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Abstract

Obtaining high-quality solutions to hard optimization problems is of
crucial importance to machine learning, operational research, and many
other engineering problems. To cope with hard problems, we introduce
a tutorial on the Cross-Entropy algorithm, which relies on rigorous
developments in the fields of information theory and stochastic
simulation. Our experience with the Cross Entropy method, indicates
that for many problems, it is very reliable and robust as compared to
its counterparts, and that this algorithm can obtain optimal or
near-optimal solutions while using a reasonable computational effort.
Finally, the Cross Entropy method is easy to program and apply for
various tasks.

Slava Vaisman (UQ) 3 / 43



The Cross-Entropy Method

The Cross-Entropy (CE) method is a sequential procedure which
similarly to other evolutionary algorithms, can be used to gradually
change the sampling distribution of a random search such that the
optimal solution is more likely to occur during the corresponding
algorithm execution.

However, the CE method is distinctive in the sense that it is not
directly motivated by a pure evolutionary reasoning.

Instead, it relies on information theory and stochastic simulation.

The CE method is very versatile; it can be used for rare-event
estimation, discrete, continuous, and even noisy optimization.

For now, we restrict our attention to the discrete optimization context
only. In particular, consider the optimization problem:

min
x∈X

S(x),

where S : X → R is a fitness function, and X ∗ ⊆ X is the set of
optimal solutions.
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A general optimization framework

Initialize

define a probability mass function g1(x) for
X ∈ X , set γ0 ←∞, ε > 0, and t← 1

Calculate the ρ-th quantile of the fitness

X ∼ gt(x), Y ← S(X),
(

where Y ∼ F (t)
Y (y)

)

γt ← min
{

inf
{
y ∈ R ; ρ ≤ F (t)

Y (y)
}
, γt−1 − ε

}

Update the sampling distribution

gt+1(x)← 1{S(x)≤γt}gt(x)∑
x∈X 1{S(x)≤γt}gt(x)

is stop
condition
satisfied?

stop

t ← t + 1

yes

no

Figure 1: A general discrete optimization framework.
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The general discrete
optimization framework begins
with the initialization step in
which a probability mass
function (pmf) g1(x) for X ∈ X
is defined.

Designing such pmf is generally
easy, since one can select almost
any distribution. A natural
choice can be, for example, a
uniform distribution on the X
set.
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The following task is to
calculate the ρ-th quantile of
the fitness Y = S(X ), where
X ∼ gt(x).

We assume that the cumulative
distribution function (cdf) of Y

is F
(t)
Y (y), where t is the current

iteration counter.

As soon as the ρ-th quantile is
available, one can update the
sampling distribution.
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This updated distribution will be
used in the consecutive
iteration, provided that the stop
condition is not satisfied.

Finally, the procedure terminates
when some predefined stopping
criterion is met.

For example, one might stop if
for all x ∈ X , it holds that
1{S(x)≤γt} = 0.
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A general (discrete) optimization framework

Note that for each iteration t, the fitness of X ∼ gt(x) satisfies
S(X ) ≤ γt−1.

In addition, since ε > 0, this is not very hard to see that the sequence
γ0, γ1, . . . , is strictly decreasing, since γt ≤ γt−1 − ε for all t.

Moreover, upon the termination, the procedure will find a solution
x ∈ X that is at most ε far away from an optimal solution x∗ ∈ X ∗,
that is, for such x , it holds that S(x) ≤ S(x∗) + ε.

Finally, if the fitness function has a discrete range, namely, if
S : X → N, than for any ε ∈ (0, 1), the procedure will find an
optimal solution that satisfies x∗ ∈ X ∗.
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Some problems

In practice, however, there are two major problems with the above
methodology.

First, for almost all practical situations X is large and therefore,
finding an exact ρ-th quantile is computationally infeasible.

The second problem is the hardness of sampling from gt(x) for all
t > 1;

gt(x) =
1{S(x)≤γt−1}gt−1(x)∑

x∈X 1{S(x)≤γt−1}gt−1(x)
.

Note that the normalization constant of gt(x) is generally not
available analytically.

