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My research

My research lies in the field of applied probability, stochastic
simulation and machine learning.

I Advanced Monte Carlo methods for rare event estimation.

I Combinatorial optimization and counting.

I Network reliability.

I Applied Probability.

I Machine learning and data science.

I Design analysis and implementation of algorithms.

I Evolutionary computation.

I Markov Decision Processes and planning under uncertainty.

Regardless if the application domain, my work is mostly
concerned with the rare-event setting.
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Calculate the blue area

(0,0) (1,0)

(1,1)(0,1)

u

v



4/89

The Monte Carlo Method
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Estimator for the blue area
The blue area is approximately equal to # of green points

# of green and black points
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Rare events
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I The problem is the high variance of the estimator.

I Most of my research is about finding smarter estimators that
avoid the above rare-event setting.
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Introduction
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Network Reliability
I Given a graph G = G (V ,E ), a Terminal node set T ⊆ V and

an edge failure probability qe ∀e ∈ E , find the probability
that the terminal set is connected.

I Many problem’s variants are possible.
I In general, the problem belongs to the #P complexity class.

s t
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Network reliability with Crude Monte Carlo

We consider a special case of the terminal network reliability
problem in which the nodes are completely reliable and all edge
failure probabilities are equal; that is, qe = q for all e ∈ E .
Additionally, we assume that the edge failures are independent.

I Generate N independent realizations of G where each edge is
up with probability 1− q.

I Set Xi = 0 if the i-th G is s − t connected and Xi = 1
otherwise.

I The network unreliability is equal to E[X ], that is, it can be
estimated by

1

N

N∑

i=1

Xi .

Suppose that q � 1, that is, the network is highly reliable. In
this case we encounter the rare-event setting.
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Network’ signature

1. Let e1, e2, . . . , em be the network edges. Suppose that all of
them are initially operational and thus the network is in the
UP state.

2. Let π = (ei1 , . . . , eim) be a permutation of edges.

3. Given the permutation π, start “erasing” edges (change the
edges state from up to down) moving through the
permutation from left to right and check the UP/DOWN
state of the network after each step.

4. Find the index j of the first edge eij , j = 1, . . . ,m for which
the network switches from UP to DOWN. This index j is
called the anchor of π and is denoted by a(π).

Next, we assign the uniform distribution on the set of all edge
permutations, that is, P (Π = π) = 1/m!, and define the set

A(k) = {π | a(π) = k} .
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Network’ signature — the Spectra

Definition (Destruction Spectra)

Let Π be a random permutation and define

fk = P (Π ∈ A(k)) =
|A(k)|
m!

, k = 0, . . . ,m.

Then,
Sp = {f0, f1, . . . , fm}

is called the Destruction Spectra, or simply D–Spectra of the
network.

Definition (Cumulative D–Spectra)

The cumulative D–Spectra is defined by

CSp = {F (0),F (1), . . . ,F (m)} ,

where F (k) =
∑k

i=0 fi , k = 0, . . . ,m.
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The Spectra

I The nice feature of the D–Spectra is that once CSp is
available one can calculate directly the sought network
unreliability r (q).

I Let us define a failure set to be an ordered set of edges such
that their failure forces the network to enter the DOWN state
and denote by N(k)the number of network failure sets of
size k.

I Note that each such set is a collection of k edges whose
failure results in the DOWN state of the network.

It is readily seen that

N (k) =

(
m

k

)
F (k). (1)

This statement has a simple combinatorial explanation: F (k) is the
fraction of all failure sets of size k among all subsets of size k
taken from the set of m components.
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Network reliability calculation with Spectra
Moreover, note that the following holds.

I The network is DOWN if and only if it is in one of its failure
sets.

I For fixed q each failure set of size k has the probability
qk(1− q)m−k .

Combining this with (1) we obtain

r (q) =
m∑

k=0

(
m

k

)
F (k)qk(1− q)m−k

=
m∑

k=0

N (k)qk(1− q)m−k .

With this equation, it only remains to calculate the D–Spectra
in order to calculate the network reliability for any q.
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Network reliability calculation with Spectra example

As an example, consider the simple graph in the Figure and
suppose that K = {s, t}.
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I It is clear that zero or one edge removal cannot bring the
network to the DOWN state so f0 = f1 = 0.

I In order to calculate f2, f3 and f4, consider the following Table.
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Network reliability calculation with Spectra example

Table: Permutation–anchor.

π a(π) π a(π) π a(π)

(e1, e2, e3, e4) 2 (e2, e3, e4, e1) 2 (e3, e4, e2, e1) 2

(e1, e2, e4, e3) 2 (e2, e3, e1, e4) 2 (e3, e4, e1, e2) 2

(e1, e3, e2, e4) 3 (e2, e4, e3, e1) 3 (e4, e1, e2, e3) 2

(e1, e3, e4, e2) 3 (e2, e4, e1, e3) 3 (e4, e1, e3, e2) 2

(e1, e4, e2, e3) 2 (e3, e1, e2, e4) 3 (e4, e2, e3, e1) 3

(e1, e4, e3, e2) 2 (e3, e1, e4, e2) 3 (e4, e2, e1, e3) 3

(e2, e1, e4, e3) 2 (e3, e2, e4, e1) 2 (e4, e3, e2, e1) 2

(e2, e1, e3, e4) 2 (e3, e2, e1, e4) 2 (e4, e3, e1, e2) 2

�
�
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�
�

�
�

�
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Network reliability calculation with Spectra example

From the data presented in the Table, the D–Spectra is given by

f0 = f1 = 0, f2 = 16/24, f3 = 8/24 and f4 = 0,

so we arrive at

Sp = {0, 0, 2/3, 1/3, 0} and CSp = {0, 0, 2/3, 1, 1}.

As soon as we obtain this Spectra the network unreliability can be
readily calculated for any q via

r (q) =
m∑

k=0

(
m

k

)
F (k)qk(1− q)m−k =

m∑

k=0

N (k)qk(1− q)m−k .

Note that the spectra does not depend on q. That is.
calculate the Spectra once, and get the unreliability for any q!
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The construction Spectra

I Sometimes, it is more convenient to work with an equivalent
Spectra object called the Construction Spectra.

I Under the construction settings, we start with all edges being
in state down. In this case the network is clearly in the
DOWN state too.

I The construction and the destruction spectra are equivalent.
I Specifically, we have the construction spectra and the

commutative construction spectra.
I For the reliability calculation, we will use the a formula which

is similar to the one used in the destruction spectra case.

Unfortunately, both the construction and the destruction
Spectra are generally not available analytically and as
consequence a Monte Carlo procedure should be applied. One
of the widely adopted approaches, the Permutation Monte
Carlo (PMC).
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The PMC Algorithm
Given a graph G(V ,E ,K) such that |E | = m and a sample size N, execute the
following steps.

