆ < 0.

To see this: if q = λ1λ2 > 0, the eigenvalues

are real when (∆ ≥ 0) of the same sign, or

complex conjugates. The first gives a node,

while if the second and p = 0, then the roots

are pure imaginary and a centre results. If

q < 0, eigenvalues are real, of opposite sign

and there is a saddle. If ∆ < 0 the eigenvalues

are complex, not pure imaginary when p 6= 0,

so a focus.
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Stability

A critical point P is stable if all solution paths

close enough to P remain close for all future

time.

P is stable and attractive if P is stable and

every path sufficiently close to P approaches

P as t→∞.

Say P unstable if it is not stable.
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The critical point P is:

• stable and attractive if p < 0 and q > 0;

• stable if p ≤ 0 and q > 0;

• unstable if p > 0 or q < 0.

p < 0, q > 0 ⇒ λ1, λ2 both negative or

complex conjugate with negative real part,

hence stable and attractive node or focus.

p ≤ 0, q > 0 ⇒ λ1, λ2 both zero or pure

imaginary, hence stable (centre). If q < 0,

then λ1, λ2 are real and of opposite sign

(saddle); if p > 0, then either λ1, λ2 are both

real with at least one positive (unstable saddle

or node), or they are conjugates with positive

real part (unstable focus).
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Stability chart:
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Example 1

y′ = Ay =

[
1 −3
2 −4

]
y,

where p = a11 + a22 = −3, q = det A = 2,

∆ = p2 − 4q = 1. So the critical point is a

node, and this is stable and attractive,(λ =

−2,−1).

Example 2

y′ = Ay =

[
−2 −3
1 −1

]
y,

where p = a11 + a22 = −3, q = det A = 5,

∆ = p2 − 4q = −11 .So the critical point is a

focus, and this is stable and attractive.

Example 3

y′ = Ay =

[
1 −3
−5 3

]
y,

where p = a11 + a22 = 4, q = det A = −9,

So the critical point is a saddle , and this is

unstable, (λ = −2,6).
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Example 4 Mass on a spring.

y′′+
c

m
y′+

k

m
y = 0, or, y′ =

[
0 1

− k
m − c

m

]
y

and p = −c/m, q = k/m, ∆ = (c/m)2−4k/m.

No damping: c = 0, p = 0, q > 0, centre;

Underdamping: c2 < 4mk, p < 0, q > 0, ∆ <

0, stable attracting focus;

Critical damping: c2 = 4mk, p < 0, q >

0, ∆ = 0, stable attracting node;

Overdamping: c2 > 4mk, p < 0, q > 0, ∆ >

0, stable attracting node.
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Phase Plane – Nonlinear Systems

y′ = f(y) =

[
f1(y1, y2)
f2(y1, y2)

]
(1)

autonomous system (not involving t explic-

itly). A point P : (a, b) of the phase plane,

at which f1(a, b) = f2(a, b) = 0, is a critical

point or equilibrium. If (1) has several critical

points (a, b), for analysis of each we translate

the point to the origin 0 by ỹ1 = y1− a, ỹ2 =

y2 − b. So, for discussion, we might as well

suppose that 0 is the critical point.

Near 0 we linearize the nonlinear system and

consider the stability characteristics of the

resulting linear system.
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Assuming that f1(y1, y2), f2(y1, y2) have Tay-

lor expansions around the critical point P =

0, they have no constant terms because

f1(0) = f2(0) = 0 Then (19) becomes

y′ = Ay+h(y) =

[
a11y1 + a12y2 + h1(y1, y2)
a21y1 + a22y2 + h2(y1, y2)

]
.

If det A 6= 0 the type and stability of

P coincides with that of 0 of the linear

system

y′ = Ay =

[
a11y1 + a12y2
a21y1 + a22y2

]
,

provided that h1, h2 are small near 0. Except

if the eigenvalues of A are equal or pure

imaginary, when the nonlinear system may

have a focus.

Example: damped pendulum. mass m, rod

of length L. DE mLθ′′+mg sin θ = 0. Or,

θ′′+ k sin θ = 0, k =
g

L
.
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Introduce a damping term cθ′:

θ′′+ cθ′+ k sin θ = 0, k > 0, c ≥ 0.

y′1 = y2

y′2 = −k sin y1 − cy2

Critical points (0,0), (±π,0), (±2π,0), . . ..

First, (0,0): linearizing sin y1 ≈ y1,

y′ = Ay =

[
0 1
−k −c

]
y.

For undamped (c = 0), a centre, for small

damping a focus. Since sin y1 is periodic with

period 2π, the critical points (2nπ,0), n =

±1, ±2, . . . have this same behaviour.

Second, (π,0): set θ − π = y1, y
′
1 = θ′ = y2

and linearize

sin θ = sin(y1 + π) = − sin y1 ≈ −y1,

y′ = Ay =

[
0 1
k −c

]
y.
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Now, p = −c, q = −k, ∆ = c2 + 4k and

No damping. c = 0, p = 0, q < 0, ∆ > 0,

which is a saddle;

Damping c > 0, p < 0, q < 0, ∆ > 0, saddle.
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Transform to 1st order DE in phase plane

Above, to draw the phase plane trajectories,

we eliminated t from y1(t), y2(t). Another

way is to take y = y1 as the independent

variable directly in the DE F (y, y′, y′′) = 0,

set y′ = y2 and use

y′′ = y′2 =
dy2

dt
=
dy2

dy1

dy1

dt
=
dy2

dy1
y2.