While the first issue can be resolved via simulation, that is, by finding
a sample fitness quantile γ̂t from S(X1), . . . ,S(XN), where
Xi ∼ gt(x) for 1 ≤ j ≤ N, the sampling from gt(x) remains hard.
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Developing the CE algorithm for X = {0, 1}k

Define X = {0, 1}k , x = (x1, . . . , xk) ∈ X .

Let S(x) be the function to be minimized.

We proceed with the definition of the probability distribution of the
random variable X = (X1, . . . ,Xk), where Xi ∈ {0, 1} for i = 1, . . . , k.

Since the sampling from the pmf defined in the Update the sampling
distribution phase; namely, sampling from

gt+1(x) =
1{S(x)≤γt}gt(x)∑

x∈X 1{S(x)≤γt}gt(x)
, (1)

is generally hard, we propose to approximate (1) using a parametric
family

f (x ; pt+1) =
k∏

i=1

pxit+1,i (1− pt+1,i )
1−xi ,

where pt+1 = (pt+1,1, . . . , pt+1,k), and pt+1 ∈ [0, 1]k .
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Developing the CE algorithm for X = {0, 1}k

The parametric family

f (x ; pt+1) =
k∏

i=1

pxit+1,i (1− pt+1,i )
1−xi , (2)

is a joint pmf of k independent Bernoulli random variables.

That is, one can sample X = (X1, . . . ,Xk) component-wise, and
independently for each Xi for 1 ≤ i ≤ k; namely, Xi ∼ Ber(pt+1,i ).

It is important to note that the sampling from (2) is easy as
compared to the corresponding sampling from gt .

To summarize, in order to approximate the sequence of pmfs {gt} for
all t ∈ N \ {0} , we wish to obtain the corresponding parameter
vectors {pt}, and use (2) instead.
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Developing the CE algorithm for X = {0, 1}k —
Calculating the sample quantile

The calculation of the sample fitness quantile γ̂t is trivial, provided
that pt is readily available.

Specifically, it is sufficient to sample Xj ∼ f (x ; pt) for 1 ≤ j ≤ N, and
sort the {S(Xj)}Nj=1 set in the ascending order.

Denote such an ordering by S(1) ≤ · · · ≤ S(N).

Then, γ̂t ← S(dN×ρe) is the desired sample fitness (ρ-th) quantile.
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Developing the CE algorithm for X = {0, 1}k —
Approximating the sampling pmf

Our final objective is to approximate the (optimal) sampling pmf

gt+1(x) =
1{S(x)≤γt}gt(x)∑

x∈X 1{S(x)≤γt}gt(x)
,

via f (x ; pt+1), where f (x ; pt+1) belongs to the parametric family

f (x ; pt+1) =
k∏

i=1

pxit+1,i (1− pt+1,i )
1−xi ,

that is, to find pt+1.

The latter will be accomplished via a minimization of the relative
entropy (also denoted by Kullback-Leibler divergence) of f (x ; pt+1)
with respect to gt+1(x).
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Developing the CE algorithm for X = {0, 1}k —
Approximating the sampling pmf

The formal characterization of the relative entropy concept is provided in
the following Definition.

Definition (Relative entropy)

The relative entropy of a pmf f (·) with respect to a pmf g(·) is given by:

D(g , f ) = Eg ln

(
g(X )

f (X )

)
=
∑

x
ln

(
g(x)

f (x)

)
g(x)

=
∑

x
g(x) ln g(x)−

∑

x
g(x) ln f (x).
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Developing the CE algorithm for X = {0, 1}k —
Approximating the sampling pmf

It is convenient to think about the relative entropy as a distance
measure between these two pmfs.
While the relative entropy is not a regular distance measure in the
sense that D(g , f ) is generally not equal to D(f , g), it is possible to
show that D(g , f ) ≥ 0 and that the equality occurs if g = f .
Under our setting, we wish to find pt+1 such that
D(gt+1(x), f (x ,pt+1)) is minimized. It holds that

min
pt+1
D(gt+1(x), f (x , pt+1) = min

pt+1

(∑
x

gt+1(x) ln gt+1(x)

−
∑
x

gt+1(x) ln f (x ; pt+1)︸ ︷︷ ︸
(∗)