1. Step 1 (Initialization): Set

Ŝp ≡ {f̂0, . . . , f̂m} ←− {0, 0, . . . , 0}︸ ︷︷ ︸
m+1

.

2. Step 2 (Main loop): Repeat N times.

2.1 Π← (ei1 , . . . , eim) (generate a random edge permutation).
2.2 k ← a(Π) (find the anchor).

2.3 f̂k ←− f̂k + 1.

3. Step 3 (Calculate D–Spectra):

f̂k ←−
f̂k

N
for k = 0, . . . ,m.

4. Step 4 (Calculate Cumulative D–Spectra):

F̂ (k)←−
k∑

i=0

f̂i for k = 0, . . . ,m.
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Is Spectra actually a silver bullet?
Let us turn our attention to the Spectra estimation under rare–event settings and
consider an example Spectra in the following Table.

CSp ĈSp

F (0) 0 F (10) 0.3 F̂ (0) 0 F̂ (10) 0.3

F (1) 0 F (11) 0.5 F̂ (1) 0 F̂ (11) 0.5

F (2) 0 F (12) 0.7 F̂ (2) 0 F̂ (12) 0.7

F (3) 0 F (13) 0.9 F̂ (3) 0 F̂ (13) 0.9

F (4) 10−12 F (14) 1 F̂ (4) 0 F̂ (14) 1

F (5) 10−10 F (15) 1 F̂ (5) 0 F̂ (15) 1

F (6) 10−8 F (16) 1 F̂ (6) 0 F̂ (16) 1

F (7) 10−6 F (17) 1 F̂ (7) 10−6 F̂ (17) 1

F (8) 10−3 F (18) 1 F̂ (8) 10−3 F̂ (18) 1

F (9) 0.1 F (19) 1 F̂ (9) 0.1 F̂ (19) 1

The left part of the table presents the “real” Spectra values (CSp ) and the right

stands for their (fake) “estimates” (ĈSp ). Suppose that ĈSp was obtained using the
PMC Algorithm.

We deliberately set the “estimates” to be equal to the real values in order to
stress the importance of the rare components (F (4),F (5) and F (6))
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Is Spectra actually a silver bullet?

I Note that the proposed PMC Algorithm will not be able to estimate
the left part of the Spectra (F (4),F (5) and F (6)) in a reliable
manner using any manageable sample size, say N = 107.

I This problem is due to the well-known issue of Crude Monte Carlo
algorithms under rare–event settings. For example, consider the
value of f4. Having in mind that P(a(π) = 4) = f4 = 10−12, the

Relative Error (RE) of the PMC Algorithm for the f̂4 is given by

RE =

√√√√√√
Var

(
f̂4
)

E
(
f̂4
)2

N
=

√
f4(1− f4)

f 2
4 N

=

√
10−12 · (1− 10−12)

10−(12·2)N
≈ 106/

√
N,

where N is the sample size. The above equation suggests that in
order to achieve even a modest (say 10%) RE, the value of N
should be huge.
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Is Spectra actually a silver bullet?

I Unfortunately, these small Spectra values are important.
I Calculating the unreliability using the true and the estimated

values of Spectra values, we get the following results. Here

r(q) and r̂(q) using the exact and the approximated Spectra
respectively.

Table: Network DOWN probabilities for different values of q.

q r(q) r̂(q)

10−10 3.88 · 10−49 5.04 · 10−72

10−9 3.88 · 10−45 5.04 · 10−65

10−8 3.88 · 10−41 5.04 · 10−58

10−7 3.88 · 10−37 5.04 · 10−51

10−6 3.88 · 10−33 5.05 · 10−44

10−5 3.89 · 10−29 5.11 · 10−37

10−4 3.99 · 10−25 5.00 · 10−30

10−3 5.37 · 10−21 1.34 · 10−22

10−2 1.62 · 10−14 1.58 · 10−14

10−1 4.71 · 10−6 4.71 · 10−6
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Is Spectra actually a silver bullet?

I One can easily note that the right column of the Table is a
clear underestimation for q 6 10−4.

I A more careful observation of the results reveals the
importance of the leftmost values of Spectra. Note that

F̂ (4), F̂ (5) and F̂ (6) were “evaluated” to zero.

I We shall summarize the discussion as follows.

For highly reliable networks (that is, networks with small
edge failure probabilities q), the PMC Algorithm fails to
produce reliable results because it requires calculations
that involve the accurate estimation of rare–event
probabilities.



22/89

Research question

Can we show a class of networks that does not have a
rare-event problem?

My feeling...

I Consider a class of random networks. (What class?)

I Show that on average, there are no rare-event spectra
components.

I Show that this happens with high probability.

I Result — PMC algorithm works with high probability.
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Part I

Advanced MC Methods for
Network Reliability estimation

The Stochastic Enumeration Method
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The Tree Counting Problem Definition

7.2

1.6

3

4.6 2.9 1

5

1.4

14 10

9.3

I Consider a rooted tree
T = (V, E) with node set V and
edge set E .

I Which each node v is associated
a cost c(v) ∈ R, (it is also
possible that C(v) is a random
variable).

I The main quantity of interest is
the total cost of the tree,

Cost(T ) =
∑
v∈V

c(v), or for r.v:

Cost(T ) = E

(∑
v∈V

C(v)

)
.

I Linear time solution? (BFS,
DFS).

What if the set |V| is large? Think
about querying a large hierarchical
structure (database).
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Is this an interesting problem? (Self-avoiding walk)

Example 1: Self-avoiding walk — models the real-life behavior
of chain-like entities such as polymers.

Question: How many Self-avoiding walks of length n exist?
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Modelling the Self-avoiding walk as a tree counting
problem

I Consider a Self-avoiding walk in 2D.
I Start from the origin: (0, 0) is the tree root node.
I Each node edge corresponds to a direction {Right, Left, Up

Down}.

Right Left

DownUp

DownLeftRightUp .........

.........

(0, 0)

(1, 0) (0, 1)

(0, 2) (1, 1) (−1, 1) (0, 0)

(−1, 0) (0,−1)

I Note that each path (of length n and without black nodes),
from the tree root to a leaf corresponds to a valid
self-avoiding walk.

I Setting c(v) = 1 to each such leaf, (and c(v) = 0 otherwise),
completes the reduction.



27/89

Is this an interesting problem? (Inference)

Example 2: Probabilistic inference in Bayesian networks.
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Is this an interesting problem? (Social network analysis)

Example 3: Cliques in a graph — counting cliques in (social)
network.
Q: How many cliques of size k exist?

