COLOR LAYER

red

FOURIER SERIES

- Evaluation of FS;
- ODEs (Forced Oscillations);
- PDEs: Heat Equation \& FS.

POWER SERIES

- Series Solution of DEs;
- Examples.

Fourier Series and DEs.
Forced oscillations:

$$
m y^{\prime \prime}+c y^{\prime}+k y=r(t) .
$$

If $r(t)$ is a sine or cosine function and damping occurs ($c>0$), then steady state solution is a harmonic oscillation with period same as $r(t)$. If $r(t)$ is not of this form, but has period p, the steady state solution is a superposition of harmonic oscillations of period $n p, n=$ $1,2, \ldots$. If one of these is close to the resonant frequency, then the corresponding oscillation can be the dominant response of the system to the input $r(t)$.

Example 1.

$$
\begin{gather*}
y^{\prime \prime}+0.04 y^{\prime}+9 y=r(t), \tag{1}\\
r(t)=\left\{\begin{array}{ll}
\frac{\pi}{4} t & \text { if }-\frac{\pi}{2}<t<\frac{\pi}{2}, \\
\frac{\pi}{4}(\pi-t) & \text { if } \frac{\pi}{2}<t<\frac{3 \pi}{2},
\end{array} r(t+2 \pi)=r(t) .\right.
\end{gather*}
$$

Represent $r(t)$ by a FS

$$
\begin{aligned}
r(t) & =\frac{1}{1^{2}} \sin t-\frac{1}{3^{2}} \sin 3 t+\frac{1}{5^{2}} \sin 5 t-\ldots \\
& =\sum_{k=1}^{\infty} \frac{(-1)^{k+1} \sin (2 k-1) t}{(2 k-1)^{2}}
\end{aligned}
$$

For $k=1,2, \ldots$ consider the DEs

$$
\begin{equation*}
y^{\prime \prime}+0.04 y^{\prime}+9 y=\frac{(-1)^{k+1} \sin (2 k-1) t}{(2 k-1)^{2}} . \tag{2}
\end{equation*}
$$

The solution to (20) is the superposition of all the solutions to (21). From earlier work on forced oscillations, the steady state solution $y_{2 k-1}(t)=y_{p}(t)$ and is of the form
$y_{2 k-1}(t)=A_{2 k-1} \cos (2 k-1) t+B_{2 k-1} \sin (2 k-1) t$
where $A_{2 k-1}, B_{2 k-1}$ are undetermined coefficlients. Substituting in (21),

$$
\begin{aligned}
\left(9-(2 k-1)^{2}\right) A_{2 k-1} & +\frac{2 k-1}{25} B_{2 k-1} \\
& =0 \\
-\frac{2 k-1}{25} A_{2 k-1} & +\left(9-(2 k-1)^{2}\right) B_{2 k-1} \\
& =\frac{(-1)^{k+1}}{(2 k-1)^{2}}
\end{aligned}
$$

Solving for $A_{2 k-1}, B_{2 k-1}$ gives

$$
\begin{aligned}
A_{2 k-1} & =\frac{(-1)^{k+1}}{25(2 k-1) D_{2 k-1}} \\
B_{2 k-1} & =\frac{(-1)^{k+1}\left(9-(2 k-1)^{2}\right)}{(2 k-1)^{2} D_{2 k-1}}
\end{aligned}
$$

where

$$
D_{2 k-1}=\left[9-(2 k-1)^{2}\right]^{2}+\left[\frac{2 k-1}{25}\right]^{2}
$$

The amplitude of $y_{2 k-1}$ is

$$
C_{2 k-1}=\left[A_{2 k-1}^{2}+B_{2 k-1}^{2}\right]^{1 / 2}
$$

which is

$$
\left[\frac{1}{\left[25(2 k-1) D_{2 k-1}\right]^{2}}+\frac{\left[9-(2 k-1)^{2}\right]^{2}}{(2 k-1)^{4} D_{2 k-1}^{2}}\right]^{1 / 2}
$$

That is,
$\frac{1}{(2 k-1)^{2} D_{2 k-1}}\left[\left[\frac{2 k-1}{25}\right]^{2}+\left[9-(2 k-1)^{2}\right]^{2}\right]^{1 / 2}$
Hence, $\quad C_{2 k-1}=\frac{1}{(2 k-1)^{2} \sqrt{D_{2 k-1}}}$.

