
Monte-Carlo Algorithms with Splitting:
How to Improve the Classic

Randomized Algorithms

Radislav Vaisman

Faculty of Computer Science, The Open University of Israel

Monte-Carlo Algorithms with Splitting: How to Improve the Classic Randomized Algorithms – p. 1/41

Contents

1. Introduction: Approximate Counting.

2. Motivating Examples and the Product Estimator.

3. The Classic Randomized Algorithms for Counting.

4. The Gibbs Sampler and Randomized Algorithms.

5. The Splitting Method as a Natural Extension of the
Classic Randomized Algorithms.

6. Applications: Integer Programs, the Satisfiability Problem,
Vertex Coloring, etc.

7. Convergence and Numerical Results.

8. Conclusions and futher research.

Monte-Carlo Algorithms with Splitting: How to Improve the Classic Randomized Algorithms – p. 2/41

Counting Hamiltonian Cycles

How many Hamiltonian cycles does this graph have?

Monte-Carlo Algorithms with Splitting: How to Improve the Classic Randomized Algorithms – p. 3/41

Vertex Coloring

Given a graph G = (V,E) with m edges and n vertices, color
the vertices of V with given q colors (say 2 colors), such that
for each edge (i, j) ∈ E, vertices i and j have different colors.

Given q colors, how many different Vertex Coloring this graph
has?

Monte-Carlo Algorithms with Splitting: How to Improve the Classic Randomized Algorithms – p. 4/41

Counting Independent Sets

Consider a graph G = (V,E) with m edges and n vertices. A
node set is called independent if no two nodes are connected
by an edge, that is, if no two nodes are adjacent; see Figure 1
for an illustration of this concept.

Figure 1: The black nodes form an independent

set since they are not adjacent to each other.
Monte-Carlo Algorithms with Splitting: How to Improve the Classic Randomized Algorithms – p. 5/41

General Case: Integer

Constraints

Consider a set containing both equality and inequality
constraints of an integer program, that is

∑n
k=1 aikxk = bi, i = 1, . . . ,m1,

∑n
k=1 ajkxk ≥ bj , j = m1 + 1, . . . ,m1 + m2,

x ≥ 0, xk integer ∀k = 1, . . . , n.

Monte-Carlo Algorithms with Splitting: How to Improve the Classic Randomized Algorithms – p. 6/41

Counting via Monte Carlo

We start with the following basic
Example.
Assume we want to calculate an area of some “irregular"
region X ∗. The Monte-Carlo method suggests inserting the
”irregular" region X ∗ into a nice “regular" one X as per figure
below

X : Set of objects (paths in a
graph, colorings of a graph, etc.)
X ∗ : Subset of special objects
(cycles in a graph, colorings of a
certain type, etc).

Monte-Carlo Algorithms with Splitting: How to Improve the Classic Randomized Algorithms – p. 7/41

Counting via Monte Carlo

To calculate |X ∗| we apply the following sampling procedure:
(i) Generate a random sample X1, . . . ,XN , uniformly

distributed over the “regular” region X .
(ii) Estimate the desired area |X ∗| as

|̂X ∗| = ℓ̂|X |,

where

ℓ̂ =
NX ∗

NX
=

1

N

N∑

k=1

I{Xk∈X ∗},

I{Xk∈X ∗} denotes the indicator of the event {Xk ∈ X ∗} and

{Xk} is a sample from f(x) over X , where f(x) = 1
|X | .

Monte-Carlo Algorithms with Splitting: How to Improve the Classic Randomized Algorithms – p. 8/41

The Randomized Algorithm

Estimating |X ∗| with a known |X0| = |X |.

1. Define a sequence of sets X1, . . . ,Xm and write |X ∗| as

|X ∗| = |X0|

m∏

t=1

|Xt|

|Xt−1|
,

Note that the ratio |X ∗|
|X0|

is very small, like = 10−100, while

each ratio ct = |Xt|
|Xt−1|

is not, like ct = 10−2 or greater and

X0 ⊃ X1 ⊃ · · · ⊃ Xm = X ∗.