A group of individuals that share the same interests can be
modelled by a corresponding clique in a graph. Can we target such
groups, say via an advertisement or other social activity?
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Estimating the Spectra

Consider the set of all edge permutations. With these
permutations it is possible to build a tree object that we call the
permutation tree, for which each path from the root to a leaf
corresponds to some specific permutation π.
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Estimating the Spectra

The exact edge mapping from the leftmost to the rightmost
permutation in the above Figure is as follows.

{{e1, e2, e3, e4}, {e1, e2, e4, e3}, {e1, e3, e2, e4}, {e1, e3, e4, e2},
{e1, e4, e2, e3}, {e1, e4, e3, e2}, {e2, e1, e3, e4}, {e2, e1, e4, e3},
{e2, e3, e1, e4}, {e2, e3, e4, e1}, {e2, e4, e1, e3}, {e2, e4, e3, e1},
{e3, e1, e2, e4}, {e3, e1, e4, e2}, {e3, e2, e1, e4}, {e3, e2, e4, e1},
{e3, e4, e1, e2}, {e3, e4, e2, e1}, {e4, e1, e2, e3}, {e4, e1, e3, e2},
{e4, e2, e1, e3}, {e4, e2, e3, e1}, {e4, e3, e2, e1}, {e4, e3, e1, e2}}

I By definition, each path from the root to a leaf corresponds to a unique
edge permutation π and each black vertex corresponds to this
permutation’s anchor, a(π).

I We can now count the anchor vertices at each level of the tree (by setting
say a cost of 1 to each black vertex and zero otherwise), and recover the
Spectra object.
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Is the tree counting problem is an interesting problem?
(Graph polynomials)

1. Reliability polynomial.

2. Tutte polynomial.

3. Independence polynomial.

4. Chromatic polynomial.

5. ...

6. ...

7. ...

Applications

Combinatorics, Statistical Physics and Network Reliability.
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Is this an interesting problem? (Optimization)

While working for industry, I used a similar tree counting method
for optimization of mobile all-weather air defence system.
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A short summary

1. Many interesting problems from different research fields can
be modeled by the tree counting problem.

2. The reduction is relatively straight-forward in many cases.

Consequentially, a general tool for handling the tree counting
problem can be very useful.
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Is this hard?

The general problem of estimating the cost of a tree is in #P, (Valiant,
1979).

Bad news
An existence of “computationally efficient approximation
algorithm” will imply P=NP.
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Previous work

Donald E. Knuth (1975)

Estimating the Efficiency of Backtrack Programs

Math. Comp. 29.

Paul W. Purdom (1978)

Tree Size by Partial Backtracking

SIAM J. Comput. 7(4) 481-491.

Pang C. Chen (1992)

Heuristic Sampling: A Method for Predicting the Performance of Tree
Searching Programs.

SIAM J. Comput. 21(2) 295-315.

Few additional attempts – based on Knuth’s estimator.
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Knuth’s estimator
Input: A tree Tv of height h, rooted at v .
Output: An unbiased estimator C of the
total cost of tree Tv .

1. (Initialization): Set k ← 0, D ← 1,
X0 = v and C ← c(X0). Here D is
the product of all node degrees
encountered in the tree.

2. (Compute the successors): Let
S(Xk ) be the set of all successors of
Xk and let Dk be the number of
elements of S(Xk ). If k = h or when
S(Xk ) is empty, set Dk = 0.

3. (Terminal position?): If Dk = 0, the
algorithm stops, returning C as an
estimator of Cost(Tv ).

4. (Advance): Choose an element
Xk+1 ∈ S(Xk ) at random, each
element being equally likely. (Thus,
each choice occurs with probability
1/Dk .) Set D ← DkD, then set
C ← C + c(Xk+1)D. Increase k by 1
and return to Step 2.

k = 0, D = 1, X0 = v1, C = 7.

v1, 7

v2, 1

v4, 3

v7, 4 v8, 2 v9, 1

v3, 5

v5, 1

v10, 14 v11, 10

v6, 9
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Knuth’s estimator
Input: A tree Tv of height h, rooted at v .
Output: An unbiased estimator C of the
total cost of tree Tv .

1. (Initialization): Set k ← 0, D ← 1,
X0 = v and C ← c(X0). Here D is
the product of all node degrees
encountered in the tree.

2. (Compute the successors): Let
S(Xk ) be the set of all successors of
Xk and let Dk be the number of
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element being equally likely. (Thus,
each choice occurs with probability
1/Dk .) Set D ← DkD, then set
C ← C + c(Xk+1)D. Increase k by 1
and return to Step 2.

S(X0) = {v2, v3}, D0 = 2.

v1, 7

v2, 1

v4, 3

v7, 4 v8, 2 v9, 1

v3, 5

v5, 1

v10, 14 v11, 10

v6, 9
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Input: A tree Tv of height h, rooted at v .
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total cost of tree Tv .
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Knuth’s estimator
Input: A tree Tv of height h, rooted at v .
Output: An unbiased estimator C of the
total cost of tree Tv .

1. (Initialization): Set k ← 0, D ← 1,
X0 = v and C ← c(X0). Here D is
the product of all node degrees
encountered in the tree.

2. (Compute the successors): Let
S(Xk ) be the set of all successors of
Xk and let Dk be the number of
elements of S(Xk ). If k = h or when
S(Xk ) is empty, set Dk = 0.

3. (Terminal position?): If Dk = 0, the
algorithm stops, returning C as an
estimator of Cost(Tv ).

4. (Advance): Choose an element
Xk+1 ∈ S(Xk ) at random, each
element being equally likely. (Thus,
each choice occurs with probability
1/Dk .) Set D ← DkD, then set
C ← C + c(Xk+1)D. Increase k by 1
and return to Step 2.

k = 1, X1 = v3, D = 1 · D0 = 2,

C = 7 + 5 · 2 = 17.

v1, 7

v2, 1

v4, 3

v7, 4 v8, 2 v9, 1

v3, 5

v5, 1

v10, 14 v11, 10

v6, 9
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Knuth’s estimator
Input: A tree Tv of height h, rooted at v .
Output: An unbiased estimator C of the
total cost of tree Tv .

1. (Initialization): Set k ← 0, D ← 1,
X0 = v and C ← c(X0). Here D is
the product of all node degrees
encountered in the tree.

2. (Compute the successors): Let
S(Xk ) be the set of all successors of
Xk and let Dk be the number of
elements of S(Xk ). If k = h or when
S(Xk ) is empty, set Dk = 0.

3. (Terminal position?): If Dk = 0, the
algorithm stops, returning C as an
estimator of Cost(Tv ).