Some numerical values:

$$
\begin{aligned}
& C_{1}=0.1250 \\
& C_{3}=0.9269 \\
& C_{5}=0.0025 \\
& C_{7}=0.0005 \\
& C_{9}=0.0002
\end{aligned}
$$

The values of all $C_{2 k-1}$ are quite small, except for $2 k-1=3$, when D_{3} is very small and $C_{3}=0.9259$ is so large that it dominates the other harmonics.

Summary of steps.

$$
\begin{equation*}
y^{\prime \prime}+b y^{\prime}+c y=r(t) \tag{*}
\end{equation*}
$$

where $r(t)$ is a periodic forcing term, $r(t+$ $2 L)=r(t)$, and the plant is $y^{\prime \prime}+b y^{\prime}+c y=$ 0 . What is the response of the system to the forcing term and what is the dominant frequency of the response?

- Expand $r(t)=\sum r_{k}(t)$ in a FS.
- $y^{\prime \prime}+b y^{\prime}+c y=r_{k}(t)$ has particular soln $y_{k}(t)$.
- Particular soln of $(*)$ is $y_{p}=\sum y_{k}$.
- Complete soln $y=y_{h}+y_{p}$.
\# If the plant is damped, this means that the particular solution $\sum y_{k}$ is the steady state soln.
\# There may be a harmonic r_{p} of the FS $\sum r_{k}$ of the forcing term $r(t)$ which is close to resonance with the plant - then y_{p} is the dominant response to the forcing term.

PDEs and Fourier Series. A vibrating string of length L and fixed at both ends can be described by its displacement $u(x, t)$ at time t and position x along the string. There are two independent variables x and t and instead of a DE we have a Partial Differential Equation. The displacement $u(x, t)$ can be shown to satisfy a PDE

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}, \quad c^{2}=\frac{T}{\rho}
$$

called the one-dimensional wave equation. Boundary conditions:
Since the string is fixed at ends $x=0$ and $x=L$,

$$
u(0, t)=0, \quad u(L, t)=0, \quad \forall t>0
$$

Initial conditions: With initial displacement $f(x)$ and initial velocity $g(x)$,
$u(x, 0)=f(x),\left.\quad \frac{\partial u}{\partial t}\right|_{t=0}=g(x) \quad 0 \leq x \leq L$.

PROBLEM: Solve the PDE satisfying the boundary and initial conditions.

- Separation of Variables gives two ODEs, one in t and the other in x;
- Solve these ODEs to satisfy the boundary conditions;
- Using Fourier Series the solutions are superposed to obtain a solution of the wave equation satisfying the initial conditions.

Separation of variables looks for a solution as a product with the variables "separated":

$$
\begin{aligned}
u(x, t) & =F(x) G(t) \\
\frac{\partial^{2} u}{\partial t^{2}} & =F \ddot{G}, \quad \frac{\partial^{2} u}{\partial x^{2}}=F^{\prime \prime} G \\
F \ddot{G} & =c^{2} F^{\prime \prime} G \\
\frac{\ddot{G}}{c^{2} G} & =\frac{F^{\prime \prime}}{F}=k
\end{aligned}
$$

Now both sides must be constant k because LHS is a function of t only and the RHS a function only of x.

$$
\begin{aligned}
F^{\prime \prime}-k F & =0 \\
\ddot{G}-c^{2} k G & =0
\end{aligned}
$$

Boundary conditions: For all t

$$
\begin{aligned}
u(0, t) & =F(0) G(t)=0 \\
u(L, t) & =F(L) G(t)=0 \\
G & \not \equiv 0 \Rightarrow F(0)=0, \quad F(L)=0
\end{aligned}
$$

Solving for F : now, $k=0$ gives $F^{\prime \prime}=0 \Rightarrow F=$ $a x+b$. Hence $a=b=0$ and $F \equiv 0, u=0$.