2. Develop an efficient estimator for each ct and deliver

|̂X ∗| = |X0|

m∏

t=1

ĉt.

Monte-Carlo Algorithms with Splitting: How to Improve the Classic Randomized Algorithms – p. 9/41

Vertex Coloring

Given a graph G = (V,E) with m edges and n vertices, color
the vertices of V with given q colors, such that for each edge
(i, j) ∈ E, vertices i and j have different colors. Here, as
before, we consider an arbitrary ordering of the edges. Let Ej

be the set of the first j edges and let Gj = (V,Ej) be the

associated sub-graph. Note that Gm = G, and that Gj+1 is

obtained from Gj by adding the edge ej+1. Here |X0| = qn,

since G0 has no edges.

Monte-Carlo Algorithms with Splitting: How to Improve the Classic Randomized Algorithms – p. 10/41

The Rare-Event Approach

It is often more convenient to cast the problem of estimating
|X ∗| into the problem of estimating the rare event probability

ℓ(m) =
|X ∗|

|X |
,

which can be also written as

ℓ(m) = Ef

[
I{S(X)≥m}

]
.

Here S(X) is the sample performance, like the length of a
randomly selected Hamiltonian cycle, X ∼ f(x), f(x) is
typically being uniformly distributed on the set of points of X

and m is as before, a fixed parameter.

Monte-Carlo Algorithms with Splitting: How to Improve the Classic Randomized Algorithms – p. 11/41

The Rare-Event Approach

We estimate ℓ(m) as

ℓ(m) = c0

T∏

t=1

ct,= Ef

[
I{S(X)≥m}

]

where, as before c0 = Ef [I{S(X)≥m0}],

ct = |Xt|/|Xt−1| = Eg∗t−1
[I{S(X)≥mt}].

{mt, t = 0, 1, . . . , T} is a fixed grid satisfying

−∞ < m0 < m1 < . . . mT = m (typically mt = t). Here

g∗
t−1 = U(Xt−1) and Xt = {x : S(x) ≥ mt}.

Monte-Carlo Algorithms with Splitting: How to Improve the Classic Randomized Algorithms – p. 12/41

The Rare-Event Approach

The final estimator of ℓ(m), based on the product of
ct = Eg∗t−1

[I{S(X)≥mt}], t = 0, . . . , T can be written as

ℓ̂(m) =
T∏

t=1

ĉt =
1

NT+1

T∏

t=0

Nt,

where

ĉt =
1

N

N∑

i=1

I{S(Xi)≥mt} =
Nt

N
,

Nt =
∑N

i=1 I{S(Xi)≥mt}, X i ∼ g∗t−1 and g∗−1 = f .
The main trick is to show how to sample uniformly from the IS pdf

g∗(x,mt−1) in the reduced space Xt.

Monte-Carlo Algorithms with Splitting: How to Improve the Classic Randomized Algorithms – p. 13/41

The Splitting Approach

To sample uniformly in the reduced space Xt we shall use a combination

of the Gibbs sampler with classic splitting method. It is based on runing

multiple trajectories in parallel. The algorithm will be called the splitting or

cloning algorithm.

Our splitting algorithm generates an adaptive sequence of non-parametric

tuples

{(m0, f(x,v0)), (m1, g
∗(x,m0)), . . . , (mT , g∗(x,mT−1))}

Monte-Carlo Algorithms with Splitting: How to Improve the Classic Randomized Algorithms – p. 14/41

Typical Dynamics with Two

Iterations

Points denoted as ⋆ are uniformly distributed on the sets X0

and X1.
Points denoted as • are approximately uniformly distributed on
the sets X1 and X2.

Monte-Carlo Algorithms with Splitting: How to Improve the Classic Randomized Algorithms – p. 15/41

General Case: Integer

Constraints

Consider a set containing both equality and inequality
constraints of an integer program, that is

∑n
k=1 aikxk = bi, i = 1, . . . ,m1,

∑n
k=1 ajkxk ≥ bj , j = m1 + 1, . . . ,m1 + m2,

x ≥ 0, xk integer ∀k = 1, . . . , n.

