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Abstract

We investigate reliability of network-type systems under the assumption that
the network has K > 1 types of of i.i.d. components. Our method is an ex-
tension the D-spectra method to K dimensions. It is based on Monte Carlo
simulation for estimating the number of system failure sets having ki com-
ponents of i-th type, i = 1, 2, . . . , K. We demonstrate our approach on a
Barabasi-Albert network with 68 edges and 34 nodes and terminal connec-
tivity as an operational criterion, for K = 2 types of nodes or edges as the
components subject to failure.

Keywords: Network terminal reliability, several types of components,
two-dimensional spectrum, Monte Carlo simulation, two-dimensional
quantile

1. Introduction

Network play a major role as critical infrastructures underpinning our so-
cieties and economies. Very often networks function in the presence of various
disruptions of hacker attacks, natural disasters like earthquakes and natural
degradations, as well as unforseen military and terrorist strikes [2,6,8,11,15,17].
All these circumstances create growing interest to the problems of network
robustness, reliability, and predisaster management [2,4,6,15]. Reliability
and resilience of network-type structures attracted major attention in the
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framework of general network theory, see e.g [2,6,9,13,17]. Typically, the ba-
sic model of a network functioning in the presence of random �attacks� on its
nodes or edges assumed random structure of the network itself, like Poisson
or Barabasi-Albert [1,3,9] and focused on random and independent removal
of nodes and edges. The components subject to failure were assumed to be
identical and independent and the network failure criterion was network dis-
integration or disappearance of the so-called giant component [2,9,11]. The
research in this direction was successfully advanced in [2,18] by using the
results of percolation theory which provided the threshold value of network
components to be removed to cause network failure. The limitation of this
approach, however, is that it is not applicable to some other network failure
criteria, like loss of terminal connectivity, decrease of the largest network
component below some critical size (for �nite networks), and network disin-
tegration into critical number of isolated clusters [5,6].

Very promising direction in the reliability study of network-type struc-
tures is the use of so-called signatures, �rst suggested by Samaniego [12,13,14].
The essential feature of this approach is that it is based on system structural
invariant which depends only on system structure function and does not
depend of probabilistic properties (like lifetime distribution) of system com-
ponents. Despite its elegance and universality with respect to system failure
criteria, it has been e�ciently applied only to systems consisting of one type
i.i.d. or exchangeable components.

The main purpose of the present work is to extend the signature (or
so-called D-spectra) approach [5,6] to network systems consisting of several
groups of i.i.d. components. As a principal example to illustrate our approach
and its abilities we consider a transportation (or supply) network of realistic
size (34 nodes, 68 edges), having as the operational criterion the terminal
connectivity. We consider the case of nodes and edges subject to failure.
In both cases, the components subjected to failure consist of two di�erent
groups of i.i.d. components.

The exposition in the paper is the following. Our approach is an extension
of the D-spectra methodology to the case of heterogeneous network. There-
fore, we start with a short overview of the D-spectra approach to the systems
consisting of one-type components. In this case, the D-spectrum or signature
allows to count the number C(k) of failure sets having k failed components.
With the knowledge of C(k), system DOWN probability can be expressed
automatically. Since the case of K > 2 groups of independent components
is a rather straightforward generalization of the case of K = 2 groups of
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components, we devote the main part of Section 3 to the description of our
approach to the K = 2 case.

When the system has two types of components, the key to the relia-
bility analysis is estimation of the number C(k, r) of so-called (k, r)-failure
sets which have k and r failed components of the �rst and the second type,
respectively. C(k, r) are system structural invariants. Similar to the one-
dimensional case, the estimation of C(k, r) is made via the so-called two-
dimensional spectrum which estimates the frequencies of the (k, r)-failure
sets in a sample of simulated random permutations. We present an e�cient
Monte Carlo algorithm for estimating the two-dimensional spectrum.

In Section 3, we demonstrate how our approach works for a realistic
example of a transportation/supply network with 34 nodes and 68 edges.
The network was designed by using Barabasi-Albert preferential attraction
method [1]. We consider the case of edge failures and two versions of node
failures. We demonstrate how relocation of so-called strong nodes can change
network reliability.

Section 4 is devoted to the analysis of the network failure state under a
random attack on network nodes by a two-type shocks process. Our analysis
allows to de�ne two-dimensional quantile area for the random location of the
�hitting point� of network failure. Finally, in the last Section 5 we present
the formulas generalizing our approach for K > 2 types of components and
some concluding remarks.

