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FOURIER SERIES

• Evaluation of FS;

• ODEs (Forced Oscillations);

• PDEs: Heat Equation & FS.

POWER SERIES

• Series Solution of DEs;

• Examples.
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Fourier Series and DEs.

Forced oscillations:

my′′+ cy′+ ky = r(t).

If r(t) is a sine or cosine function and damping

occurs (c > 0), then steady state solution is a

harmonic oscillation with period same as r(t).

If r(t) is not of this form, but has period p,

the steady state solution is a superposition

of harmonic oscillations of period np, n =

1,2, . . .. If one of these is close to the resonant

frequency, then the corresponding oscillation

can be the dominant response of the system

to the input r(t).

Example 1.

y′′+ 0.04y′+ 9y = r(t), (1)

r(t) =


π
4t if − π

2 < t < π
2,

π
4(π − t) if π

2 < t < 3π
2 ,

r(t+2π) = r(t).
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Represent r(t) by a FS

r(t) =
1

12
sin t−

1

32
sin 3t+

1

52
sin 5t− . . .

=
∞∑
k=1

(−1)k+1 sin(2k − 1)t

(2k − 1)2
.

For k = 1,2, . . . consider the DEs

y′′+ 0.04y′+ 9y =
(−1)k+1 sin(2k − 1)t

(2k − 1)2
. (2)

The solution to (20) is the superposition of all

the solutions to (21). From earlier work on

forced oscillations, the steady state solution

y2k−1(t) = yp(t) and is of the form

y2k−1(t) = A2k−1 cos(2k − 1)t+B2k−1 sin(2k − 1)t ,
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where A2k−1, B2k−1 are undetermined coeffi-

cients. Substituting in (21),

(9− (2k − 1)2)A2k−1 +
2k − 1

25
B2k−1

= 0

−
2k − 1

25
A2k−1 + (9− (2k − 1)2)B2k−1

=
(−1)k+1

(2k − 1)2
.

Solving for A2k−1, B2k−1 gives

A2k−1 =
(−1)k+1

25(2k − 1)D2k−1
,

B2k−1 =
(−1)k+1(9− (2k − 1)2)

(2k − 1)2D2k−1
,

where

D2k−1 = [9− (2k − 1)2]2 +
[
2k − 1

25

]2
.

The amplitude of y2k−1 is

C2k−1 =
[
A2

2k−1 +B2
2k−1

]1/2
,
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which is 1

[25(2k − 1)D2k−1]2
+

[9− (2k − 1)2]2

(2k − 1)4D2
2k−1

1/2

.

That is,

1

(2k − 1)2D2k−1

[[
2k − 1

25

]2
+ [9− (2k − 1)2]2

]1/2

Hence, C2k−1 =
1

(2k − 1)2
√
D2k−1

.

Some numerical values:

C1 = 0.1250
C3 = 0.9269
C5 = 0.0025
C7 = 0.0005
C9 = 0.0002

The values of all C2k−1 are quite small, except

for 2k − 1 = 3, when D3 is very small and

C3 = 0.9259 is so large that it dominates the

other harmonics.
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Summary of steps.

y′′+ by′+ cy = r(t), (∗)

where r(t) is a periodic forcing term, r(t +

2L) = r(t), and the plant is y” + by′ + cy =

0. What is the response of the system to

the forcing term and what is the dominant

frequency of the response?

• Expand r(t) =
∑
rk(t) in a FS.

• y” + by′ + cy = rk(t) has particular soln

yk(t).

• Particular soln of (*) is yp =
∑
yk.

• Complete soln y = yh + yp.
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# If the plant is damped, this means that

the particular solution
∑
yk is the steady

state soln.

# There may be a harmonic rp of the FS∑
rk of the forcing term r(t) which is close

to resonance with the plant – then yp

is the dominant response to the forcing

term.
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PDEs and Fourier Series. A vibrating string

of length L and fixed at both ends can be

described by its displacement u(x, t) at time t

and position x along the string. There are two

independent variables x and t and instead of a

DE we have a Partial Differential Equation.

The displacement u(x, t) can be shown to

satisfy a PDE

∂2u

∂t2
= c2

∂2u

∂x2
, c2 =

T

ρ
,

called the one-dimensional wave equation.

Boundary conditions:

Since the string is fixed at ends x = 0 and

x = L,

u(0, t) = 0, u(L, t) = 0, ∀ t > 0.

