A contribution review
In Memoriam of Professor Reuven Rubinstein

Slava Vaisman
Faculty of Industrial Engineering and Management
Technion, Israel Institute of Technology
Haifa, Israel

May 18, 2013
1 About Reuven

2 Score Function

3 Cross-Entropy Method

4 Splitting Method for Counting and Optimization

5 Stochastic Enumeration
About Reuven

- 1973 - joined the Faculty of Industrial Engineering and Management of the Technion, Israel Institute of Technology.
- 1992 - Full Professor position.
- More than a hundred published papers in scientific journals.
Books

In Russian

In English

To Appear

- Rubinstein, R.Y. and Kroese D. P. Simulation and the Monte Carlo Methods: 3rd Edition
Research interests

- Computer Simulation
- Sensitivity Analysis
- Stochastic systems in a real-world applications
- Stochastic Optimization
- Probability of Rare Events
- Evolutionary Heuristic
Main Results

- The Score Function Method
- Cross-Entropy Method
- The Splitting Method
- Stochastic Enumeration Algorithm
Main results - Score Function Method

- How the change of interatrial, service rates or a buffer size will affect the performance in a queue?
- Consider

\[\ell(u) = \mathbb{E}_u[H(X)] \]

(1)

where the distribution of the sample performance \(H(X) \) depends on the control or reference parameter \(u \in \mathcal{V} \).

- Sensitivity analysis is concerned with evaluating sensitivities (gradients, Hessians, etc.) of the response function \(\ell(u) \) with respect to parameter vector \(u \). Sensitivity analysis provides guidance for design and operational decisions and plays an important role in selecting system parameters that optimize certain performance measures.
The cross-entropy (CE) method is a powerful technique for solving difficult estimation and optimization problems, based on Kullback-Leibler (or cross-entropy) minimization. It was pioneered by Rubinstein in 1999 as an adaptive importance sampling procedure for the estimation of rare-event probabilities. It was also shown that many optimization problems can be translated into a rare-event estimation problem.
Applications

- Combinatorial Optimization (e.g., Travelling Salesman, Maximal Cut and Quadratic Assignment Problems)
- Noisy Optimization (e.g., Buffer Allocation, Financial Engineering)
- Multi-Extremal Continuous Optimization
- Pattern Recognition, Clustering and Image Analysis
- Production Lines and Project Management
- Network Reliability Estimation
- Vehicle Routing and Scheduling
- DNA Sequence Alignment
To date very little is known about how to construct efficient algorithms for hard counting problems (rare events)

First approach - Importance Sampling (CE)

Second approach - MCMC (Splitting)
The basic procedure for counting

1. Formulate the counting problem as estimating of the cardinality $|\mathcal{X}^*|$ of some set \mathcal{X}^*.

2. Find a sequence of decreasing sets $\mathcal{X} = \mathcal{X}_0, \mathcal{X}_1, \ldots, \mathcal{X}_m$ such that

$$\mathcal{X}_0 \supset \mathcal{X}_1 \supset \cdots \supset \mathcal{X}_m = \mathcal{X}^*$$

and $|\mathcal{X}| = |\mathcal{X}_0|$ is known.

3. Write $|\mathcal{X}^*| = |\mathcal{X}_m|$ as

$$|\mathcal{X}^*| = |\mathcal{X}_0| \prod_{t=1}^{m} \frac{|\mathcal{X}_t|}{|\mathcal{X}_{t-1}|} = \ell |\mathcal{X}_0|,$$

where

$$\ell = \prod_{t=1}^{m} \frac{|\mathcal{X}_t|}{|\mathcal{X}_{t-1}|}.$$

Note that ℓ is typically very small, like $\ell = 10^{-100}$, while each ratio

$$c_t = \frac{|\mathcal{X}_t|}{|\mathcal{X}_{t-1}|}$$

should be not too small, like $c_t = 10^{-2}$ or bigger. Clearly, estimating ℓ directly while sampling in $|\mathcal{X}_0|$ is meaningless, but estimating each c_t separately seems to be a good alternative.