4. (Advance): Choose an element
Xk+1 ∈ S(Xk ) at random, each
element being equally likely. (Thus,
each choice occurs with probability
1/Dk .) Set D ← DkD, then set
C ← C + c(Xk+1)D. Increase k by 1
and return to Step 2.

S(X1) = {v5, v6}, D1 = 2.

v1, 7

v2, 1

v4, 3

v7, 4 v8, 2 v9, 1

v3, 5

v5, 1

v10, 14 v11, 10

v6, 9



36/89

Knuth’s estimator
Input: A tree Tv of height h, rooted at v .
Output: An unbiased estimator C of the
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estimator of Cost(Tv ).

4. (Advance): Choose an element
Xk+1 ∈ S(Xk ) at random, each
element being equally likely. (Thus,
each choice occurs with probability
1/Dk .) Set D ← DkD, then set
C ← C + c(Xk+1)D. Increase k by 1
and return to Step 2.

S(X1) = {v5, v6}, D1 = 2.

v1, 7

v2, 1

v4, 3

v7, 4 v8, 2 v9, 1

v3, 5

v5, 1

v10, 14 v11, 10

v6, 9
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Knuth’s estimator
Input: A tree Tv of height h, rooted at v .
Output: An unbiased estimator C of the
total cost of tree Tv .

1. (Initialization): Set k ← 0, D ← 1,
X0 = v and C ← c(X0). Here D is
the product of all node degrees
encountered in the tree.

2. (Compute the successors): Let
S(Xk ) be the set of all successors of
Xk and let Dk be the number of
elements of S(Xk ). If k = h or when
S(Xk ) is empty, set Dk = 0.

3. (Terminal position?): If Dk = 0, the
algorithm stops, returning C as an
estimator of Cost(Tv ).

4. (Advance): Choose an element
Xk+1 ∈ S(Xk ) at random, each
element being equally likely. (Thus,
each choice occurs with probability
1/Dk .) Set D ← DkD, then set
C ← C + c(Xk+1)D. Increase k by 1
and return to Step 2.

k = 2, X2 = v6, D = 2 · D1 = 4,

C = 7 + 5 · 2 + 9 · 4 = 53.

v1, 7

v2, 1

v4, 3

v7, 4 v8, 2 v9, 1

v3, 5

v5, 1

v10, 14 v11, 10

v6, 9
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Knuth’s estimator
Input: A tree Tv of height h, rooted at v .
Output: An unbiased estimator C of the
total cost of tree Tv .

1. (Initialization): Set k ← 0, D ← 1,
X0 = v and C ← c(X0). Here D is
the product of all node degrees
encountered in the tree.

2. (Compute the successors): Let
S(Xk ) be the set of all successors of
Xk and let Dk be the number of
elements of S(Xk ). If k = h or when
S(Xk ) is empty, set Dk = 0.

3. (Terminal position?): If Dk = 0, the
algorithm stops, returning C as an
estimator of Cost(Tv ).

4. (Advance): Choose an element
Xk+1 ∈ S(Xk ) at random, each
element being equally likely. (Thus,
each choice occurs with probability
1/Dk .) Set D ← DkD, then set
C ← C + c(Xk+1)D. Increase k by 1
and return to Step 2.

X2 = v6, S(X2) = ∅, D2 = 0.

v1, 7

v2, 1

v4, 3

v7, 4 v8, 2 v9, 1

v3, 5

v5, 1

v10, 14 v11, 10

v6, 9
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each choice occurs with probability
1/Dk .) Set D ← DkD, then set
C ← C + c(Xk+1)D. Increase k by 1
and return to Step 2.

C = 53.

Reached terminal node. Note
that Cost(T ) = 57.
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v7, 4 v8, 2 v9, 1

v3, 5

v5, 1

v10, 14 v11, 10

v6, 9
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A very important example!

We are going to discuss a crucial issue, that occurs when applying
a Monte Carlo algorithm.
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Efficiency of randomized algorithms

I Let Xi be a random variable with finite expected value µ and
finite non-zero variance σ2.

I Define:

X =
1

N

N∑

i=1

Xi .

I From the Chebyshev’s inequality:

P
(
|X − µ| > εµ

)
6

σ2

Nµ2ε2
6 δ,

for some predefined ε and δ. For example, ε = 0.05, and
δ = 0.03, corresponds to the statement that X is within 5%
interval from the true value, with probability at least 97%.

I This requires the sample size to be N = σ2

δµ2ε2 , thus, N is

proportional to CV2 = σ2/µ2 — the so called squared
coefficient of variation.
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Is Knuth’s algorithm always work? (Rare-events)

Consider the “hair brush” tree T and suppose that the costs of all vertices are
zero except for vn+1, which has a cost of unity.

v1

v2 v2

v3 v3

v4

vn

vn+1 vn+1

Figure: The hair brush tree.

The expectation and variance of the
Knuth’s estimator are

E (C) =
1

2n
· 2n · 1 +

2n − 1

2n
·D ′ · 0 = 1,

and

E
(
C 2
)

=
1

2n
· (2n · 1)2 +

+
2n − 1

2n
·
(
D ′ · 0

)2
= 2n ⇒

⇒ Var (C) = 2n − 1.
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What can we do?

The problem is the large variance.

Variance reduction techniques.

I Common and antithetic random variables.

I Control variables.

I Conditional Monte Carlo.

I Stratified sampling.

I Importance Sampling.

I Multilevel Splitting.
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To start with — Multilevel Splitting

Consider (again) the “hair brush” tree T .

v1

v2 v2

v3 v3

v4

vn

vn+1 vn+1

B︷ ︸︸ ︷
? · · · ? ↓↓

≈B/2
︷ ︸︸ ︷
? · · · ?

≈B/2
︷ ︸︸ ︷
? · · · ?

I Define some budget B > 1 of
parallel random walks.

I Start from the root. The
expected number of walks which
reach the “good” vertex v2 is
B/2 — call them the “good”
trajectories.

I Split the “good” trajectories such
that there are B of them again
and continue to the next tree
level.

I Carefully choosing B (logarithmic
in n), will allow us to reach the
vertex of interest — vn+1 with
reasonably high probability.

P(The process reaches the next level) = 1− 1/2B .

P(The process reaches the vn+1 vertex) = (1− 1/2B)n.