Initial conditions: With initial displacement

f(x) and initial velocity g(x),

u(x,0) = f(x),
∂u

∂t

∣∣∣∣
t=0

= g(x) 0 ≤ x ≤ L.
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PROBLEM: Solve the PDE satisfying the

boundary and initial conditions.

• Separation of Variables gives two ODEs,

one in t and the other in x;

• Solve these ODEs to satisfy the boundary

conditions;

• Using Fourier Series the solutions are su-

perposed to obtain a solution of the wave

equation satisfying the initial conditions.
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Separation of variables looks for a solution

as a product with the variables “separated”:

u(x, t) = F (x)G(t).

∂2u

∂t2
= FG̈,

∂2u

∂x2
= F ′′G

FG̈ = c2F ′′G
G̈

c2G
=

F ′′

F
= k.

Now both sides must be constant k because

LHS is a function of t only and the RHS a

function only of x.

F ′′ − kF = 0

G̈− c2kG = 0.

Boundary conditions: For all t

u(0, t) = F (0)G(t) = 0,

u(L, t) = F (L)G(t) = 0.

G 6≡ 0⇒ F (0) = 0, F (L) = 0.

Solving for F : now, k = 0 gives F ′′ = 0⇒ F =

ax+ b. Hence a = b = 0 and F ≡ 0, u = 0.
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For k = µ2 > 0, F = Aeµx +Be−µx and F ≡ 0

again. So the only interesting possibility is if

k = −p2 < 0.

F ′′+ p2F = 0,

F (x) = A cos px+B sin px

F (0) = A = 0, F (L) = B sin pL = 0,

sin pL = 0⇒ p =
nπ

L

Fn(x) = sin
nπ

L
x, n = 1,2, . . .

Now solve for G with k = −p2 = −(nπ/L)2

G̈+ λ2
nG = 0, λn =

cnπ

L
,

Gn(t) = Bn cosλnt+B∗n sinλnt.

So the functions un(x, t) = Fn(x)Gn(t),

un(x, t) = (Bn cosλnt+B∗n sinλnt) sin
nπ

L
x,

n = 1,2, . . ., are solutions of the PDE sat-

isfying the boundary conditions. These are

the eigenfunctions and λn = cnπ/L are the

eigenvalues of the problem.
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A single un(x, t) will not satisfy the initial

conditions in general. However, the sum of

the un is also a solution of the wave eqn:

u(x, t) =
∞∑
n=1

un(x, t)

=
∞∑
n=1

(Bn cosλnt+B∗n sinλnt) sin
nπ

L
x,

u(x,0) =
∞∑
n=1

Bn sin
nπ

L
x = f(x).

Choose the Bn so that u(x,0) is the Fourier

sine series of f(x):

Bn =
2

L

∫ L
0
f(x) sin

nπx

L
dx.

Similarly, differentiating u,

∂u

∂t

∣∣∣∣
t=0

=
∞∑
n=1

B∗nλn sin
nπx

L
= g(x)

B∗nλn =
2

L

∫ L
0
g(x) sin

nπx

L
dx

B∗n =
2

cnπ

∫ L
0
g(x) sin

nπx

L
dx.
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In particular, if ut(x,0) = 0, that is, g(x) = 0,

then B∗n = 0 and

u(x, t) =
∞∑
n=1

Bn cosλnt sin
nπx

L
.

Example. Find the displacement u(x, t) of

the vibrating string of length L = π with fixed

ends and c2 = 1, whose initial velocity is zero

and initial displacement is given by f(x) as

shown.

Since initial velocity g(x) = 0, B∗n = 0 and the

solution is

u(x, t) =
∞∑
n=1

Bn cosλnt sin
nπx

L
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Because c = 1, L = π, λn = cnπ/L = n and

u(x, t) =
∞∑
n=1

Bn cosnt sinnx.

The Bn are the Fourier sine coefficients for

the half-range expansion of f(x):

Bn =
2

π

∫ π
0
f(x) sinnx dx

=
2

π

{∫ 1

0
x sinnx dx

+
1

π − 1

∫ π
1

(π − x) sinnx dx
}

=
2

π

[−1

n
cosn+

1

n2
sinn

]
+

2

π(π − 1)

[
π − 1

n
cosn+

1

n2
sinn

]
=

2 sinn

(π − 1)n2

u(x, t) =
2

π − 1

∞∑
n=1

sinn

n2
cosnt sinnx.
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Series Solution of DEs.