4. Develop an efficient estimator \hat{c}_t for each c_t and estimate $|\mathcal{X}^*|$ by

$$|\mathcal{X}^*| = \hat{\ell} |\mathcal{X}_0| = |\mathcal{X}_0| \prod_{t=1}^{m} \hat{c}_t,$$

where $\hat{\ell} = |\mathcal{X}_0| \prod_{t=1}^{m} \hat{c}_t$.
In order to deliver a meaningful estimator of $|X^*|$, we have to solve the following two major problems:

1. Construct the sequence $X_0 \supset X_1 \supset \cdots \supset X_m = X^*$ such that each c_t is not a rare-event probability.
2. Obtain a low variance unbiased estimator \hat{c}_t of each $c_t = |X_t|/|X_{t-1}|$.
Consider the counting problem with T subsets, that is

$$|\mathcal{X}^*| = |\mathcal{X}| \prod_{t=1}^{T} \frac{|\mathcal{X}_t|}{|\mathcal{X}_{t-1}|} = \ell |\mathcal{X}|,$$

where $\ell = \prod_{t=1}^{T} |\mathcal{X}_t|/|\mathcal{X}_{t-1}|$. We assume that the subsets \mathcal{X}_t are associated with levels m_t and can be written as

$$\mathcal{X}_t = \{ x \in \mathcal{X} : S(x) \geq m_t \} \quad t = 1, \ldots, T,$$

where $S : \mathcal{X} \to \mathbb{R}$ is the sample performance function and $m_1 \leq m_2 \leq \cdots \leq m_T = m$.
Figure: Iteration 1 of the splitting algorithm.
Algorithm (Fixed Level Splitting Algorithm for Counting)

1. **Acceptance-Rejection.** Set a counter \(t = 1 \). Generate a sample \([X]_0 = \{X_1, \ldots, X_{N_0}\} \) uniformly on \(\mathcal{X}_0 \). Let \([X]_1^{(e)} \) be the subset consisting of the samples for which \(S(X_i) \geq m_1 \). Suppose that \(N_1^{(e)} \) is the size of this subset, and denote these samples by \(\tilde{X}_i \); thus \([X]_1^{(e)} = \{\tilde{X}_1, \ldots, \tilde{X}_{N_1^{(e)}}\} \). We simply say that this subset is the elite sample of the points with \(S(X_i) \geq m_1 \). Take \(\hat{c}_1 = \frac{1}{N_0} \sum_{i=1}^{N_0} I\{S(X_i) \geq m_1\} = \frac{N_1^{(e)}}{N_0} \) as an unbiased estimator of \(c_1 \). Note that \(\tilde{X}_1, \ldots, \tilde{X}_{N_1^{(e)}} \sim U(\mathcal{X}_1) \).

2. **Splitting.** Reproduce (clone) \(\eta_t \) times each sample point \(\tilde{X}_i \), \(i = 1, \ldots, N_t^{(e)} \) of the elite sample, that is take \(\eta_t \) identical copies of each point. Set \(N_t = \eta_t N_t^{(e)} \).

3. **Mutation** To each of the cloned points apply the uniform mutation mapping \(\Phi_t \). Denote the new sample by \([X]_t = \{X_1, \ldots, X_{N_t}\} \). Note that each point in the sample is distributed uniformly on \(\mathcal{X}_t \).

4. **Selecting elites.** Determine the elite sample, i.e., the \(N_{t+1}^{(e)} \) points for which \(S(X_i) \geq m_{t+1} \). Denote the elite points by \(\{\tilde{X}_1, \ldots, \tilde{X}_{N_{t+1}^{(e)}}\} \).

5. **Estimating** \(c_{t+1} \). Take \(\hat{c}_{t+1} = \frac{1}{N_t} \sum_{i=1}^{N_t} I\{S(X_i) \geq m_{t+1}\} = \frac{N_{t+1}^{(e)}}{N_t} \) as an estimator of \(c_{t+1} \).