For $k=\mu^{2}>0, F=A e^{\mu x}+B e^{-\mu x}$ and $F \equiv 0$ again. So the only interesting possibility is if $k=-p^{2}<0$.

$$
\begin{aligned}
F^{\prime \prime}+p^{2} F & =0 \\
F(x) & =A \cos p x+B \sin p x \\
F(0) & =A=0, F(L)=B \sin p L=0 \\
\sin p L & =0 \Rightarrow p=\frac{n \pi}{L} \\
F_{n}(x) & =\sin \frac{n \pi}{L} x, n=1,2, \ldots
\end{aligned}
$$

Now solve for G with $k=-p^{2}=-(n \pi / L)^{2}$

$$
\begin{aligned}
\ddot{G}+\lambda_{n}^{2} G & =0, \quad \lambda_{n}=\frac{c n \pi}{L} \\
G_{n}(t) & =B_{n} \cos \lambda_{n} t+B_{n}^{*} \sin \lambda_{n} t
\end{aligned}
$$

So the functions $u_{n}(x, t)=F_{n}(x) G_{n}(t)$,

$$
u_{n}(x, t)=\left(B_{n} \cos \lambda_{n} t+B_{n}^{*} \sin \lambda_{n} t\right) \sin \frac{n \pi}{L} x
$$

$n=1,2, \ldots$, are solutions of the PDE satisfying the boundary conditions. These are the eigenfunctions and $\lambda_{n}=c n \pi / L$ are the eigenvalues of the problem.

A single $u_{n}(x, t)$ will not satisfy the initial conditions in general. However, the sum of the u_{n} is also a solution of the wave eqn:

$$
\begin{aligned}
u(x, t) & =\sum_{n=1}^{\infty} u_{n}(x, t) \\
& =\sum_{n=1}^{\infty}\left(B_{n} \cos \lambda_{n} t+B_{n}^{*} \sin \lambda_{n} t\right) \sin \frac{n \pi}{L} x \\
u(x, 0) & =\sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi}{L} x=f(x)
\end{aligned}
$$

Choose the B_{n} so that $u(x, 0)$ is the Fourier sine series of $f(x)$:

$$
B_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x
$$

Similarly, differentiating u,

$$
\begin{aligned}
\left.\frac{\partial u}{\partial t}\right|_{t=0} & =\sum_{n=1}^{\infty} B_{n}^{*} \lambda_{n} \sin \frac{n \pi x}{L}=g(x) \\
B_{n}^{*} \lambda_{n} & =\frac{2}{L} \int_{0}^{L} g(x) \sin \frac{n \pi x}{L} d x \\
B_{n}^{*} & =\frac{2}{c n \pi} \int_{0}^{L} g(x) \sin \frac{n \pi x}{L} d x
\end{aligned}
$$

In particular, if $u_{t}(x, 0)=0$, that is, $g(x)=0$, then $B_{n}^{*}=0$ and

$$
u(x, t)=\sum_{n=1}^{\infty} B_{n} \cos \lambda_{n} t \sin \frac{n \pi x}{L} .
$$

Example. Find the displacement $u(x, t)$ of the vibrating string of length $L=\pi$ with fixed ends and $c^{2}=1$, whose initial velocity is zero and initial displacement is given by $f(x)$ as shown.