B = log2(n)⇒ P(The process reaches the vn+1 vertex)→ e−1, as n→∞.
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SE — the main idea

1. Define a budget B ∈ N, and let B be the number of parallel
random walks on the tree.

2. Using these B walks, run Knuth’s Algorithm in parallel.

3. If some walks “die”, split the remaining ones to continue with
B walks as usual, (multilevel splitting).
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SE example with B = 2

v1, 7

v2, 1

v4, 3

v7, 4 v8, 2 v9, 1

v3, 5

v5, 1

v10, 14 v11, 10

v6, 9
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A short summary

1. Many interesting problems from different research fields can
be modeled by the tree counting problem.

2. Knuth’s algorithm can fail badly.

3. Running several trajectories in parallel seems to introduce
some added value.

4. Can we justify this rigorously?
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The Analysis

Radidlav Vaisman and Dirk P. Kroese (2015) Stochastic Enumeration
Method for Counting Trees. Methodology & Computing in Applied
Probability.

Theorem (Basic Properties of SE)
Let Tv be tree rooted at v. Then,

E(CSE (Tv )) = Cost (Tv ),

and

Var (CSE (Tv)) =

(
|S(v)|
|v|

)2

d

∑
16j6d

Var
(
CSE

(
Twj

))

+

(
|S(v)|
|v|

)2

d2

∑
16i<j6d

(
Cost (Twi )

|wi |
−

Cost
(
Twj

)
|wj |

)2

,

where d is the degree of v , and w1, · · · ,wd are the children of v .
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An upper bound on SE’s variance (1)

v

w1

Cost(Tw1)

w2

Cost(Tw2)

w3

Cost(Twd)

I We would like to calculate (or at least get an upper bound
of), Var (CSE (Tv)) for a general tree.

I This will also provide us with an upper bound on CV2.
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Analysis — upper bound on SE’s variance (2)

Theorem
Suppose without loss of generality that there exists constant a
such that

Cost (Tw1)

|w1|
6

Cost (Tw2)

|w2|
6 · · · 6 Cost (Twd

)

|wd |
6 a

Cost (Tw1)

|w1|
.

Then, the variance of SE estimator satisfies

Var (CSE (Tv)) 6 (βh − 1)

[
Cost (Tv)

|v|

]2

,

where β =
(
a2+2a+1

4a

)
. That is, CV2 6 βh − 1.

I Is this good enough? — What if β > 1?

I Our numerical results nevertheless, showed great performance
for various applications.
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Random trees

Definition (Family of random trees)

Consider a probability vector p = (p0, . . ., pk) that corresponds to
the probability of a vertex to have 0, . . . , k successors respectively.
Define a family of random trees Fh

p as all possible trees of hight at
most h that are generated using p up to the level h.

I The family Fh
p is fully characterized by the probability vector

p and the parameter h.

I The tree generation corresponds to a branching process.

Objective

Let T = (V, E) be a random tree from Fh
p . By assigning the cost

c(v) = 1 for all v ∈ V, the cost of the tree — Cost(T ) is equal to
|V|. Our objective is to analyse the behavior of Knuth’s and SE’s
estimators under this setting.
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Super–critical branching process

I Consider a random tree rooted at v0 and let Rm be the total
number of children (population size) at level (generation) m
and denote by Mm the total progeny at generation m. Define

µ = E(R1) =
∑

06j6k

jpj and σ2 = Var(R1) =


 ∑

06j6k

j2pj


−µ2.

I From [Pakes 1971], the total progeny satisfies:

νm = E(Mm) = E


1 +

∑

16j6m

Rt


 =

µm+1 − 1

µ− 1
.
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Random trees — expected performance

Theorem (Knuth v.s SE)
For a random tree T (h) the following holds.

1. Lower bound on Knuth’s expected variance satisfies:

E
(
Var

(
C
(
T (h)

) ∣∣∣ T (h)
))

>
(
σ2 + µ2 − µ

) 1−
(
σ2 + µ2

)h
1− (σ2 + µ2)

.

2. For

B > max



hk2 ln

(
2h(σ2 + µ2) σ2µ

(µ−1)3

)
2(µ− 1)2

 ,
⌈
hσ2

µ2

⌉ ,

the upper bound on SE’s expected variance satisfies:

E
(
Var

(
CSE

(
T (h)

) ∣∣∣ T (h)
))

6 B2heµ2h

(
σ2µ

(µ− 1)3
+ 1

)
.



51/89

The expected variance reduction

Corollary

The SE Algorithm introduces an expected variance reduction that
is approximately equal to

(
1 +

σ2

µ2

)h

.

The variance reduction is exponential in h!
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SE ia a Fully Polynomial Randomized Approximation
Scheme

Theorem (Almost sure FPRAS)
Let Fh

p′ be a family of random trees such that for T ∈ Fh
p′

lim
h→∞

P
(
Cost(T ) <

1

P(h)
νh

)
= 0,

where P(h) > 0 is some polynomial function in h and νh = 1−µh+1

1−µ is the
expected number of nodes. In other words, for most instances, (almost surely),
the actual number of nodes is not much smaller than the expectation. Then,
under the above condition, and provided that

µ > 1 + δ for any δ > 0,

the SE algorithm is FPRAS for most of the instances in T ∈ Fh
p′ , that is,

CV2 =
Var (CSE(T ) | T )

(E (CSE(T ) | T ))2

is bounded by a polynomial in h with high probability.
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A short summary

1. Many interesting problems from different research fields can
be modeled by the tree counting problem.

2. Knuth’s algorithm can fail badly.

3. Running several trajectories in parallel is very beneficial. We
obtained an FPRAS for random trees using SE.

4. Can I use the SE algorithm for practical problems?
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SE in practice — Network Reliability, Sensitivity, and
Cascades

Radidlav Vaisman, Dirk P. Kroese and Ilya B. Gertsbakh
(2015) Improved Sampling Plans for Combinatorial Invariants
of Coherent Systems, IEEE transactions on reliability.

R. Solomone, R. Vaisman and D. P. Kroese (2016) Estimating
the Number of Vertices in Convex Polytopes, Annual
International Conference on Operations Research and
Statistics, ORS.

R. Shah and R. Vaisman (2016) New Sampling Plans for
Estimating Residual Connectedness Reliability, Annual
International Conference on Operations Research and
Statistics, ORS.
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Estimating the Reliability Polynomial with SE (1)

I The hypercube graph Hn is a regular graph with 2n vertices
and n2n−1 edges.

I In order to construct a hypercube graph, label every 2n

vertices with n-bit binary numbers and connect two vertices by
an edge whenever the Hamming distance of their labels is 1.
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Estimating the Reliability Polynomial with SE (2)

I We consider H5 with two terminals K = {0, 24}; that is
(00000, 11000) in the binary representation.

I Using full enumeration procedure we found that for a reliable
simulation, one should estimate values that are as small as
8.3195 · 10−8.