6. **Stopping rule and estimation.** If \(m_{t+1} = m \) stop and deliver the estimators otherwise, increase the counter to \(t = t + 1 \), and repeat from step 2.
Consider a 3-SAT problem consisting of $n = 20$ literals and $m = 80$ clauses $A = (20 \times 80)$ and $|\mathcal{X}^*| = 15$. We applied the Chi-square test for uniformity of $N = 5000$ for the following cases.

- $\varrho = 0.05$ and no additional iterations ($k = 0$);
- $\varrho = 0.5$ and no additional iterations ($k = 0$);
- $\varrho = 0.5$ and one additional iteration ($k = 1$).

All three experiments passed the Chi-square test at level $\alpha = 0.05$: the observed test values were 13.709, 9.016, and 8.434, respectively, against critical value $\chi^2_{14,0.95} = 23.685$. The corresponding histograms are shown in the following Figure.

Figure: Histograms of 5000 samples for the 3-SAT problem.
Sequential importance sampling (SIS) is simply importance sampling carried out in a sequential manner. To explain, consider the expected performance

\[\ell = \mathbb{E}_f[S(\mathbf{X})] = \int S(\mathbf{x}) f(\mathbf{x}) \, d\mathbf{x}, \quad (7) \]

where \(H \) is the sample performance and \(f \) is the probability density of \(\mathbf{X} \). Let \(g \) be another probability density such that \(H f \) is dominated by \(g \). That is, \(g(\mathbf{x}) = 0 \Rightarrow S(\mathbf{x}) f(\mathbf{x}) = 0 \). Using the density \(g \) we can represent \(\ell \) as

\[\ell = \int S(\mathbf{x}) \frac{f(\mathbf{x})}{g(\mathbf{x})} \, g(\mathbf{x}) \, d\mathbf{x} = \mathbb{E}_g \left[S(\mathbf{X}) \frac{f(\mathbf{X})}{g(\mathbf{X})} \right], \quad (8) \]

Such a density is called the importance sampling density.
Suppose that (a) \(\mathbf{X} \) is decomposable, that is, it can be written as a vector \(\mathbf{X} = (X_1, \ldots, X_n) \), where each of the \(X_i \) may be multi-dimensional, and (b) it is easy to sample from \(g(\mathbf{x}) \) sequentially. Specifically, suppose that \(g(\mathbf{x}) \) is of the form

\[
g(\mathbf{x}) = g_1(x_1) g_2(x_2 | x_1) \cdots g_n(x_n | x_1, \ldots, x_{n-1}).
\]

(9)

To further simplify the notation, we abbreviate \((x_1, \ldots, x_t) \) to \(\mathbf{x}_{1:t} \) for all \(t \). In particular, \(\mathbf{x}_{1:n} = \mathbf{x} \).
Self-Avoiding Walk of Length $n = 130$
One-Step-Look-Ahead (OSLA) Procedure

OSLA is the state of the art procedure due to Rosenbluth and Rosenbluth (1959).

1. Start from $X_0 = (0, 0)$. Let d_t be the number of neighbors of X_{t-1} that have not yet been visited. If $d_t > 0$, choose X_t with probability $1/d_t$ from its neighbors. If $d_t = 0$ stop generating the path.

2. Stop if $t = n$. Otherwise increase t by 1 and go to step 2.

Note that the procedure either generates a SAW \mathbf{x} of fixed length n or the path gets value zero. The product rule pdf $g(\mathbf{x})$ is

$$g(\mathbf{x}) = \frac{1}{d_1} \frac{1}{d_2} \cdots \frac{1}{d_n} = \frac{1}{w(\mathbf{x})}, \; (w(\mathbf{x}) = d_1 \ldots d_n). \quad (10)$$
OSLA Algorithm for SAW

1. Generate independently M paths X_1, \ldots, X_M via the OSLA procedure.

2. For each SAW X_k compute the corresponding $w(X_k)$ as above. For the other parts (which do not reach the value n) set $w(X_k) = 0$.