2. The Principal model: two types of components

2.1. Network description

Our basic model is a network N = (V,E, T ) where V is a set of vertices
(nodes), |V | = n + k, E is a set of edges (links), |E| = m, and T is a set
of special nodes called terminals, |T | = k, T ⊂ V . Components subject to
failures are either the links or the nonterminal nodes. Edge failure means
that this edge is erased, nonterminal node failure means that all edges in-
cident to this node are erased. In this paper we consider only one form of
network DOWN state - so-called loss of terminal connectivity which means
the network is DOWN if not all its terminal nodes are mutually connected.

In this section we consider the case when components subject to failure
(nodes or edges) consist of two independent groups of i.i.d. components
having lifetime CDF H1(t) and H2(t). So, if the edges fail, ni edges have
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lifetime CDF Hi(t), i = 1, 2, and n1 + n2 = n. If the nodes are subject to
failure, mi of nodes have i.i.d. lifetimes Hi(t), i = 1, 2, and m1 +m2 = m.

To simplify the exposition, we consider in detail the case of two groups of
components in the network. Extension to K > 2 groups is straightforward
and is left for Section 5.

2.2. One type of components

Since the case of two-type of component network is almost a straightfor-
ward generalization of our method of dealing with the standard one-type case,
we remind shortly the basic de�nitions and principal steps for the �standard�
situation where all components have i.i.d. lifetimes with CDF H(t).

Let x = (x1, x2, . . . , xn) be the network component state vector. xi = 1/0
if the i-th component is up/down respectively.

Network state is determined via a binary function ϕ(x) which is 1 or 0
if the network is UP or DOWN, respectively. If ϕ(x∗) = 0, x∗ is called the
failure vector. If we ignore the order of up /down components in this vector,
then x∗ determines a failure set, i.e. a set of j down components and n− j
up components. For simplicity, we call x∗ failure set.

Now de�ne D-spectrum or signature for our network. Let us consider a
random permutation of component numbers

π = (i1, i2, . . . , in).

Suppose that all components are up and, moving from left to right, we
turn them down. Network state is controlled on each step of this destruction
process.

De�nition 2.1. The ordinal number in the permutation π of the component
whose turning down causes network state change from UP to DOWN is called
the anchor of this permutation.

Assume that the permutations π are taken randomly and independently from
the set of all n! permutations. Then the anchor becomes a discrete random
variable with support {1, 2, . . . , n}.

De�nition 2.2. The distribution f = (f1, f2, . . . , fn) of the anchor is called
D-spectrum or signature, (where �D� stands for destruction process of anchor
discovery).
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Remark 2.1. Historically, the signature was �rst introduced by Samaniego
[11] in a form equivalent to De�nition 2.2. Independently, it was described
six years later in [3] under the term Internal Distribution. The authors of
[4,5,6] used the term D-spectra.

De�nition 2.3. Denote by Y the discrete random variable with density f.
Its cumulative distribution function

F0(k) =
k∑

i=1

fi

is called cumulative D-spectrum or cumulative signature.

For networks having more than n = 7− 8 components the calculation of
D-spectra is made by means of an e�cient Monte Carlo algorithm, see for
example [5,6]. This algorithm generates a sample of M permutations and

estimates the frequency f̂(k) of anchor appearance on the k-th position.
Denote by C(k), k = 1, . . . , n, the number of failure sets which have k

components down and (n−k) remaining components up. C(k) is a combina-
torial invariant of the system. Knowing C(k) and the up/down probabilities
p and q = 1 − p of network components, we are able to compute system
DOWN probability as

P (DOWN) =
n∑

k=1

C(k)qkp(n−k). (1)

Let H(t) be CDF of component lifetime τ : P (τ 6 t) = H(t). Denote by
p the probability that the component is up at time t0. Then

p = 1−H(t0), q = H(t0).

Therefore, (1) gives the probability that the network is DOWN at time t0.
Thus, the probability that system lifetime τsys does not exceed t0 is

P (τ 6 t0) =
n∑

k=1

C(k)[H(t0)]
k[1−H(t0)]

(n−k). (2)

The crucial fact in obtaining equations (1) or (2) is the following formula
connecting C(k) and F (k):

C(k) = F0(k)
n!

k!(n− k)!
.
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It can be proved analytically using the formulas of order statistics for random
variables with CDF H(t), see [4], or using combinatorial arguments, see for
example [6].