)

Note that the optimization problem is with respect to the pt+1

parameter. Thus, the minimization problem is equivalent to a
maximization problem of the second term (∗) with respect to pt+1.
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Developing the CE algorithm for X = {0, 1}k —
Approximating the sampling pmf

Suppose that pt+1 = (pt+1,1, . . . , pt+1,k ) and that x = (x1, . . . , xk ). Then, using the definitions
of gt+1(x) and f (x ; pt+1), the corresponding maximization problem (∗), can be written in the
form:

max
pt+1

∑
x

gt+1(x) ln f (x ; pt+1) = max
pt+1

∑
x

1{S(x)≤γt}f (x ; pt)∑
x∈X 1{S(x)≤γt}f (x ; pt)

×

× ln

(
k∏

i=1

p
xi
t+1,i (1− pt+1,i )

1−xi

)

= max
pt+1

∑
x

1{S(x)≤γt}f (x ; pt)× ln

(
k∏

i=1

p
xi
t+1,i (1− pt+1,i )

1−xi

)

= max
pt+1

Ef (x ;pt )1{S(X )≤γt} × ln

(
k∏

i=1

p
Xi
t+1,i (1− pt+1,i )

1−Xi

)
,

where the second equality follows from the fact that the denominator
∑

x∈X 1{S(x)≤γt}f (x ; pt)

is both constant and does not depend on the optimization parameter pt+1. Thus, this

denominator does not affect the optimization problem.
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Developing the CE algorithm for X = {0, 1}k —
Approximating the sampling pmf

The exact evaluation of the expected value

Ef (x ;pt )1{S(X )≤γt} × ln

(
k∏

i=1

p
Xi
t+1,i (1− pt+1,i )

1−Xi

)
is generally not feasible, however, it can be approximated via sampling
from the f (x ; pt) pmf.
In particular, we can work with the so-called stochastic counterpart.
Namely, the solution of

max
pt+1

Ef (x ;pt )1{S(X )≤γt} × ln

(
k∏

i=1

p
Xi
t+1,i (1− pt+1,i )

1−Xi

)

can be approximated by:

max
pt+1

1

N

N∑
j=1

1{S(Xj )≤γt} ln

(
k∏

i=1

p
Xj,i

t+1,i (1− pt+1,i )
1−Xj,i

)
,

where Xj = (Xj ,1, . . . ,Xj ,k) ∼ f (x ; pt) for j = 1, . . . ,N.
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Developing the CE algorithm for X = {0, 1}k —
Approximating the sampling pmf

Lemma

The function

max
pt+1

1

N

N∑

j=1

1{S(Xj )≤γt} ln

(
k∏

i=1

p
Xj,i

t+1,i (1− pt+1,i )
1−Xj,i

)
,

is concave and differentiable with respect to pt+1.

The functions ln(pi ) and ln(1− pi ) are concave for 1 ≤ i ≤ k . To see
this, note that:

∂2

∂p2
i

ln(pi ) = − 1

p2
i

,
∂2

∂p2
i

ln(1− pi ) = − 1

(1− pi )2
,

for 1 ≤ i ≤ k . In addition, 1{S(xj )≤γ} is non-negative and does not

depend on p for 1 ≤ j ≤ N.
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Developing the CE algorithm for X = {0, 1}k —
Approximating the sampling pmf

Finally, (1− xj ,i ) and xj ,i are non-negative, that is,

1

N

N∑

j=1

1{S(xj )≤γ} ln

(
k∏

i=1

p
xj,i
i (1− pi )

1−xj,i

)

=
1

N

N∑

j=1

1{S(xj )≤γ}

(
k∑

i=1

xj ,i ln pi + (1− xj ,i ) ln(1− pi )

)
,

is a non-negative weighted sum of concave functions ( ln(pi ) and
ln(1− pi ) ).