Monte-Carlo Algorithms with Splitting: How to Improve the Classic Randomized Algorithms – p. 16/41

General Case: Integer

Constraints

It can be shown that in order to count the number of points
(feasible solutions) of the above set one can consider the
following associated rare-event probability problem

ℓ(m) = Eu

[
I{

∑m
i=1

Ci(X)≥m}

]
,

where the first m1 terms Ci(X)’s are

Ci(X) = I{
∑n

k=1
aikXk=bi}, i = 1, . . . ,m1,

while the remaining m2 ones are

Ci(X) = I{
∑n

k=1
aikXk≥bi}, i = m1 + 1, . . . ,m1 + m2.

Monte-Carlo Algorithms with Splitting: How to Improve the Classic Randomized Algorithms – p. 17/41

General Case: Integer

Constraints

Thus, in order to count the the number of feasible solution on
the above set we shall consider an associated rare event
probability estimation problem involving a sum of dependent

Bernoulli random variables. Such representation is crucial for a
large set of counting problems.

Monte-Carlo Algorithms with Splitting: How to Improve the Classic Randomized Algorithms – p. 18/41

General Procedure

As mentioned we cast the original counting problem into an
associated rare-events probability estimation problem. The
estimation of

ℓ = P(S(X) ≥ m) = E
[
I{S(X)≥m}

]
.

involves the following iterative steps:

Monte-Carlo Algorithms with Splitting: How to Improve the Classic Randomized Algorithms – p. 19/41

A General Randomized

Algorithm

1 Starting: Start with the proposal pdf f(x), which is uniformly

distributed on the sample space X . Set t := 1.

Monte-Carlo Algorithms with Splitting: How to Improve the Classic Randomized Algorithms – p. 20/41

A General Randomized

Algorithm

1 Starting: Start with the proposal pdf f(x), which is uniformly

distributed on the sample space X . Set t := 1.

2 Update m̂t: Draw X1, . . . ,XN from the uniform pdf

gt = g(x, m̂t) = U(Xt). Find the elite sampling based on m̂t,

which is the worst performance of the ρ× 100% best performances.

Estimate ct as ĉt = Nt/N .

Monte-Carlo Algorithms with Splitting: How to Improve the Classic Randomized Algorithms – p. 20/41

A General Randomized

Algorithm

1 Starting: Start with the proposal pdf f(x), which is uniformly

distributed on the sample space X . Set t := 1.

2 Update m̂t: Draw X1, . . . ,XN from the uniform pdf

gt = g(x, m̂t) = U(Xt). Find the elite sampling based on m̂t,

which is the worst performance of the ρ× 100% best performances.

Estimate ct as ĉt = Nt/N .

3 Split the elite sample and update gt = U(Xt) and Xt: Deliver

gt+1 = U(Xt+1) and Xt+1 and increase t by 1.

Monte-Carlo Algorithms with Splitting: How to Improve the Classic Randomized Algorithms – p. 20/41

A General Randomized

Algorithm

1 Starting: Start with the proposal pdf f(x), which is uniformly

distributed on the sample space X . Set t := 1.

2 Update m̂t: Draw X1, . . . ,XN from the uniform pdf

gt = g(x, m̂t) = U(Xt). Find the elite sampling based on m̂t,

which is the worst performance of the ρ× 100% best performances.

Estimate ct as ĉt = Nt/N .

3 Split the elite sample and update gt = U(Xt) and Xt: Deliver

gt+1 = U(Xt+1) and Xt+1 and increase t by 1.

4 Stopping: If the stopping criterion is met, then stop; otherwise set

t := t + 1 and reiterate from step 2.

Monte-Carlo Algorithms with Splitting: How to Improve the Classic Randomized Algorithms – p. 20/41

The Gibbs Sampler

We need to sample from any pdf g∗(x) or any other pdf

g(x). It is assumed that generating from the conditional

pdfs g(Xi|X1, . . . , Xi−1, Xi+1, . . . , Xn), i = 1, . . . , n is

simple.

