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Vertex Cover

A vertex cover of a graph is a set of vertices such that each edge of the
graph is incident to at least one vertex of the set.

Figure : Vertex Cover.
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Hardness of vertex cover

Finding minimum vertex cover is NP-hard

Counting all vertex covers - ]P

Counting the number of vertex covers remains hard even when
restricted to planar bipartite graphs of bounded degree or regular
graphs of constant degree
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Counting for hard problems

There is an equivalence between counting and uniform sampling so 2
approaches proved to be useful

MCMC (Permanent and many more...)

(Sequential) Importance Sampling (Karp and Lubby - Counting DNF
satisfying assignments)
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Counting for self reducible problems (1)

Ψ = (x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x2 ∨ x3), xi ∈ {0, 1}
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Counting for self reducible problems (2)
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Let us define
P(Xi = 1|X1, · · ·Xi−1) = ] leaves in right subtree

total ] of leaves

If we know the number of leaves - we can
sample a solution uniformly from the solution
set χ

For example, sampling x = (1, 1, 0) in our tree
will result in

P(X1 = 1) = 3
4

P(X2 = 1|X1 = 1) = 2
3

P(X3 = 0|X1 = 1,X2 = 1) = 1
2

1
|χ| = 3

4 ·
2
3 ·

1
2 = 1

4 ⇒ |χ| = 4

Conclusion: It will be enough to sample any
solution and get an exact cardinality of χ. We
can look at this as zero variance importance
sampling.

Slava Vaisman Faculty of Industrial Engineering and Management Technion, Israel Institute of Technology Haifa, IsraelSequential Monte Carlo Method for counting vertex covers May 18, 2013 7 / 28



Counting for self reducible problems (3)
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Problem - we do not know the number of
leaves. That is exactly what we are trying to
find.

Good news - we do not need to know the
number of leaves exactly, even a clue can be
very helpful

Next, we will try to obtain some reasonable
approximation to this number. We will use a
relaxed domain to achieve this goal.
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Vertex Cover Relaxation (1)

Given a graph G = G (V ,E ), |V | = n, |E | = m

Introduce some vertex ordering {v1, v2, · · · vn} and denote by
di = {j |(vi , vj) ∈ E , j > i} a neighbors set of vi such that each
neighbor vj satisfies j > i .

Definition

A probability vector induced by G is given by

P = {p1, · · · , pn} = { |d1|
n − 1

,
|d2|

n − 2
, · · · |dn−1|

1
, 0} (1)
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Vertex Cover Relaxation (2)
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P = {2
3 ,

2
2 ,

1
1 , 0}.

It will be more convenient to talk about the complement probability, in other
words, the probability that the edge is not present in G ′. Formally, this
complement probability can be written as

Q = {q1, · · · , qn} = 1− P = {1− |d1|
n − 1

, 1− |d2|
n − 2

, · · · 1− |dn−1|
1

, 1}

In this case

Q = { 1
3 , 0, 0, 1}.
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Vertex Cover Relaxation (3)

Consider now a probability space ΩG of all random graphs
G ′ = G ′(V ′,E ′) where the set of vertexes remains the same as in G
i.e V ′ = V but each edge (vi , vj) i < j is present with probability

pi = |di |
n−i .

Having in mind that P(G ′ ∈ ΩG ) is well defined by probability vector
P (or Q) we can write the expected number of vertex covers under
ΩG as

EΩG
[|XG ′ |] =

∑
G ′∈ΩG

P(G ′)|XG ′ |

We will use EΩG
[|XG ′ |] as an approximation to number of leaves in

the subtree
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Vertex Cover Relaxation example

As an example consider an ΩG space induced by the previous graph and it’s corresponding probability vector p = { 2
3
, 2

2
, 1

1
, 0}.

All graphs are summarized in the following figure.
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It is easy to see that graph (a) is generated with probability ( 1
3

)3, (b), (c), (d) with probability 2
3

( 1
3

)2 (e), (f ), (g) with

probability 1
3

( 2
3

)2 and (h) with probability ( 2
3

)3. The corresponding number of vertex covers for graphs (a), (b), · · · , (h) is
8, 7, 7, 7, 6, 6, 6, 5 so we can compute the expected number of vertex covers that is equal in this case to
EΩG
|XG′ | = ( 1

3
)38 + 3 2

3
( 1

3
)27 + 3 1

3
( 2

3
)26 + ( 2

3
)35 = 6.
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Calculating EΩG
[|XG ′|] (1)

Theorem

There exists a deterministic polynomial time Algorithm that calculates
EΩG

[|XG ′ |] analytically.