Therefore,

max
pt+1

1

N

N∑

j=1

1{S(Xj )≤γt} ln

(
k∏

i=1

p
Xj,i

t+1,i (1− pt+1,i )
1−Xj,i

)
,

is concave and differentiable with respect to p.
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Developing the CE algorithm for X = {0, 1}k —
Approximating the sampling pmf

Since the function

max
pt+1

1

N

N∑

j=1

1{S(Xj )≤γt} ln

(
k∏

i=1

p
Xj,i

t+1,i (1− pt+1,i )
1−Xj,i

)
, (3)

is concave and differentiable with respect to pt+1, the optimal parameter
p∗t+1 = (p∗t+1,1, . . . , p

∗
t+1,k) which maximizes (3), can be obtained by

solving:

1

N

N∑

j=1

1{S(Xj )≤γt}O ln

(
k∏

i=1

p
Xj,i

t+1,i (1− pt+1,i )
1−Xj,i

)
= 0,

Moreover, it holds that

p∗t+1,i =

∑N
j=1 1{S(Xj )≤γt}Xj ,i

∑N
j=1 1{S(Xj )≤γt}

∀ 1 ≤ i ≤ k.
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Developing the CE algorithm for X = {0, 1}k —
Approximating the sampling pmf

Lemma

Let p = (p1, . . . , pk), such that p ∈ [0, 1]k and let
xj = (xj ,1, . . . , xj ,k) ∈ {0, 1}k for 1 ≤ j ≤ N. Suppose that
S : {0, 1}k → R, γ ∈ R, and N ∈ N. Then, the function

w(p1, . . . , pk) =
1

N

N∑

j=1

1{S(xj )≤γ} ln

(
k∏

i=1

p
xj,i
i (1− pi )

1−xj,i

)

is maximized for

p∗i =

∑N
j=1 1{S(xj )≤γ}xj ,i∑N
j=1 1{S(xj )≤γ}

∀ 1 ≤ i ≤ k .

Please note that this is a closed-form solution!
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Developing the CE algorithm for X = {0, 1}k —
Approximating the sampling pmf

We saw that w is concave and differentiable with respect to p1, . . . , pk . Thus, it is sufficient to
solve

Ow =
1

N

N∑
j=1

1{S(xj )≤γ}O ln

(
k∏

i=1

p
xi
i (1− pi )

1−xi

)
= 0.

It is not very hard to see that for all 1 ≤ i ≤ k, it holds that:

∂

∂pi
w =

1

N

N∑
j=1

1{S(xj )≤γ}

(
xj,i

pi
−

(1− xj,i )

1− pi

)
= 0

⇒
N∑
j=1

1{S(xj )≤γ}

(
xj,i (1− pi )− pi (1− xj,i )

pi (1− pi )

)
= 0

⇒
N∑
j=1

1{S(xj )≤γ}

(
xj,i − pi

pi (1− pi )

)
= 0 ⇒

N∑
j=1

1{S(xj )≤γ}xj,i −
N∑
j=1

1{S(xj )≤γ}pi = 0

⇒ p∗i =

∑N
j=1 1{S(xj )≤γ}xj,i∑N
j=1 1{S(xj )≤γ}

.
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The CE algorithm for X = {0, 1}k

Input: A function S(x), a sample size N ∈ N, a smoothing parameter α ∈ (0, 1), and a rarity
parameter ρ ∈ (0, 1).

1 Set t ← 1 and pt ← (p1, . . . , pk ), such that pi = 0.5 for 1 ≤ i ≤ k.

2 While termination criterion is not fulfilled do:

1 Sample Xj ∼ f (x ; pt), and calculate S(Xj) for 1 ≤ j ≤ N.
2 Let S(1) ≤ · · · ≤ S(N) be the elements of the {S(Xj)}Nj=1 set sorted in

an ascending order.
3 γ̂t ← S(dN×ρe) /* Find the (sample) ρ-quantile */
4 Find pt+1

p̃t+1,i ←
∑N

j=1 1{S(Xj )≤γ̂t}Xj,i
∑N

j=1 1{S(Xj )≤γ̂t}
, ∀1 ≤ i ≤ k

/* note that Xj,i is the i-th component of Xj */
5 p̃t+1 ← (p̃t+1,1, . . . , p̃t+1,k)
6 pt+1 ← (1− α) pt + α p̃t+1 (smooth)
7 t ← t + 1

3 Return X = (X1, . . . ,Xk ) ∼ f (x ; pt).
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CE for continuous optimization problems

The CE algorithm can be almost immediately applied for continuous optimization
problems.