2.3. Two types of components

Now we turn to the network which has components of two types, namely
there are n1 components of type 1 and n2 components of type 2. For sake of
brevity, we call them x-type and y-type components, respectively, n1+n2 = n.
These x and y- type components have i.i.d. lifetimes, with CDFs H1(t) and
H2(t), respectively.

The key to the principal formula (1) is the knowledge of C(k), the number
of failure sets with k components down. Now, when we have two types of
components, we need to know the values of C(k, r), the numbers of failure
sets which have k down components of x -type and r down components of
y-type, (the remaining (n1− k) and (n2− r) components are up). Then, the
DOWN probability for network with two types of components equals

P ?(DOWN) =
∑

06k6n1

∑
06r6n2

C(k, r)qk1p
(n1−k)
1 qr2p

(n2−r)
2 ,

where q1, q2 and p1 = 1 − q1, p2 = 1 − q2 are down and up probabilities for
x-type and y-type components, respectively.

Similar to the one-type component systems, C(k, r) are invariants de-
pending on system structure function and not depending on component life-
time distributions [6,14].

2.4. Counting (k, r)-failure vectors

In case of two types of components, we have to modify the notation for
system state vector x?. Now it will be an ordered sequence of n1 pairs (xi, I)
for components of x-type and n2 pairs (yj, I) for y-type components, where
x1, . . . , xn1 are the names (numbers) of x-components and y1, . . . , yn2 are the
names of y-components. Indicator I will be 1 or 0, if the corresponding
component is up or down, respectively.

Example 2.1. Consider the network shown on Fig. 1 It has n1 = 3 compo-
nents of x-type - x1 = (b, c), x2 = (b, T ), x3 = (c, T ), and two components of
y-type - y1 = (S, a), y2 = (a, b). The network is DOWN i� there is no S−T
connection.

Consider a vector x? = [(a1, 1), (a2, 0), (a3, 1); (b1, 0), (b2, 0)]. Obviously
φ(x?) = 0, i.e. it is a failure vector of (1,2)-type.
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Figure 1: Network with 5 components. It is UP if there is S − T connection. Edges
(S, a), (a, b) are of y-type, the remaining edges are of x-type

.

Sequential destruction of a random permutation. Consider a ran-
dom permutation π? of n1 x-type pairs mixed randomly with n2 pairs of
y-type. Set I = 1 in all pairs, i.e. initially set all components in up. Start
turning down component after component by moving along the permutation
from left to right. Check system state on each step and locate the �rst com-
ponent (the anchor) when the system goes DOWN. Let the �rst observed
failure set has (u, v)) components of type 1 and type 2, respectively. Con-
tinue turning down sequentially all remaining (n1+n2)− (u+v) components
in the permutation. Note that on each step appears a new failure set.

De�nition 2.4. Random permutation is called of (u, v) -anchor type if its
anchor produces failure set of type (u, v).

De�nition 2.5. Random permutation is called a (k, r) -generator if among
the failure sets revealed during the destruction process after the anchor, there
was a (k, r)- failure set.

Example 2.1 continued.
Suppose we have the following random permutation before the destruction

process starts: π? = [(x1, 1), (x3, 1)(y1, 1), (x2, 1), (y2, 1)]. Below are 5 stages
of the sequential destruction:

1 : [(x1, 0), (x3, 1), (y1, 1), (x2, 1), (y2, 1)].

2 : [(x1, 0), (x3, 0), (y1, 1), (x2, 1), (y2, 1)].

3 : [(x1, 0), (x3, 0), (y1, 0), (x2, 1), (y2, 1)].

4 : [(x1, 0), (x3, 0), (y1, 0), (x2, 0), (y2, 1)].

5 : [(x1, 0), (x3, 0), (y1, 0), (x2, 0), (y2, 0)].
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The anchor is observed on the third step and therefore π? is of (2,1)
anchor-type. Analysing steps 4 and 5, it is seen that π? is also a (3,1) and
(3,2) generator.