Since initial velocity $g(x)=0, B_{n}^{*}=0$ and the solution is

$$
u(x, t)=\sum_{n=1}^{\infty} B_{n} \cos \lambda_{n} t \sin \frac{n \pi x}{L}
$$

Because $c=1, L=\pi, \lambda_{n}=c n \pi / L=n$ and

$$
u(x, t)=\sum_{n=1}^{\infty} B_{n} \cos n t \sin n x
$$

The B_{n} are the Fourier sine coefficients for the half-range expansion of $f(x)$:

$$
\begin{aligned}
B_{n}= & \frac{2}{\pi} \int_{0}^{\pi} f(x) \sin n x d x \\
= & \frac{2}{\pi}\left\{\int_{0}^{1} x \sin n x d x\right. \\
& \left.+\frac{1}{\pi-1} \int_{1}^{\pi}(\pi-x) \sin n x d x\right\} \\
= & \frac{2}{\pi}\left[\frac{-1}{n} \cos n+\frac{1}{n^{2}} \sin n\right] \\
& +\frac{2}{\pi(\pi-1)}\left[\frac{\pi-1}{n} \cos n+\frac{1}{n^{2}} \sin n\right] \\
= & \frac{2 \sin n}{(\pi-1) n^{2}} \\
u(x, t)= & \frac{2}{\pi-1} \sum_{n=1}^{\infty} \frac{\sin n}{n^{2}} \cos n t \sin n x
\end{aligned}
$$

Series Solution of DEs.

In the general case

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0
$$

the solutions might be nonelementary functions which are special functions: Legendre polynomials, Bessel functions, etc. These are solved by using power series. Express $p(t), q(t)$ as power series in t or $t-t_{0}$. Assume a solution, convergent in $|t|<R$,

$$
\begin{aligned}
y & =a_{0}+a_{1} t+a_{2} t^{2}+\ldots=\sum_{m=0}^{\infty} a_{m} t^{m} \\
y^{\prime} & =a_{1}+2 a_{2} t+3 a_{3} t^{2}+\ldots=\sum_{m=1}^{\infty} m a_{m} t^{m-1} \\
y^{\prime \prime} & =2 a_{2}+6 a_{3} t+\ldots=\sum_{m=2}^{\infty} m(m-1) a_{m} t^{m-2}
\end{aligned}
$$

and substitute these into the DE. Collect powers of t and equate sum of coefficients of like powers to zero. This gives recurrence relations which can be solved for the a_{m}.

Example 1: $y^{\prime \prime}-y=0$.
Substituting the series into the equation:

$$
\begin{aligned}
& \left(2 a_{2}+3 \cdot 2 a_{3} t+4 \cdot 3 a_{4} t^{2}+\cdots\right) \\
& -\left(a_{0}+a_{1} t+a_{2} t^{2}+\ldots\right)=0 \\
& 2 a_{2}-a_{0}+\left(3 \cdot 2 a_{3}-a_{1}\right) t \\
& +\left(4 \cdot 3 a_{4}-a_{2}\right) t^{2}+\ldots \\
& +\left[(m+2)(m+1) a_{m+2}-a_{m}\right] t^{m}+\ldots=0 . \\
& 2 a_{2}-a_{0}=0 \\
& 3 \cdot 2 a_{3}-a_{1}=0 \\
& 4 \cdot 3 a_{4}-a_{2}=0, \ldots \\
& (m+2)(m+1) a_{m+2}-a_{m}=0, \ldots
\end{aligned}
$$

So a_{2}, a_{4}, \ldots can be expressed in terms of a_{0}, and a_{3}, a_{5}, \ldots in terms of a_{1}.

$$
\begin{aligned}
& a_{2}=\frac{a_{0}}{2!}, a_{4}=\frac{a_{2}}{4 \cdot 3}=\frac{a_{0}}{4!}, \ldots \\
& a_{3}=\frac{a_{1}}{3!}, a_{5}=\frac{a_{3}}{5 \cdot 4}=\frac{a_{1}}{5!}, \ldots
\end{aligned}
$$

So the series is

$$
y=a_{0}+a_{1} t+\frac{a_{0}}{2!} t^{2}+\frac{a_{1}}{3!} t^{3}+\frac{a_{0}}{4!} t^{4}+\ldots
$$