In Gibbs sampler for any given vector

X = (X1, . . . , Xn) ∈ X one generates a new vector

X̃ = (X̃1, . . . , X̃n) as:

Algorithm: The Systematic Gibbs Sampler

1. Draw X̃1 from the conditional pdf g(X1|X2, . . . , Xn).

2. Draw X̃i from the conditional pdf

g(Xi|X̃1, . . . , X̃i−1, Xi+1, . . . , Xn), i = 2, . . . , n − 1.

3. Draw X̃n from the conditional pdf g(Xn|X̃1, . . . , X̃n−1).
Monte-Carlo Algorithms with Splitting: How to Improve the Classic Randomized Algorithms – p. 21/41

The Gibbs Sampler: Bernoulli

Example

Consider estimation

ℓ(m) = Ef

[
I{∑n

i=1
Xi≥m}

]
.

The Gibbs sampler for generating variables

Xi, i = 1, . . . , N is

g∗(xi,m|x−i) = ci(m)fi(xi)I{xi≥m−
∑

j 6=i xj},

where |x−i denotes conditioning on all random variables

but excluding the remaining ones and ci(m) is the

normalization constant. Sampling a random variable X̃i

can be performed as follows. Generate Y ∼ Ber (1/2). If

I{Ỹ ≥m−
∑

xj}
, then set X̃i = Y , otherwise set setMonte-Carlo Algorithms with Splitting: How to Improve the Classic Randomized Algorithms – p. 22/41

Algorithm versions

(i) Splitting of the sub-graphs Gj , j = 1, . . . ,m with strictly

fixed topology configurations and with levels
mj , j = 1, . . . ,m strictly fixed in advance.

(ii) Splitting of the sub-graphs Gj , j = 1, . . . ,m with strictly

fixed topology configurations, but with adaptive levels
mj , j = 1, . . . ,m.

(iii) Splitting of the sub-graphs Gj , j = 1, . . . ,m with adaptive

choice of the topology configurations and with levels
mj , j = 1, . . . ,m strictly fixed in advance.

(iv) Splitting of the sub-graphs Gj , j = 1, . . . ,m with both

adaptive choice of the topology configurations and of
levels mj , j = 1, . . . ,m.

We shall call the above four versions Split1, Split2, Split3 and
cloning, respectively. Monte-Carlo Algorithms with Splitting: How to Improve the Classic Randomized Algorithms – p. 23/41

Convergence of Split1

Assume for a moment that similar to RAN we use a long
warm-up periods for each of the N parallel independent
Markov chains in Split1. In this case the convergence
theorems established for RAN (Hayes, Vera and Vigoda,
2007; Mitzenmacher and Upfal, 2005; Motwani and
Raghavan, 1997) automatically hold for Split1. The reason is
that Split1 extends RAN in the sense that in the former case
we independently run in N parallel Markov chains instead of a
single one. Clearly, by taking the best performance from N
parallel simulations one can not do worse than when using a
single one.

Monte-Carlo Algorithms with Splitting: How to Improve the Classic Randomized Algorithms – p. 24/41

Numerical Results - SAT

Performance of splitting Algorithm (clone) for SAT 20 × 80
model.

Run N0 Iterations |X̃ ∗| RE of |X̃ ∗| |X̂ ∗
dir

| RE of |X̂ ∗
dir

| CPU

1 10 14.612 0.026 15 0.000 5.143

2 10 14.376 0.042 15 0.000 5.168

3 10 16.304 0.087 15 0.000 5.154

4 10 19.589 0.306 15 0.000 5.178

5 10 13.253 0.116 15 0.000 5.140

6 10 17.104 0.140 15 0.000 5.137

7 10 14.908 0.006 15 0.000 5.173

8 10 13.853 0.076 15 0.000 5.149

9 10 18.376 0.225 15 0.000 5.135

10 10 12.668 0.155 15 0.000 5.156

Average 10 15.504 0.118 15.000 0.000 5.153Monte-Carlo Algorithms with Splitting: How to Improve the Classic Randomized Algorithms – p. 25/41

Numerical Results - SAT

Comparative studies of Algorithms RAN, Split1, Split 2, Split 3

and cloning Algorithm for the product estimator |X̄ ∗| and the

direct estimator |X̄ ∗|dir on SAT 20 × 80 model.