De�nition 2.6. Denote by F (k, r) the probability that a random permuta-
tion is of (k, r) anchor-type or is a (k, r)-type generator. Obviously,

F (k, r) =
N(k, r)

(n1 + n2)!
, (3)

where N(k, r) is the number of permutations which are of (k, r)-anchor type
or (k, r)- generators. We call the matrix ‖F (k, r)‖(n1+1)x(n2+1) the two-
dimensional or 2D-spectrum.

De�nition 2.7. Let g(k, r) be the probability that a random permutation
is of (k, r)-anchor type. Obviously,

g(k, r) =
A(k, r)

(n1 + n2)!
,

where A(k, r) is the number of permutations which are of (k, r) -anchor type.

Example 2.1 continued. Let us determine N(2, 1). All permutations of
three x-es and two y-s of type (xi, xj, yl, xs, yz) with one yl on third position
and two x-es among the �rst thee positions, produce failure sets of type
(2,1). By permuting the �rst three elements and the remaining two elements,
and also by replacing y1 by y2 among �rst three elements, we will have 24
permutations for a �xed pair of xi, xj. Since we can choose this pair in
three ways, there is a total of N(2, 1) = 72 permutations. Among them,
there are 8 anchor-type (2,1) -permutations. These permutations must have
yj on the third position, and two x-es on the �rst two positions, like π =
(x1, x3, y1, x2, y2). There are two ways to exchange the positions of x1 and
x3, two ways to exchange y1 by y2 on the third position, and two ways to
exchange components on the fourth and �fth positions. Therefore, for our
network, F (2, 1) = 72/5! = 0.6 and a(2, 1) = 8/120 = 0.0666.

In Table 1 we present the ‖F (k, r)‖ and ‖g(k, r)‖ matrices for system
shown on Fig. 1.
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r k = 0 k = 1 k = 2 k = 3 r = 0 k = 0 k = 1 k = 2 k = 3
0 0.0 0,0 0.2 0.1 0 0.0 0.0 0.2 0.0333
1 0.4 0.6 0.6 0.4 1 0.4 0.3 0.0666 0.0
2 0.1 0.3 0.6 1.0 2 0 0 0 0

Table 1: ‖F (k, r)‖ and ‖g(k, r)‖ matrices.

2.5. Counting the number C(k, r) of (k, r)-failure sets

Here the main role is played by the following Theorem.

Theorem 2.1.

C(k, r) = F (k, r)
(n1 + n2)!

(k + r)!(n1 + n2 − k − r)!
. (4)

Proof: From the description of the sequential destruction of random per-
mutation, follows that a (k, r)-failure set is a �compact� block of (k + r)
components located at the �rst (k + r) positions of the permutation (the
anchor-type or generated failure set). It is also obvious that one permu-
tation can produce not more than a single (k, r) failure set. Permutations
between the members of one such set produce (k + r)! copies of it, and each
copy is a failure set. In addition, there are (n1 + n2 − k − r)! permutations
of the remaining components. Therefore N(k, r) permutations produce

N(k, r)

(n+ k)!(n1 + n2 − k − r)!

original (k, r) failure sets. Remembering (3), we arrive at the desired for-
mula (4). �

The following Corollary establishes the connection between the cumu-
lative one-dimensional D-spectrum F0(k) (see De�nition 2.3) and the 2D-
spectrum.

Corollary 2.1.

F0(w) =

min(n1,w)∑
k=0

F (k, w − k).
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Proof: Suppose that we declare n2 components of y-type to be identical to
the components of x-type. Then each (k, r)-failure set becomes a (k + r) -
failure set in the system having n1 + n2 identical components. Therefore,

min(n1,w)∑
k=0

C(k, w − k) = C(w),

or
w∑

k=0

F (k, w − k) (n1 + n2)!

w!(n1 + n2 − w)!
= F0(w)

n1 + n2)!

w!(n1 + n2 − w)!
,

which proves the Corollary. �
Example 2.1 continued. Let us verify C(2, 1). By (4), C(2, 1) =

0.6·5!/(3!2!) = 6. Indeed, there are 6 failure sets having two x-type and one y-
type component: [x1, x2, y1, ], [x1, x3, y1], [x2, x3, y1], [x1, x2, y2, ], [x1, x3, y2], [x2, x3, y2].