I For this relatively small graph, the (usually used) Permutation
Monte Carlo (PMC) algorithm needs huge sample size. Using
N = 109 samples takes about 25 hours on my Core i5 laptop,
The related error is about 60%. Why? The minimal value that
must be estimated by PMC is 8.3195 · 10−8 is rare event!

I The SE delivers very reliable estimates in 28 seconds with
budget B = 10 and N = 1000. The related error is about 1%.
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Further reading

Chapter 10.



58/89

What next?

I (Hard) — Finding more classes of trees that can be efficiently
handled by SE, (that is, show proven performance guarantees
like for the random tree case).

I (In progress) — Extending different Sequential Monte Carlo
algorithms with SE mechanism (splitting).

I (In progress) — Adaptation of SE to (big) data analysis.

I (In progress) — Adaptation of SE to MDP/POMDP
planning.
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Part II

Advanced MC Methods for
Network Reliability estimation

The Lomonosov’s Turnip
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The setup

I Given a network G = G (V ,E ,K ) where V is the node set, E
is the edge set and K ⊆ V is the terminal set.

I The edges states are binary; that is, edge e can be in the up or
down state with probabilities pe and qe = 1− pe , respectively.

Note that we allow different edge failure probabilities.

I The network UP state is defined as the presence of
connectivity of all terminal nodes.

We describe the PMC algorithm of Michael Lomonosov, also called
the network evolution process.
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The evolution process PMC

I The basic idea of PMC is to associate with each edge e ∈ E
an exponentially distributed random “birth time” τ(e) with
parameter λ(e), such that P(τ(e) 6 τ) = 1− e−λ(e)τ = pe
holds for all e ∈ E and for an arbitrary chosen time value τ .

I Let us assume that all the edges are in the down state at time
zero. Then, an edge e is born at time τ(e); that is, at the
time τ(e) it enters the up state and stays there “forever”.

Note that the probability that e will be “alive” at time τ
is P (τ(e) 6 τ) = pe .

I The value of τ can be arbitrary, so for simplicity we put τ = 1
and it follows that λ(e) = − ln qe .

I If we take a “snapshot” of the state of all edges at time
instance τ = 1, we will see the network in the state which is
stochastically equivalent to the static picture in which edge e
is up or down with probability pe or qe , respectively.
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The evolution process PMC

I Suppose that |E | = n and consider the ordering (permutation)
of the edges π = (e1, . . . , en), according to their birth times
sorted in increasing order.

I Since the birth times are exponentially distributed, (race of
exponential r.v), it holds that

P(Π = π) =
n∏

t=1

λ(et)

Λ(Et−1)
,

where Et = E \ {e1, . . . , et} for 1 6 t 6 n − 1, and
Λ(Et) =

∑
e∈Et

λ(e).

I The first index 1 6 a(π) 6 n of the edge permutation π for
which the sub-graph of G defined by G (V , (e1, . . . , ea(π)),K )
is in the UP state, is called an anchor of π. That is,

a(π) = min {t : G (V , (e1, . . . , et),K ) is UP} .
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The evolution process

Let ξ1 + · · ·+ ξt be the birth time of edge et in π for 1 6 t 6 n. Then,
given the edge permutation Π = π, the probability that the network is in
the UP state is given by

P




a(π)∑

t=1

ξt 6 1

∣∣∣∣Π = π


 = Conv16t6a(π)

{
1− e−Λ(Et)

}
,

where Conv stands for exponential convolution. The network DOWN and
UP probabilities denoted by r̄ and r , respectively, can be expressed as

r̄ =
∑

π

P(Π = π) · P




a(π)∑

t=1

ξt > 1

∣∣∣∣Π = π


 ,

and

r =
∑

π

P(Π = π) · P




a(π)∑

t=1

ξt 6 1

∣∣∣∣Π = π


 ,

respectively, where the summation is over all permutations π.
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The evolution process

Since the network unreliability and reliability in

r̄ =
∑

π

P(Π = π) · P




a(π)∑

t=1

ξt > 1

∣∣∣∣Π = π


 ,

and

r =
∑

π

P(Π = π) · P




a(π)∑

t=1

ξt 6 1

∣∣∣∣Π = π


 ,

is expressed as an expectation, it can be estimated without
bias as the sample average of conditional probabilities,
P(ξ1 + ξ2 + · · ·+ ξa(Π) > 1 | Π) over an independent sample of

trajectories {Π(1),Π(2), . . . ,Π(N)}.
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PMC Algorithm For Unreliability Estimation

Given a network G = G(V ,E ,K), edge failure probabilities (qe , e ∈ E), and sample
size N, execute the following steps.

1. (Initialization) Set S ← 0. For each edge e ∈ E , set λ(e)← − ln(qe) and
k ← 0.

2. (Permutation Generation) Set k ← k + 1 and sample Π(k) =
(
e

(k)
1 , . . . , e

(k)
n

)
.

3. (Find the Anchor) Calculate

a
(

Π(k)
)

= min
{
t : G

(
V ,
(
e

(k)
1 , . . . , e

(k)
t

)
,K
)

is UP
}
.

4. (Calculation of Convolution) Set:

R(k) ← 1− Conv16t6a(Π(k))

{
1− e

−Λ
(
E

(k)
t

)}
,

where E
(k)
t = E \

{
e

(k)
1 , . . . , e

(k)
t

}
for 1 6 t 6 Π(k), and

Λ
(
E

(k)
t

)
=
∑

e∈E (k)
t
λ(e), and set S ← S + R(k).

5. (Stopping Condition) If k = N, return S/N as unbiased estimator of r̄ ;
otherwise, go to Step 2.
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PMC Algorithm For Unreliability Estimation — problems

I The main issue with the PMC algorithm, is its
non-uniform trajectory generation with respect to their
length.

I Namely, shorter trajectories, which have a small anchor,
have a bigger chance to be generated during the evolution
process.

I However, long trajectories will generally have higher
weights in the estimator. This issue causes a considerable
increase in PMC estimator variance.
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PMC Algorithm For Unreliability Estimation — problems

I Lomonosov tried to resolve this issue by equipping the PMC
Algorithm with a so-called closure (merging) operation.

I The closure of a subset E ′ ⊆ E consists of E ′ and all edges of
G whose vertices lie in the same component of the spanning
subgraph G (V ,E ′).

I The closure operation is essentially an elimination of edges
that do not change the already born connected component
during the evolution process.

I With this addition, the PMC algorithm has a higher chance of
generating long trajectories. The corresponding estimator was
shown to be unbiased and its relative error is uniformly
bounded with respect to the λ(e) values.



68/89

Lomonosov’s Turnip (LT)

I To implement the merging process, all that needs to be done
after each birth of an edge, is to look for those edges whose
nodes belong to the already existing component.

I These edges are joined to this component and excluded from
further considerations as irrelevant.