3. Return

$$|\hat{X}^*| = \frac{1}{M} \sum_{i=k}^{M} w(X_k).$$ \hspace{1cm} (11)
The drawback of OSLA is that it looses most of its trajectories even for moderate n, say $n = 100$. Figure below present a SAW trapped after 15 iterations.
We next extend OSLA to \(k \)-step-look ahead and in particular to \(n \)-step-look ahead, called \(n \)SLA. Here \(n \) denotes the size of the problem, such as the number of variables (literals) in SAT and the number of edges in a network. We assume that all \(n \) variables \(x_1, \ldots, x_n \) are binary, that is \(x \in \{0, 1\} \).

The \(n \)-SLA (based an oracle) is very similar to OSLA. Its major advantage versus OSLA: it never looses a trajectory.
Our main strategy (slogan) is as follows:
Use fast polynomial decision making oracles to solve \#P-sharp problems.
In particular we use
- BFS algorithm for solving a shortest path problem.
- Hungarian method for solving an assignment problem in polynomial time.
- DPLL decision making algorithm for counting the number of valid assignments in 2-SAT.
As mentioned the major advantage of nSLA versus OSLA - it never looses trajectories. Its main drawback is that the generated trajectories are not uniformly distributed. As results its estimators are heavily biased. To overcome this difficulty we modify nSLA as:
Instead of a single trajectory we ran in parallel multiple ones. This will improve dramatically the non-uniformity issue.
To see how SE improves \(n \)SLA consider a 2-SAT model with clauses \(C_1 \land C_2 \land \ldots \land C_n \), where \(C_i = x_i \lor \overline{x}_{i+1} \geq 1 \). Figure below presents a graph with \(n = 4 \) variables and \(|X^*| = 5 \).

It can be shown that \(E[|X^*|^2] = 2|X^*| + 2|X^*|^{-1} - 2 \).
The table below corresponds to the above figure for \(n = 99 \) and \(| \mathcal{X}^* | = 100 \). It shows how bad SE works for \(N^{(e)} = 1 \), (which is \(nSLA \)) and how SE improves for \(N^{(e)} > 1 \). Here \(N^{(e)} \) denotes the number of multiple trajectories and RE-relative error.

| \((N^{(e)}, M)\) | \(| \tilde{\mathcal{X}}^* | \) | RE |
|------------------|-----------------|-----|
| \((N^{(e)} = 1, M = 500)\) | 11.110 | 0.296 |
| \((N^{(e)} = 10, M = 50)\) | 69.854 | 0.175 |
| \((N^{(e)} = 50, M = 10)\) | 100.11 | 0.032 |
Comparison of the efficiencies of SE and standard splitting. It follows that SE is about 50 times faster than splitting.

<table>
<thead>
<tr>
<th>Instance</th>
<th>Time</th>
<th>SE</th>
<th>SE RE</th>
<th>Split</th>
<th>Split RE</th>
</tr>
</thead>
<tbody>
<tr>
<td>20x80</td>
<td>1 sec</td>
<td>15.0158</td>
<td>5.51E-03</td>
<td>14.97</td>
<td>3.96E-02</td>
</tr>
<tr>
<td>75x325</td>
<td>137 sec</td>
<td>2248.8</td>
<td>9.31E-03</td>
<td>2264.3</td>
<td>6.55E-02</td>
</tr>
<tr>
<td>75x270</td>
<td>122 sec</td>
<td>1.34E+06</td>
<td>1.49E-02</td>
<td>1.37E+06</td>
<td>3.68E-02</td>
</tr>
<tr>
<td>300x1080</td>
<td>1600 sec</td>
<td>3.32E+24</td>
<td>3.17E-02</td>
<td>3.27E+24</td>
<td>2.39E-01</td>
</tr>
</tbody>
</table>
Additional problems

- Permanent
- Shortest paths
- Vertex covers
Thank You!
Questions please