Algorithm ¯|X ∗| R̄E |X̄ ∗|dir R̄Edir

RAN 95.606 5.470 8.4 0.440

Split1 13.608 0.159 15 0.000

Split2 16.155 0.130 15 0.000

Split3 14.025 0.127 15 0.000

Cloning 15.504 0.118 15 0.000

Monte-Carlo Algorithms with Splitting: How to Improve the Classic Randomized Algorithms – p. 26/41

Numerical Results - more SAT

models

SAT 75 × 325 model was sucessefuly solved by Split3 and
Clone. RAN is always stuck at some intermediate level.
Split1 and Split2 are never stuck, but both are much
slower than splitting Algorithm 3.1. In addition, both are
trapped at some local extremum.

We have solved a very hard instances too.
Example: 3-SAT 122 × 663 having a single solution
althought the running time was long.

Monte-Carlo Algorithms with Splitting: How to Improve the Classic Randomized Algorithms – p. 27/41

Numerical Results - Coloring

We ran the vertex coloring models in the following two
settings:
(i) Condition q ≥ 2∆ + 1 holds.
(ii) The condition is violated, that is, q is any integer number
satisfying q ≥ 2. We found that:

1. The RAN algorithm and its associates Split1 and Split2
still perform satisfactorily, as predicted by Theorem
(Mitcenmacher and Upfal) for case (i), but fail for case (ii),
in particular when q is small.

2. The splitting algorithms Split3 and the Cloning Algorithm
perform nicely irrespective of the value of q. Note that
case (ii), in particular when q is small, is the most
interesting and most difficult, since |X ∗| is very small

relative to |X |, thus ℓ = |X ∗|
|X | is a very low probability.

Monte-Carlo Algorithms with Splitting: How to Improve the Classic Randomized Algorithms – p. 28/41

Numerical Results - Coloring

Performance of cloning Algorithm for 4-coloring problem with
n = 40 nodes.

Run N0 Iterations |X̃ ∗| RE of |X̃ ∗| |X̂ ∗
dir

| RE of |X̂ ∗
dir

| CPU

1 24 1415.62 0.055 1318 0.015 257.168

2 24 1194.38 0.110 1322 0.012 257.098

3 24 1356.09 0.010 1316 0.016 256.942

4 24 1596.61 0.190 1264 0.055 258.255

5 24 1348.93 0.005 1316 0.016 256.568

6 24 1627.90 0.213 1328 0.007 258.743

7 24 1353.55 0.009 1304 0.025 257.663

8 24 1293.32 0.036 1330 0.006 260.002

9 24 1229.90 0.084 1312 0.019 259.695

10 24 1590.67 0.185 1334 0.003 259.309

Average 24 1400.7 0.090 1314 0.018 258.144
Monte-Carlo Algorithms with Splitting: How to Improve the Classic Randomized Algorithms – p. 29/41

Numerical Results - Permanent

To apply the Gibbs sampler for permanent we adopt the
concept of “neighboring” elements, (see, chapter 10 of Ross,
(2002) and chapter 6 of Rubinstein and Kroese, (2007)). In
the latter reference it is called 2-opt heuristics. Given a point
(tour) x of length mt generated by the pdf gt = g(x,mt), the
conditional Gibbs sampling updates the existing tour x to x̃,
where x̃ is generated from g(x̃,mt) and where x̃ is the same
as x with one exception that the points xi and xj in x̃ are

reversed.

Monte-Carlo Algorithms with Splitting: How to Improve the Classic Randomized Algorithms – p. 30/41

Numerical Results - Permanent

Performance of cloning Algorithm for permanent with
A = 30 × 30 matrix.