I This combination of merging and the evolution process causes
the reliability estimator to become less variable and is called
the LT algorithm.
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Lomonosov’s Turnip problems
I Consider a simple network S(n) with n + 2 nodes and 2n + 1

edges presented below.
I The terminal set consists of two vertices, u and v . For this

particular network topology, the closure operation has no
effect, since during the edge birth process no edge can be
merged and thus the LT algorithm turns into the regular PMC.

u v

1

2

...

n

eu,v

eu,1

eu,2

eu,n

ev,1

ev,2

ev,n

Figure: A simple network S(n) with n + 2 nodes, 2n + 1 edges, and
K = {u, v}.
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Lomonosov’s Turnip problems

I Suppose, for example, that each edge fails with same
probability q = 1− p. Then, the u – v network unreliability r̄
is given by (1− p)(1− p2)n.

I Consider the distribution of the anchor for this particular
network structure. Let T = a(Π) be the random variable that
stands for the anchor.

I The LT algorithm returns T = 1 if the edge between u and v
is the first one that enters the up state; that is, if eu,v is born
first.

I The probability that the birth process stops after the birth of
the t-th edge is (need some working to show that)

P(T = t) =
t

2n + 2− t

t−1∏

j=1

(
1− j

2n + 2− j

)
, t = 1, . . . , n + 1.
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Lomonosov’s Turnip problems

The exact value of the reliability and the analytical expression for
P(T = t) allow to get an important insight about the coefficient of
variation of the LT estimator.
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n
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10−100

10−50

t

C
on

v
(t
) r̄

0 10 20 30 40 50
10−15

10−8

10−1

t

P(
T
=

t)

Figure: Left panel: logarithmically scaled CV of LT as a function of n for
S(n) networks. Right panel: Conv(t) and P(T = t) as a function of t
for S(50) and p = 0.9. The true unreliability of 8.66× 10−38 is given by
the horizontal line in the upper plot.
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Interpretation

I This phenomenon happens as a result of the rare-event involvement.

I The right panel of the Figure shows the convolution Conv(t) and
the probability P(T = t) as a function of anchor 1 6 t 6 51.

I We can see that the long trajectories contribute the most mass to
the estimator; but these long trajectories appear with very small
probabilities.

I For example, we found that the average trajectory length is about
11.69. However, the trajectories that contribute most to the
estimator are of length greater than 40.

I These trajectories are generated with a probability of less than
10−6. This issue can be clearly observed in the upper plot of the
right panel of the Figure by noting that the intersection of the
horizontal line (which represents the true unreliability) and the
convolution curve, occurs near t = 40.

I Long trajectories are generated with very small probabilities, as can
be verified from the bottom plot of the right panel and thus the
resulting estimator tends to underestimate the true value of interest.
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To overcome the problem presented in the above example, we
propose to combine the LT algorithm with the splitting
method, which was proved to be very useful when working in a
rare-event setting.

Consider a random variable (vector) X taking values in a set X . A
general objective of Monte Carlo simulation is to calculate
` = Ef (H (X)) , where H : X → R is a real-valued function. The
Crude Monte Carlo (CMC) estimator of ` is given by

̂̀=
1

N

N∑

k=1

H
(

X(k)
)
,

where X(k) for k = 1, . . . ,N, are independent copies of a random
variable X generated from f (x).
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The Sequential MC (SMC) framework

I Suppose that the vector X ∈ X is decomposable and that it
can be of different length T ∈ {1, . . . , n}, where T is a
stopping time of X’s generation process.

I Thus, X can be written as X = (X1,X2, . . . ,XT ), where for
each t = 1, . . . ,T , Xt can be multidimensional.

I We assume that X can be constructed sequentially such that
its probability density function (PDF) f (x) constitutes a
product of conditional PDFs:

f (x) = f1(x1)f2(x2 | x1) · · · ft(xt | x1, . . . , xt−1), |x| = t, t = 1, . . . , n,

where |x| is the length of x.
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The Sequential MC (SMC) framework

I This setting frequently occurs in practice. For example,
consider a coin that is tossed repeatedly until the first
“success” (1) appears or until n tosses have been made. The
sample space is equal to

X = {(1), (0, 1), (0, 0, 1), . . . , (0, . . . , 0,︸ ︷︷ ︸
n−1 times

1), ( 0, . . . , 0︸ ︷︷ ︸
n times

)}.

I That is, the samples have different lengths: t = 1, 2, 3, . . . , n.
Let Xt = {x ∈ X : |x| = t} be the set of all samples of
length t = 1, 2, . . . , n.

I Then, the sets X1, . . . ,Xn define a partition of X ; that is

X =
n⋃

t=1

Xt , Xt1 ∩ Xt2 = ∅ for 1 6 t1 < t2 6 n.
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The Sequential MC (SMC) framework

I Since we are working under the SMC framework, the
generation of

X = (X1, . . . ,XT ) ∈ XT ,

is sequential in the following sense.

I We start from the “empty” X = ().

I Then X1 is sampled from f1(x1) and at each step t > 2, we
sample Xt from ft(xt | x1, . . . , xt−1) until the stopping time T
that is determined from the generated Xt ’s.

I This procedure terminates at time 1 6 T 6 n if X ∈ XT .
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Crude Sequential Monte Carlo (CSMC)

Given the density f (x) = f1(x1)f2(x2 | x1) · · · ft(xt | x1, . . . , xt−1),
x ∈ Xt , t = 1, . . . , n, and H : X → R, output Z — an unbiased
estimator of Ef (H (X)).

1. (Initialization) Set t ← 0 and X← ().

2. (Simulate and Update) Set t ← t + 1, sample
Xt ∼ ft(xt | X1, . . . ,Xt−1), and set X← (X1, . . . ,Xt−1,Xt).

3. (Stopping Condition) If T = t (the stopping condition
which can be determined from X = (X1, . . . ,Xt)), output
Z ← H(X); otherwise, go to Step 2.
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The PMC algorithm is CSMC!

I To see that the PMC and the LT Algorithms are aligned with
the SMC framework described above, let X = (Π1, . . . ,ΠT ),
with T = a(Π), and

H(x) = 1− Conv16t6T

{
1− e−Λ(Ei )

}
.

I Moreover, f (x) is distributed according to (2), which is of the
product form

f (x) =
t∏

j=1

fj , 1 6 t 6 n,

where fj is defined by

fj(Πj = ej | Π1 = e1, . . . ,Πj−1 = ej−1) =
λ(ej)

Λ(Ej−1)
.



79/89

SMC

Keep in mind the PMC algorithm and the short trajectories
phenomena.