Let A(n, k) be a probability that exactly n− k vertexes forms a vertex
cover in random graph G ′ ∈ ΩG .

EΩG
[|XG ′ |] =

n∑
k=0

(
n

k

)
A(n, k) (2)
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Calculating EΩG
[|XG ′|] (2)

Let us look now on some ordered subset
S = {vk,1, · · · , vk,k |vk,i ∈ V } such that vk,1 < vk,2, · · · < vk,k and
|S | = k of vertexes that were not chosen to form a vertex cover.

They are not allowed to have an edge, if they do, this is not a vertex
cover

A(n, k) =

∑
S⊆V ,|S |=k

∏k−1
i=1 qk−i

k,i(n
k

)
where qk,i is the corresponding propagability of vk,i in the induced
vector Q.
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Calculating EΩG
[|XG ′|] (3)

Suppose Q = {q1, · · · , qn}
Define A(j , k) to be a probability that there is a vertex cover of size
j − k on the random subgraph G ′j (V ′j ,E

′
j ), V ′j = {vn−j+1, · · · , vn} and

E ′j = {(vl , vm)|vl , vm ∈ V ′j } for j 6 n

Now we add new vertex vn−j and try to calculate A(j + 1, k).

If we do use this vertex in the cover - the number of covers (of size
j + 1− k) in the new subgraph remains

(
j
k

)
A(j , k)

If we do not use this vertex in the cover - the number of covers (of
size j + 1− k) the new subgraph is qk−1

n−j · A(j , k − 1)

And the following recursive program can be defined:

A(j + 1, k) =

0 k > j + 1
( j
k)A(j ,k)+qk−1

n−j ( j
k−1)A(j ,k−1)

(j+1
k )

else
(3)

The starting condition are A(0, 0) = 1, A(0, k) = 0 ∀k > 0.
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Calculating EΩG
[|XG ′|] (4)

The Algorithm for calculating EΩG
[|XG ′ |] can be summarized as follows.

Data: G = G (V ,E ), |V | = n , |E | = m
Result: EΩG

[|XG ′ |]
1 begin
2 Q ←− calculate the probability vector induced by G
3 ∀k ∈ {0, · · · , n} Calculate A(n, k) using the recursive formula
4 return EΩG

[|XG ′ |] =
∑n

k=0

(n
k

)
A(n, k)

5 end

The overall complexity of the algorithm is O(n2).
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Exact vertex cover computation (1)

There are some instances for which we can calculate the number of vertex covers exactly

Consider a Star Graph
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If the central vertex participate in the cover, then there is 2|V |−1 such covers.

If it is not in the cover, then all the remaining vertices should be there.

The overall number of vertex covers is 2|V |−1 + 1

If we take the ordered set to be {v1, v2, v3, v4, v5, v6, v7} the induced probability vector will be

Q = {0, 1, 1, 1, 1, 1, 1} the dynamic programming will always return 27−1 + 1
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Exact vertex cover computation (2)

Lemma

Given that an instance G = G (V ,E ) induce a probability vector
Q = {q1, · · · , qn} where each qi satisfies qi ∈ {0, 1}, the Dynamic
Programming Algorithm provides the exact answer to the number of
vertex covers, i.e |XG | = EΩG

[|XG ′ |].

Proof.

Notice that there is only one graph in ΩG when G induce a vector Q
where qi ∈ {0, 1}, this follows immediately from the construction process
of random graph under this particular ΩG . In other words, we have that
∀G ′(V ,E ′) ∈ ΩG , G ′(V ,E ′) = G (V ,E ) so |XG | = EΩG

[|XG ′ |]. 2
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Sequential Procedure

We will sample some valid vertex cover in a sequential manner

Set z ←− 1

Start from v1 and define 2 subgraphs G+v1
and G−v1
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Set p =

EΩG+v1

[|X
G′+v1

|]

EΩG+v1

[|X
G′+v1

|]+EΩG−v1

[|X
G′−v1

|]

With probability p and 1− p select the right or left subtree respectively.

Multiply Z by p or 1− p according to the selection

Continue to to sample until reaching some leaf

Deliver 1
Z
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SIS Algorithm for counting

Algorithm 1: SIS Algorithm for counting

Data: G = G (V ,E ), |V | = n , |E | = m and a sample size N

Result: the estimation for number of vertex covers |̂XG |
1 begin
2 Z ←− 0
3 for i = 1→ N do
4 Z ←− Z + Sequential Procedure
5 end

6 return Z
N

7 end
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Probabilistic lower bound

Gomes and Gogate et al.