Run N0 Iterations |X̃ ∗| RE of |X̃ ∗| |X̂ ∗
dir

| RE of |X̂ ∗
dir

| CPU

1 21 261.14 0.018 266 0 115.68

2 21 254.45 0.043 266 0 115.98

3 21 268.04 0.008 266 0 115.65

4 21 272.20 0.023 266 0 117.68

5 21 261.50 0.017 266 0 118.38

6 21 255.03 0.041 266 0 117.10

7 21 261.36 0.017 266 0 116.58

8 21 266.82 0.003 266 0 115.82

9 21 264.76 0.005 266 0 115.84

10 21 254.13 0.045 266 0 116.13

Average 21 261.94 0.022 266 0 116.48
Monte-Carlo Algorithms with Splitting: How to Improve the Classic Randomized Algorithms – p. 31/41

Numerical Results -

Hamiltonian Cycles

We solve the Hamiltonian cycles problem by applying again
the 2-opt heuristic used for the permanent.
Observations:

The set of Hamiltonian cycles of length n presents a
subset of the associated permanent trajectories set.

The latter set is formed from cycles of length ≤ n.

Conclusion: The following simple procedure can be used to
calculate the number of Hamiltonian Cycles.

Monte-Carlo Algorithms with Splitting: How to Improve the Classic Randomized Algorithms – p. 32/41

Numerical Results -

Hamiltonian Cycles

1. Run the cloning Algorithm and calculate the estimator of
|X ∗| of the associated permanent using the product

formula. Denote such permanent estimator by |X̂ ∗
p|.

2. Proceed with one more iteration of cloning Algorithm and
calculate the ratio of the number of screened Hamiltonian
elite cycles (cycles of length n) to the number of the
screened elite samples (samples of length ≤ n) in the
permanent. Denote the ratio as ζ.

3. Deliver |X̂ ∗
H | = ζ|X̂ ∗

p| as the estimator of the number

|X ∗| of Hamiltonian cycles.

Monte-Carlo Algorithms with Splitting: How to Improve the Classic Randomized Algorithms – p. 33/41

Numerical Results -

Hamiltonian Cycles

Performance of cloning Algorithm for Hamiltonian cycle
problem with A = 30 × 30 matrix.

Run N0 Iterations |X̃ ∗| RE of |X̃ ∗| CPU

1 14 2.38E+20 0.046 63.295

2 14 2.36E+20 0.033 62.809

3 14 2.28E+20 0.000 62.791

4 14 2.17E+20 0.049 62.714

5 14 2.35E+20 0.029 62.806

6 14 2.18E+20 0.046 62.951

7 14 2.10E+20 0.078 64.009

8 14 2.35E+20 0.032 62.790

9 14 2.23E+20 0.024 62.816

10 14 2.41E+20 0.057 62.614

Average 14 2.28E+20 0.039 62.959
Monte-Carlo Algorithms with Splitting: How to Improve the Classic Randomized Algorithms – p. 34/41

Numerical Results - Summary

Test case RAN Split1 Split2 Split3 Cloning CMC

3-SAT 20x80 - + + + + NaN

3-SAT 75x325 - - - + + NaN

3-SAT 122x663 - - - + + NaN

3-SAT 20x100 NaN NaN NaN NaN + NaN

Coloring 20x20 + NaN NaN NaN + +

Coloring 40x40 - - - + + -

Permanent 30x30 - - - + + NaN

Hamiltonian 30x30 (1) - - - + + NaN

Hamiltonian 30x30 (2) - - - + + NaN

Hamiltonian 30x30 (3) - - - + + NaN

Polytope 11x10 + + + + + +

Polytope 41x40 + + + + + NaN

Polytope 61x30 + + + + + NaN
Monte-Carlo Algorithms with Splitting: How to Improve the Classic Randomized Algorithms – p. 35/41

Discrete Hit And Run

(1) Initialize X1 ∈ X ∗ and set t = 1.

(2) Generate a bidirectional walk by generating two
independent nearest neighbor random walks in R that
start at Xt and end when they step out of R. One random
walk is called the forward walk and the other is called the
backward walk. The bidirectional walk may have loops but
has finite length with probability 1. The sequence of
points visited by the bidirectional walk is stored in an
ordered list, denoted Lt.

Monte-Carlo Algorithms with Splitting: How to Improve the Classic Randomized Algorithms – p. 36/41

Discrete Hit And Run

(3) Generate a candidate point Y uniformly distributed on the
intersection Mt = X ∗ ∩ Lt.

(4) Set

Xt+1 =

{
Y with probability α(Xt,Y)
Xt otherwise.