For the forthcoming discussion, it will be convenient to define an
event

{the SMC generation process did not stop at steps 1, . . . , t} = {T > t}.

The X generation stochastic process can be visualized using the
Figure on the next slide.

A random walk starts from the root of the tree {T > 0} and ends
at one of tree leaves {T = 1}, . . . , {T = n}.
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The SMC process

T > 0

T = 1 T > 1

T = 2 T > 2

T = 3
T > n− 2

T = n− 1 T > n− 1

T = n

P(T = 1 | T > 0) P(T > 1 | T > 0)

P(T = 2 | T > 1) P(T > 2 | T > 1)

P(T = 3 | T > 2)

P(T = n− 1 | T > n− 2) P(T > n− 1 | T > n− 2)

P(T = n | T > n− 1)
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SMC

I The splitting mechanism allows the process to reach {T = n}
with reasonably high probability, while using a relatively small
budget B which can be logarithmic in the tree height.

I Note that the probability that this splitting process reaches
the level t given that it reached level t − 1 is
P(T = t | T > t − 1) = 1− 1/2B , and as a consequence, the
probability to reach {T = n} is equal to

P (The splitting reaches the {T = n} leaf) =
(

1− 1/2B
)n−1

.

I To conclude, the choice of B = dlog2(n − 1)e results in

P (The process reaches {T = n}) > (1−1/2log2(n−1))n−1 → e−1

as n→∞.
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Splitting Sequential Monte Carlo (SSMC) (1)

Given the density f (x) = f1(x1)f2(x2 | x1) · · · ft(xt | x1, . . . , xt−1),
for x ∈ Xt , 1 6 t 6 n, H : X → R, and a budget B ∈ N \ {0},
output C — an unbiased estimator of Ef (H (X)).

1. (Initialization) Set t ← 0, Pt ← 1 — an estimator of
P (T > t), C ← 0, and define

W(t) =
{

X
(t)
1 , . . . ,X

(t)
B

}
,

where X
(t)
j ← () for j = 1, . . . ,B, which we call the “working”

set, because it contains unfinished trajectories.
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Splitting Sequential Monte Carlo (SSMC) (2)

2. (Simulate and Update) Set t → t + 1. For each
X = (X1, . . . ,Xt−1) ∈ W(t−1), sample

Xt ∼ ft(xt | X1, . . . ,Xt−1),

and update: X← (X1, . . . ,Xt). Update the “finished” and
“working” sets:

F (t) ←
{

X ∈ W(t−1) : X ∈ Xt

}
, Bt ←

∣∣∣F (t)
∣∣∣ ,

W(t) ←
{

X ∈ W(t−1) : X /∈ Xt

}
, B ′t ←

∣∣∣W(t)
∣∣∣ .

If Bt = 0, go to Step 2; otherwise, set

Ct ← Pt−1
1

B

∑

X∈F (t)

H(X), C ← C + Ct , Pt ← Pt−1
B ′t
B
.
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Splitting Sequential Monte Carlo (SSMC) (3)

3. (Stopping Condition) If B ′t = 0, output C as an estimator of
Ef (H (X)).

4. (Splitting) Insert Kj copies of each Xj ∈ W(t) into W(t),
where Kj satisfies

Kj =
⌊
B/B ′t

⌋
+ Lj ,

and Lj ∼ Ber(0.5) conditional on
∑B′t

s=1 Ls = BmodB ′t . Go to
Step 2.
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Analysis

Theorem (Unbiased estimator)

The SSMC Algorithm outputs an unbiased estimator; that is, it
holds that

E(C ) = Ef (H(X)) .

I Although it is generally hard to analyze the efficiency of
SSMC for a given problem in terms of RE, we provide
performance guaranties under some simplified assumptions.

I However, it is important to note that the unbiasedness holds
for general SMC procedures which can be presented in the
form of CSMC.
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Analysis

Theorem (Efficiency of SSMC Algorithm)

Suppose that the following holds for all t = 1, . . . , n.

1. For t = 1, . . . , n, ft(xt | x1, . . . , xt−1) = pt for all x = (x1,
. . . , xt−1) ∈ Xt−1, and pt = O(1/Pn), where Pn is a
polynomial in n.

2. H(x) = Ht (constant) for all x ∈ Xt , t = 1, . . . , n.

Then, under above assumptions, the SSMC Algorithm is efficient;
that is, it holds that CV =

√
Var (C )/E (C ) is upper-bounded by

a polynomial in n.

Corollary (Efficiency of SSMC for S(n) networks)

The PMC Algorithm combined with SSMC, is an FPRAS for
networks S(n), n > 0.
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Experiments — the graph S(n)

For the ST algorithm, we set B = 1000 and N = 100.
Consequentially, we use N = 105 sample size for the LT algorithm.
Table 3 summarizes the average performance of LT and ST for the
S(50) network using the above parameters. The bad performance
of LT is not very surprising, since we know that for S(50), the CV
is of order 106.

Algorithm R R̂E REE

LT 1.93× 10−41 76.5% 99.7%

ST 8.67× 10−38 2.48% 2.41%

Table: The performance obtained for the S(50) network with p = 0.9
using the LT and the ST algorithms. The true unreliability is
8.66× 10−38.
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Experiments — the dodecahedron graph
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Figure: The dodecahedron graph with 20 vertices, 30 edges, and
K = {1, 3}.
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Experiments — the dodecahedron graph

LT ST

q R R̂E R R̂E

10−15 6.35× 10−31 58.1% 3.24× 10−30 5.04%
10−14 8.80× 10−29 56.9% 3.25× 10−28 4.77%
10−13 1.49× 10−26 55.3% 3.25× 10−26 4.18%
10−12 6.85× 10−25 50.7% 3.24× 10−24 3.78%
10−11 1.39× 10−22 50.7% 3.23× 10−22 3.45%
10−10 1.01× 10−20 49.9% 3.22× 10−20 3.00%
10−9 4.94× 10−18 48.2% 3.24× 10−18 2.81%
10−8 2.14× 10−16 47.8% 3.23× 10−16 2.50%
10−7 2.50× 10−14 43.8% 3.23× 10−14 2.22%
10−6 4.30× 10−12 42.5% 3.24× 10−12 1.96%
10−5 3.46× 10−10 32.8% 3.24× 10−10 1.66%
10−4 3.18× 10−8 17.9% 3.24× 10−8 1.36%
10−3 3.24× 10−6 6.68% 3.24× 10−6 1.23%
10−2 3.20× 10−4 1.85% 3.20× 10−4 0.75%
10−1 2.82× 10−2 0.43% 2.82× 10−2 0.42%

Table: A summary of average performance obtained for the dodecahedron
network using the LT and ST algorithms.
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