The result is a first order DE in the phase

plane:

F

(
y1, y2,

dy2

dy1
y2

)
= 0.

Example. Undamped pendulum

θ′′+ k sin θ = 0. Putting θ = y1, θ
′ = y2,

θ′′ = y2
dy2
dy1

gives

dy2

dy1
y2 = −k sin y1 ⇒

1

2
y2

2 = k cos y1 + C.
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Additional Example: §4.5 #2. y”+y−y3 =

0; Find type and stability of the critical points

and sketch the solution curves in the phase

plane.

Critical Points: First make a system.

y1 = y, y2 = y′, y′2 = y” = −y + y3.

y′1 = y2 = f1

y′2 = −y1 + y3
1 = f2.

For critical points, f1 = 0, f2 = 0. So y2 = 0

and −y1 + y3
1 = 0, y1(−1 + y2

1) = 0 and

y1 = 0, +1, −1.

(0 0), (1 0), (−1,0).

Linearization: At a critical point y∗ the

system is approximated by the

LINEAR SYSTEM y′ = Jy,

J =

[
∂f1/∂y1 ∂f1/∂y2
∂f2/∂y1 ∂f2/∂y2

]
y∗
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That is, J =

[
∇f1
∇f2

]
y∗

Study linearization at each y∗:

(0 0) : J =

[
0 1

−1 + 3y2
1 0

]
0 0

=

[
0 1
−1 0

]
So p = 0, q = 1, CENTRE.

(±1 0) : J =

[
0 1
2 0

]
Here, p = 0, q = −2, SADDLE. Eigenvalues

are λ = ±
√

2, eigenvector eqn −λx1 + x2 = 0

and get (1 λ)T .

+ 15



+ +

Global Picture: Find the solution curves in

the form of y2 = a function of y1.

dy2

dy1
=

f2(y1, y2)

f1(y1, y2)

=
−y1 + y3

1

y2∫
y2 dy2 =

∫
(−y1 + y3

1) dy1 + C

1

2
y2

2 = −
1

2
y2

1 +
1

4
y4

1 + C

2y2
2 = −2y2

1 + y4
1 + 4C

= (1− y2
1)2 + 4C − 1, or

2y2
1 + 2y2

2 = y4
1 + 4C.

If y1 is small, this is approximately like a

circle. If y1 is large, 2y2
1 − (1 − y2

1)2 = K

is approximately like a hyperbola.
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van der Pol equation

y′′ − µ(1− y2)y′+ y = 0, µ = constant > 0

Damping coefficient µ(1 − y2) < 0 for small

oscillations, y2 < 1, producing negative damp-

ing. It is positive for larger oscillations, y2 >

1, producing positive damping. There must

be a periodic solution separating the regions

of different damping, called a limit cycle.

Put y = y1, y
′ = y2, y

′′ = y2 dy2/dy1:

dy2

dy1
y2 − µ(1− y2

1)y2 + y1 = 0.

Isoclines are the curves dy2/dy1 = k = const,

dy2

dy1
= µ(1− y2

1)−
y1

y2
= k ⇒

y2 =
y1

µ(1− y2
1)− k

.
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Critical Points: Another Example

Find and classify the critical points of

dx

dt
= f(x, y) = −6y + 2xy − 8

dy

dt
= g(x, y) = y2 − x2.

Critical points where y2 = x2 and −6y +

2xy − 8 = 0. From the first, y = ±x. If

y = x, 2x2 − 6x − 8 = 0, and x = −1, 4.

Substituting y = −x gives 2x2 − 6x + 8 = 0,

which has no real solution. Hence, the only

critical points are (−1,−1), (4,4).

The linearised matrix at a critical point P =

(x0, y0) is
∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y


(x0,y0)

=

[
2y0 2x0 − 6
−2x0 2y0

]
.
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The linearised matrix at (−1,−1) is thus[
−2 −8
2 −2

]
, p = a+d = −4, q = ad−bc = 20,

and ∆ = p2 − 4q = −64. This is a focus,

and it is stable because p < 0. The linearised

matrix at (4,4) is[
8 2
−8 8

]
, p = 16, q = 80, ∆ = −64

and this is also a focus, but unstable because

p > 0.

CHAOS

Some systems which occur in physical pro-

cesses are difficult to analyse because of

• Apparently random behaviour;

• Exceptional sensitivity to initial conditions

(“butterfly effect”).
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These systems behave in a very erratic man-

ner as shown in the drawings below. Also,

if a very small error is made in the initial

conditions, it is magnified by the system as

time goes on and drifts away from the “true”

solution at an exponential rate.

Lorenz equations

x′ = σ(y − x)
y′ = ρx− y − xz
z′ = −βz + xy

,
(x, y, z) ∈ <3

σ, ρ, β > 0.

This system was used to describe the insta-

bility of weather patterns, but was later found

to be chaotic for wide ranges of values of the

parameters σ, ρ, β.
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