For binary vectors (X = {0, 1}k ), we used the pmf:

f (x ; pt+1) =
k∏

i=1

p
xi
t+1,i (1− pt+1,i )

1−xi .

In the X = Rk case, one can define (for example),

f (x ;µt+1,σt+1) =
k∏

i=1

1√
2πσ2

i

e
− 1

2

(
x−µi
σi

)2

, (4)

where µ = (µ1, . . . , µk ) and σ = (σ1, . . . , σk ).

Similar to the binary case, one can solve the entropy minimization problem and obtain (for
(4)), the following closed form solution:

µ̃i =

∑N
j=1 1{S(Xj )≤γ̂t}Xj,i∑N
j=1 1{S(Xj )≤γ̂t}

, σ̃2
i =

∑N
j=1 1{S(Xj )≤γ̂t}(Xj,i−µ̃i )∑N

j=1 1{S(Xj )≤γ̂t}
, ∀1 ≤ i ≤ k.

Slava Vaisman (UQ) 25 / 43



CE example

We consider an example from The Cross-Entropy Method for
Continuous Multi-Extremal Optimization, by Dirk P. Kroese, Sergey
Porotsky, and Reuven Y. Rubinstein.

The authors applied the CE method to several continuous
optimization problems including the clustering problem.

A small but illustrative example is as follows:

S(x) = e−(x−2)2
+ 0.8e−(x+2)2

, x ∈ R.
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Complete implementation of the CE method for
continuous optimization

S = inline(’exp(-(x-2).^2) + 0.8*exp(-(x+2).^2)’);

mu = -6;

sigma = 10;

Nel = 10;

N = 100;

eps = 1E-8;

t=0;

while sigma > eps

t = t+1;

x = mu + sigma*randn(N,1);

SX = S(x);

sortSX = sortrows([x SX],2);

Xel = sortSX((N - Nel + 1):N,1);

mu = mean(Xel);

sigma = std(Xel);

fprintf(’%g %6.9f %6.9f %6.9f \n’, t, S(mu),mu, sigma)

end

mu
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CE dynamics

>> contCE

t S(x) \mu \sigma

1 0.218418918 0.765866494 1.762150307

2 0.994523199 2.074107378 0.184167844

3 0.999997222 2.001693158 0.019208654

4 0.999999301 1.999111124 0.001192886

5 1.000000090 1.999981571 0.000130492

6 1.000000090 1.999998597 0.000005735

7 1.000000090 1.999999600 0.000000427

8 1.000000090 1.999999628 0.000000038

9 1.000000090 1.999999641 0.000000003
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CE dynamics

Slava Vaisman (UQ) 29 / 43



Real life example — Minimum Label Spanning Trees

Given a finite undirected graph G = (V ,E , l) with a vertex set V , an
edge set E , and a labeling function l : E → L, where L = {1, . . . , k}
is a finite set of labels, the minimum label(ing) spanning tree (MLST)
problem seeks to find a spanning tree of G which can be constructed
using a minimal number of different labels.

The MLST problem appears in several important practical applications
such as data compression, and communication network design.

For example, the next Figure depicts a communication network with
optical fiber channels (FIB), telephone lines (PHN), and microwave
links (MIC).

In this case, a minimal label spanning tree can be constructed using
only FIB and MIC links.
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Real life example — Minimum Label Spanning Trees
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Figure 2: Panel (a) shows a communication network with optical fiber channels,
telephone lines, and microwave communication links. A regular spanning tree and
a minimum label spanning tree of the network in panel (a) are depicted in panels
(b) and (c), respectively. The spanning tree in panel (b) uses three different
channel types, namely, optical fiber channels, telephone lines, and microwave
links. On the other hand, the minimum label spanning tree in panel (c), uses only
two different channel types, specifically, optical fiber channels and microwave
links.
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Real life example — Minimum Label Spanning Trees

The MLST problem belongs to the NP-hard complexity class. The
latter has necessitated an introduction of several heuristic and
evolutionary methods.