Theorem

Let Ẑ1, · · · , Ẑm be the unbiased estimates of Z computed over m
independent runs of an importance sampling algorithm. Let 0 < α < 1 be
a constant and let β = 1

(1−α)
1
m

. Then, the lower bound Zlb = 1
βminm

i=1(Ẑi )

is a lower bound on Z with probability greater than α.
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Model 1

Model 1 A graph with |V | = 100 and |E | = 2, 432. The graph was generated in the following way. We defined the number of
vertexes to be 100 and each edge (vi , vj ) was generated with probability Ber(p) while p is also a random variable such that
p ∼ Uni(0, 1).

cachet delivers an exact solution of 244, 941 in 0.75 seconds.

We ran SampleSearch for 10 times and it provides an average of 192, 251.25 using 60 seconds time limit.

The SIS Algorithm (N = 100) delivered 2.440× 105 in 1.698 seconds. The RE is 1.614× 10−2

The following figure provides a typical Histogram of the Importance Weights obtained in a single run of SIS Algorithm.
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Figure : Histogram of 1,000 Importance Weights for Model 1.
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Model 2

A graph with |V | = 300 and |E | = 21, 094. The graph was generated in the following way. We defined the number of vertexes
to be 300 and each edge (vi , vj ) was generated with probability Ber(pi ) while pi is also a random variable such that
p ∼ Uni(0, 1). The results are self explanatory.

cachet delivers an exact solution of 1.306× 1014 in about 17 minutes.

We ran SampleSearch for 10 times and it provides an average of
6.001× 1013 using 1, 200 seconds time limit.

The SIS Algorithm (N = 100) delivered 1.387× 1014 in 56.64 seconds. The RE is 4.171× 10−2

The following figure provides a typical Histogram of the Importance Weights obtained in a single run of SIS Algorithm.
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Figure : Histogram of 1,000 Importance Weights for Model 2.
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Model 3

A graph with |V | = 1, 000 and |E | = 64, 251. The graph was generated in the following way. We defined the number of
vertexes to be 1,000 and each edge (vi , vj ) was generated from Ber(p) while each p is generated from truncated Normal
distribution with µ = 0.1 and σ = 0.1 The results are summarized bellow.

cachet was timed out after 2 days and was unable to deliver a solution. The lower bound of 3.439E + 09 was supplied.

SampleSearch failed to initialize, probably, because the problem is too big.

The SIS Algorithm (N = 100) delivered 4.261× 1032 in 648.6 seconds. The RE is 4.813× 10−2

The following figure provides a typical Histogram of the Importance Weights obtained in a single run of SIS Algorithm.
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Figure : Histogram of 1,000 Importance Weights for Model 3.
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Model 4

A graph with |V | = 1, 000 and |E | = 249, 870. The graph was generated in the following way. We defined the number of
vertexes to be 1,000 and each edge (vi , vj ) was generated from Ber(p) while each p is generated from truncated Normal
distribution with µ = 0.5 and σ = 0.3 The results are summarized bellow.

cachet was timed out after 2 days and was unable to deliver a solution. The lower bound of 9.601E + 10 was supplied.

SampleSearch failed to initialize, probably, because the problem is too big.

The SIS Algorithm (N = 100) delivered 2.773× 1011 in 1,718 seconds. The RE is 1.579× 10−2

The following figure provides a typical Histogram of the Importance Weights obtained in a single run of SIS Algorithm.
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Figure : Histogram of 1,000 Importance Weights for Model 4.
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Probabilistic lower bounds for the models

For all models we took α = 0.99 and m ∈ {1, · · · , 100}. The results are
summarized in the following figure.
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Non random model - Hypercubes H4,H5,H6 and H7

cachet delivers 743 254,475 and 1.976× 1010, but fails for H7

We would like to keeping the RE below 3% so we take the sample
sizes to be 50, 250, 1, 500 and 10, 000

Table : Average performance of 10 runs of the SIS algorithm for Hypercube
graphs.

Instance |̂XG | R̂E CPU

H4 745.9 2.87× 10−2 0.008

H5 2.550× 105 2.86× 10−2 0.157

H6 1.983× 1010 2.67× 10−2 4.841

H7 7.819× 1019 2.89× 10−2 199.8
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What next?

Prove the efficiency of this estimator for some class of graphs.

Thank You!
Questions please
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