This can be written as $y=y_{1}+y_{2}$, where

$$
\begin{aligned}
y_{1} & =a_{0}\left(1+\frac{t^{2}}{2!}+\frac{t^{4}}{4!}+\ldots\right)=a_{0} \cosh t \\
y_{2} & =a_{1}\left(t+\frac{t^{3}}{3!}+\frac{t^{5}}{5!}+\ldots\right)=a_{1} \sinh t \\
y & =a_{0} \cosh t+a_{1} \sinh t
\end{aligned}
$$

We saw earlier that e^{t}, e^{-t} is a basis of solutions of this DE, but so also are

$$
\frac{e^{t}+e^{-t}}{2}=\cosh t, \frac{e^{t}-e^{-t}}{2}=\sinh t
$$

Both these series converge for $|t|<\infty$, because, for $\cosh t$,

$$
\begin{aligned}
R & =\lim _{m \rightarrow \infty}\left|\frac{a_{2 m}}{a_{2 m+2}}\right| \\
& =\lim _{m \rightarrow \infty}(2 m+2)(2 m+1)=\infty
\end{aligned}
$$

and similarly for $\sinh t$. (Ratio Test)

Example. $y^{\prime \prime}+t y^{\prime}+2 y=0$.

$$
\begin{aligned}
y & =\sum_{m=0}^{\infty} a_{m} t^{m} \\
t y^{\prime} & =\sum_{m=1}^{\infty} m a a_{m} t^{m} \\
y^{\prime \prime} & =\sum_{m=2}^{\infty} m(m-1) t^{m-2}
\end{aligned}
$$

Substituting these into the DE,

$$
\sum_{m=2}^{\infty} m(m-1) a_{m} t^{m-2}+\sum_{m=0}^{\infty}\left[m a_{m}+2 a_{m}\right] t^{m}
$$

$$
\begin{aligned}
& 2 a_{2}+2 a_{0}=0,12 a_{4}+2 a_{2}+2 a_{2}=0, \ldots \\
& 12 a_{4}+2 a_{2}+2 a_{2}=0,20 a_{5}+3 a_{3}+2 a_{3}=0,
\end{aligned}
$$ and for general m,

$$
(m+1)(m+2) a_{m+2}+m a_{m}+2 a_{m}=0
$$

So, solving for a_{m+2},

$$
a_{m+2}=-\frac{1}{m+1} a_{m}, m=0,1,2, \ldots
$$

Taking even $k=0,2,4, \ldots$,

$$
\begin{aligned}
a_{2} & =-\frac{a_{0}}{1}, a_{4}=-\frac{a_{2}}{3}=\frac{a_{0}}{1 \cdot 3}, \ldots \\
a_{2 k} & =(-1)^{k} \frac{a_{0}}{1 \cdot 3 \cdot \ldots(2 k-1)}, \ldots
\end{aligned}
$$

Taking odd $k=1,3,5, \ldots$,

$$
\begin{aligned}
& a_{3}=-\frac{a_{1}}{2}, a_{5}=-\frac{a_{3}}{4}=\frac{a_{1}}{2 \cdot 4}, \ldots \\
& a_{2 k+1}=(-1)^{k} \frac{a_{1}}{2 \cdot 4 \cdot \ldots(2 k)}, \ldots
\end{aligned}
$$

Hence,

$$
\begin{aligned}
y(t)= & a_{0}\left[1+\sum_{k=1}^{\infty} \frac{(-1)^{k}}{1 \cdot 3 \cdot \ldots(2 k-1)} t^{2 k}\right] \\
& +a_{1} \sum_{k=0} \frac{(-1)^{k}}{2 \cdot 4 \cdot \ldots(2 k)} t^{2 k+1} .
\end{aligned}
$$

Both series converge for all t. For example, in the second series,

$$
R=\lim _{k \rightarrow \infty}\left|\frac{a_{2 k+1}}{a_{2 k+3}}\right|=\lim _{k \rightarrow \infty} 2(k+1)=\infty
$$