(4) If a stopping criterion is met, stop. Otherwise, increment t
and return to Step 2.

Monte-Carlo Algorithms with Splitting: How to Improve the Classic Randomized Algorithms – p. 37/41

Discrete Hit And Run

Figure 2: 2 typical random walks (forward and

backward) from point x .
Monte-Carlo Algorithms with Splitting: How to Improve the Classic Randomized Algorithms – p. 38/41

Performance of Splitting DHR

Algorithm for the SAT 75 × 325

model.

Run N0 Iterations |X̃ ∗| RE of |X̃ ∗| |X̂ ∗
dir

| RE of |X̂ ∗
dir

| CPU

1 26 2.01E+04 8.038 1269 0.430 346.8

2 27 8.81E+01 0.960 972 0.563 318.8

3 26 1.67E+05 74.045 1669 0.250 310.4

4 29 1.27E+01 0.994 560 0.748 324.3

5 26 2.51E+04 10.268 1745 0.216 317.1

6 25 3.34E+06 1500.172 1976 0.112 162.7

7 26 3.25E+05 145.289 1936 0.130 312.8

8 26 5.26E+02 0.764 1177 0.471 315.6

9 26 1.85E+05 81.964 588 0.736 310.5

10 25 3.27E+06 1468.711 1468 0.340 303.1

Average 26.2 7.33E+05 329.121 1336 0.400 302.2

Monte-Carlo Algorithms with Splitting: How to Improve the Classic Randomized Algorithms – p. 39/41

Conclusions

In the sequence RAN → Split1 → Split2 → Split3 →
cloning the statistical properties of the counting
estimators of |X ∗| substantially improve.

For most of our case studies the original RAN algorithm
typically fails, it either does not converge at all [is stuck at
some intermediate level mt, (mt < m)], or is heavily
biased (converges to a local extremum). Exceptions are
convex counting problems, like estimating the volume of a
convex plytope.

As compared to the randomized algorithms, the proposed
splitting algorithms require very little warm-up time when
running the Gibbs sampler from iteration to iteration, since
the underlying Markov chains are already in steady-state
from the beginning.

Monte-Carlo Algorithms with Splitting: How to Improve the Classic Randomized Algorithms – p. 40/41

Further Research

Establish solid mathematical grounding based on the
splitting method.

Find the total sample size and the size of the elites at
each iteration of the splitting Algorithm while estimating
the rare-event probability

ℓ = Ef

[
I{

∑m
i=1

Ci(X)≥m}

]
,

Monte-Carlo Algorithms with Splitting: How to Improve the Classic Randomized Algorithms – p. 41/41

	Contents
	Counting Hamiltonian Cycles
	Vertex Coloring
	 Counting Independent Sets
	General Case: Integer Constraints
	Counting via Monte Carlo
	Counting via Monte Carlo
	The Randomized Algorithm
	Vertex Coloring
	The Rare-Event Approach
	The Rare-Event Approach
	The Rare-Event Approach
	The Splitting Approach
	 Typical Dynamics with Two Iterations
	General Case: Integer Constraints
	General Case: Integer Constraints
	General Case: Integer Constraints
	magenta General Procedure
	magenta A General Randomized Algorithm
	magenta A General Randomized Algorithm
	magenta A General Randomized Algorithm
	magenta A General Randomized Algorithm

	magenta The Gibbs Sampler
	The Gibbs Sampler: Bernoulli Example
	Algorithm versions
	Convergence of Split1
	Numerical Results - SAT
	Numerical Results - SAT
	Numerical Results - more SAT models
	Numerical Results - Coloring
	Numerical Results - Coloring
	Numerical Results - Permanent
	Numerical Results - Permanent
	Numerical Results - Hamiltonian Cycles
	Numerical Results - Hamiltonian Cycles
	Numerical Results - Hamiltonian Cycles
	Numerical Results - Summary
	Discrete Hit And Run
	Discrete Hit And Run
	Discrete Hit And Run
	Performance of Splitting DHR Algorithm for the SAT $75 	imes 325$ model.
	Conclusions
	Further Research