In the general case

y′′+ p(t)y′+ q(t)y = 0,

the solutions might be nonelementary func-

tions which are special functions: Legendre

polynomials, Bessel functions, etc. These

are solved by using power series. Express

p(t), q(t) as power series in t or t−t0. Assume

a solution, convergent in |t| < R,

y = a0 + a1t+ a2t
2 + . . . =

∞∑
m=0

amt
m

y′ = a1 + 2a2t+ 3a3t
2 + . . . =

∞∑
m=1

mamt
m−1

y′′ = 2a2 + 6a3t+ . . . =
∞∑

m=2

m(m− 1)amt
m−2

and substitute these into the DE. Collect

powers of t and equate sum of coefficients

of like powers to zero. This gives recurrence

relations which can be solved for the am.
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Example 1: y′′ − y = 0.

Substituting the series into the equation:

(2a2 + 3 · 2a3t+ 4 · 3a4t
2 + · · ·)

−(a0 + a1t+ a2t
2 + . . .) = 0

2a2 − a0 + (3 · 2a3 − a1)t

+(4 · 3a4 − a2)t2 + . . .

+[(m+ 2)(m+ 1)am+2 − am]tm + . . . = 0.

2a2 − a0 = 0

3 · 2a3 − a1 = 0

4 · 3a4 − a2 = 0, . . .

(m+ 2)(m+ 1)am+2 − am = 0, . . .

So a2, a4, . . . can be expressed in terms of

a0, and a3, a5, . . . in terms of a1.

a2 =
a0

2!
, a4 =

a2

4 · 3
=
a0

4!
, . . .

a3 =
a1

3!
, a5 =

a3

5 · 4
=
a1

5!
, . . .
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So the series is

y = a0 + a1t+
a0

2!
t2 +

a1

3!
t3 +

a0

4!
t4 + . . .

This can be written as y = y1 + y2, where

y1 = a0

(
1 +

t2

2!
+
t4

4!
+ . . .

)
= a0 cosh t

y2 = a1

(
t+

t3

3!
+
t5

5!
+ . . .

)
= a1 sinh t

y = a0 cosh t+ a1 sinh t.

We saw earlier that et, e−t is a basis of

solutions of this DE, but so also are

et + e−t

2
= cosh t,

et − e−t

2
= sinh t.

Both these series converge for |t| < ∞,

because, for cosh t,

R = lim
m→∞

∣∣∣∣∣ a2m

a2m+2

∣∣∣∣∣
= lim

m→∞(2m+ 2)(2m+ 1) =∞,

and similarly for sinh t. (Ratio Test)
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Example. y′′+ ty′+ 2y = 0.

y =
∞∑

m=0

amt
m,

ty′ =
∞∑

m=1

mamt
m,

y′′ =
∞∑

m=2

m(m− 1)tm−2.

Substituting these into the DE,

∞∑
m=2

m(m− 1)amt
m−2 +

∞∑
m=0

[mam + 2am]tm.

2a2 + 2a0 = 0, 12a4 + 2a2 + 2a2 = 0, . . .

12a4 + 2a2 + 2a2 = 0, 20a5 + 3a3 + 2a3 = 0, . . .

and for general m,

(m+ 1)(m+ 2)am+2 +mam + 2am = 0.

So, solving for am+2,

am+2 = −
1

m+ 1
am, m = 0,1,2, . . . .
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Taking even k = 0,2,4, . . .,

a2 = −
a0

1
, a4 = −

a2

3
=

a0

1 · 3
, . . .

a2k = (−1)k
a0

1 · 3 · . . . (2k − 1)
, . . . .

Taking odd k = 1,3,5, . . .,

a3 = −
a1

2
, a5 = −

a3

4
=

a1

2 · 4
, . . .

a2k+1 = (−1)k
a1

2 · 4 · . . . (2k)
, . . . .

Hence,

y(t) = a0

1 +
∞∑
k=1

(−1)k

1 · 3 · . . . (2k − 1)
t2k


+a1

∑
k=0

(−1)k

2 · 4 · . . . (2k)
t2k+1 .

Both series converge for all t. For example,

in the second series,

R = lim
k→∞

∣∣∣∣∣a2k+1

a2k+3

∣∣∣∣∣ = lim
k→∞

2(k + 1) =∞.
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