While some of these methods were shown to have rigorous theoretical
performance guarantees, our study indicates that they might fail in
practice. That is, the convergence time of these algorithms can be
prohibitively large.

We noted that the corresponding performance depends on the graph
structure under consideration.

To resolve this problem, we applied the CE method which is both
theoretically sound, and appears to be less sensitive to different types
of graphs.

Our experimental study indicates that CE always manages to obtain
optimal or near-optimal solutions regardless of the network’s
characteristics.
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Real life example — Minimum Label Spanning Trees

To ensure a fair comparison, we examine four different approaches towards the
solution of the MLST problem. In particular, we considered the following
methods: the maximum vertex covering algorithm (MVCA), the (1+1)
Evolutionary Algorithm ((1+1) EA), the Global Simple Evolutionary
Multiobjective Optimizer (GSEMO), and the Genetic algorithm (GA).

We choose these methods for the comparison with the CE algorithm, since
they were shown to both have rigorous performance guarantee, and exhibit a
good practical performance.

Specifically, MVCA has an Hk =
∑k

i=1 i
−1 approximation factor guarantee.

In addition, for the special case of the MLST problem in which each label
appears at most b times, both the (1+1) EA and the GSEMO algorithms
have a 2−1(b + 1) approximation ratio which is achieved in expected
polynomial runtime with respect to |V | and k .

Moreover, GSEMO was shown to have a 2 ln |V |+ 1 approximation factor
guarantee for the general MLST problem.

Finally, the GA algorithm was chosen because it is one of the most popular
global evolutionary optimization methods.
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Minimum Label Spanning Trees — the CE setting

Consider a binary vector x = (X1, . . . ,Xk), where Xi = 1 (for
1 ≤ i ≤ k), stands for the fact that label i participates in the
spanning tree construction, and Xi = 0 otherwise. That is, we can
exploit the binary CE setting.

We define the fitness function S : {0, 1}k → R

S(X ) = (c (X )− 1)× k ln(k) + |X | for k ≥ 3,

where c (X ) is the number of connected components in G ′,
(G ′ = (V ,E ′), E ′ = {e ∈ E | Xl(e) = 1}), ln(k) stands for the natural

logarithm of k , and |X | =
∑k

i=1 Xi is the total number of labels used
in the spanning tree construction.
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MLST — Test-case 1: the binary tree

In order to benchmark the performance of all algorithms, we consider a
binary tree of height 10, namely, the corresponding graph has 1024 vertices
and 1023 edges.

Next, we created 10 MLST problem instances using this tree as follows. For
j ∈ {10, 20, . . . , 100}, define Tj to be a binary tree of height 10, where the
corresponding edge labels were assigned uniformly at random from the
{1, . . . , j} set.

For convenience, we force every label from the {1, . . . , j} set to be selected
at least once. Since all edges are required to be present in the optimal
solution, we conclude that the number of necessary labels in Tj is j .

All algorithms (except of MVCA), were forced to comply with runtime
thresholds of 5 seconds. Each algorithm was executed ten times and for
each run, we used the 12345+i , i = 0, . . . , 9 seed. The results are
summarized in the next slide.

One can observe from the table that the GSEMO algorithm experienced
convergence problems, when the number of used labels increased.
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MLST — Test-case 1: the binary tree

Table 1: Average performance among ten runs of the MVCA, the (1+1) EA, the
GSEMO, the GA, and the CE algorithms when applied to binary trees with
various number of labels. The time-limit for all algorithms (except of the MVCA)
is set to be 5 seconds. For the T60 case (*), GSEMO found the correct solution in
4 out of 10 runs. For T70, T80, T90, and T100, GSEMO failed to converge.

instance MVCA time (sec) (1+1) EA GSEMO GA CE
T10 10 5.15× 10−3 10 10 10 10
T20 20 1.56× 10−2 20 20 20 20
T30 30 2.75× 10−2 30 30 30 30
T40 40 4.98× 10−2 40 40 40 40
T50 50 7.95× 10−2 50 50 50 50
T60 60 8.78× 10−2 60 60∗ 60 60
T70 70 1.20× 10−1 70 - 70 70
T80 80 1.65× 10−1 80 – 80 80
T90 90 2.23× 10−1 90 – 90 90
T100 100 2.71× 10−1 100 – 100 100
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MLST — Test-case 2: the 2D-grid

Here we consider a 32× 32 2D-grid with |V | = 1024 vertices and
|E | = 1984 edges.

