1. Find the steady-state temperature distribution \(u(x, y) \) in the square \(0 \leq x \leq 2, \ 0 \leq y \leq 2 \) if the lower side is kept at a temperature \(u = \sin \frac{\pi x}{2} \) and \(u = 0 \) on the other three sides.

2. Find the steady-state temperature \(u(x, y) \) in the strip \(0 \leq x \leq \pi, \ y > 0 \) with the vertical sides perfectly insulated, \(u(x, y) \) bounded as \(y \to \infty \) and the lower side kept at temperature \(x \). (Do from first principles, don’t use Laplace transform!)

4. Kreyszig Set 11.10, p.635, Q11; Q12 (BONUS), Q13; Q14 (BONUS).