In particular, we examine five 32× 32 2D-grid instances where each
instance has a different number of labels. These grids are being
constructed as follows.

First, we define a label density d . Then, for each grid instance, we set
the number of possible labels k to be b |V | × d c, where
d ∈ {0.1, 0.2, 0.3, 0.4, 0.5} and b·c is the ceiling function.

In order to finalize the construction, labels are assigned to grid’s
edges uniformly at random. Each algorithm (except of the MVCA
method), was given a 120 seconds runtime threshold. The Table on
the next slide summarizes the obtained results.

Slava Vaisman (UQ) 37 / 43



MLST — Test-case 2: the 2D-grid

Table 2: Performance of the MVCA, the (1+1) EA, the GSEMO, the GA, and the
CE algorithms when applied to 32× 32 2D-grids with different label densities.
The time-limit for all algorithms (except of the MVCA) is set to be 120 seconds.

label density d MVCA time (sec) (1+1) EA GSEMO GA CE
0.1 63 0.136 64 59 61 59
0.2 109 0.501 116 103 117 106
0.3 146 0.951 166 146 161 144
0.4 186 1.497 210 184 237 177
0.5 219 2.234 260 229 257 216

The Table is instructive in the sense that for this particular network
architecture, (1+1) EA and the GA algorithms introduce the worse
performance. The GSEMO algorithm is almost always better than MVCA
(with the exception of the d = 0.5 case). However, when we consider the
0.1, 0.3, 0.4, and the 0.5 densities, CE delivers superior results. For the 0.2
density, however, GSEMO outperforms the CE algorithm.
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MLST — Test-case 2: the 2D-grid (why CE is worse when
GA for d = 0.2?)

The inferior performance of CE as compared to GSEMO for the 0.2
density case (note that CE and GSEMO achieve the fitness of 106
and 103, respectively), requires a careful discussion.

It turns out that CE performance can be improved by increasing the
sample size N. The reason for this suggestion is straight-forward.

Recall that the CE algorithm estimates the optimal sampling
distribution via the stochastic counterpart.

Clearly, increasing the sample size N will improve the estimation,
since we obtain a better approximation of the expected value

Ef (x ;pt)1{S(X )≤γt} × ln

(
k∏

i=1

pXi
t+1,i (1− pt+1,i )

1−Xi

)
,

as N grows.
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MLST — Test-case 2: the 2D-grid

Next, the CE algorithm is executed on the 0.2 density grid instance
(with k = b1024× 0.2c = 204), using the sample size
N = 20× k = 20× 204 = 4080 (instead of the default
N = 10× 204 = 2040 sample size).

We still impose the 120 seconds runtime threshold.

The CE algorithm manages to discover the best known solution that
uses 102 labels; note that this is an improvement over the GSEMO
algorithm solution that uses 103 labels.

The next slide depicts the dynamic of the CE algorithm for the 0.2
density grid.
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MLST — Test-case 2: the 2D-grid
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Figure 3: CE dynamics of the sample quantile γ̂ and the best observed fitness as a
function of the CE algorithm iteration for the 0.2 density grid with N = 4080
sample size.
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Conclusion

CE is a great global optimizer.

CE is easy to program and apply.

CE can be extended to continuous optimization problems (easily!)

CE can handle noisy optimization problems.

CE was shown to perform very well in many application domains.

If you would like to know more:

Simulation and the Monte Carlo Method, 3rd Edition by Reuven
Y. Rubinstein, Dirk P. Kroese.

Handbook of Monte Carlo Methods by Dirk P. Kroese, Thomas
Taimre, Zdravko I. Botev.

Fast Sequential Monte Carlo Methods for Counting and
Optimization by R.Y. Rubinstein, A. Ridder and R. Vaisman.
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Thank You
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