2.6. Simulation algorithm for estimating F (k, r)

Algorithm 1 2D-Spectra
Input: n1 and n2 - the number of x-type and y-type components, respec-
tively. N -number of replications.
Output: Ĝ and F̂ -the estimators of ‖g(k, r)‖ and ‖F (k, r)||, respectively.
1: Set t = 1 and let M1[i, j] and M2[i, j] be two matrices with n1 + 1 rows

and n2 + 1 columns. Put all elements of these matrices to be zero.
2: Generate

∏
t = (

∏(t)
1 , . . . ,

∏(t)
n1+n2

) - a random component permutation.
3: Find the anchor Jt of

∏
t.

4: SetKt and Rt be the number of x-type and y-type components in the �rst
Jt elements of

∏
t. Set M1[i = Kt + 1, j = Rt + 1] = M1[i = Kt + 1, j =

Rt+1]+1 andM2[i = Kt+1, j = Rt+1] =M2[i = Kt+1, j = Rt+1]+1.
5: Set: T1 = Kt and T2 = Rt.
6: for i = Jt + 1 to n1 + n2 do

7: if
∏(t)

i+1 is x-type component then set T1 := T1 + 1,
8: else T2 := T2 + 1.
9: end if

10: M2[T1 + 1, T2 + 1] =M2[T1 + 1, T2 + 1] + 1.
11: end for

12: If t < N set t = t+ 1 and go to Step 2.
13: return: Ĝ = ‖M1‖/N , F̂ = ‖M2‖/N.
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Exact calculation of F (k, r), like it was done in Example 2.1, becomes im-
practical already for n exceeding 6-8. We suggest using a Monte Carlo simu-
lation algorithm for estimation of the F (k, r) probabilities. This algorithm is
based on simulating a relatively large (say 1,000,000) random permutations
and extracting from them information about the number of failure sets. The
algorithm below allows rather e�cient and accurate estimation for networks
with 50-70 components. Note that each random permutation of size n which
has a (k, r)- anchor, produces also n− (k + r) generated failure sets.

This algorithm has been applied to a network with 34 nodes and 68 edges,
see Section 3. Quite accurate estimates of the G and F matrices were obtain
by using N = 106 replications. The CPU time did not exceed 16 sec.

3. Reliability of a Transportation Network

3.1. Description of the network. Unreliable edges

The network is shown on Fig. 2. This is a hypothetical geographically
oriented road network. It is designed as Barabasi-Albert system [1] with 34
nodes and 68 edges. Centrally located node 31 represents the capital city.

Important strategic objects (e.g. hospitals, supply centers, etc) are lo-
cated in terminal nodes 2,5,9,33,34. Thirteen edges are more reliable roads.

(14, 33), (31, 33), (33, 23), (22, 23), (5, 22), (5, 20), (29, 34),

(34, 14), (15, 14), (34, 31), (5, 31), (20, 31), (20, 29).

They form a ring around the capital and also contain several radial roads.
These edges in our notation are the �strong� x-type edges. The remaining
68-13=55 edges are the y-type edges . We remind that network failure means
the loss of terminal connectivity: the network is DOWN if at least one of the
terminals gets separated from other terminals. Edges can fail as a result of
an enemy �attack�, natural disaster or heavy road accidents, see [6,7,10,15].

Table 2 presents P (DOWN) calculated by (3) and Algorithm �2D-spectra�
for F (k, r) estimation, on the basis of generating N = 106 random permu-
tations. The results were checked by crude Monte Carlo simulation, based
also on 106 replications, see Pcmc. As it is seen from the table, the relative
error is quite small which means that the estimation by our algorithm is very
accurate. We see from the table that in order to provide P (DOWN) 6 0.05
it is necessary to have p1 > 0.7 for type y and about 0.8-0.9 for strong edges.
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Figure 2: Transport network with 34 nodes and 68 edges.

Very interesting is the fact that increasing strong edge reliability from 0.9 to
0.99 has relatively little e�ect on P (DOWN).

p2 p1 P (DOWN) Pcmc Rel.err. %
0.5 0.6 0.39536 0.39526 0.10
0.5 0.7 0.34776 0.34749 0.13
0.5 0.8 0.32061 0.31854 0.14
0.5 0.9 0.30799 0.30835 0.14
0.5 0.99 0.30615 0.31641 0.15
0.6 0.7 0.16621 0.16551 0.20
0.6 0.8 0.14808 0.14592 0.25
0.6 0.9 0.13862 0.13725 0.25
0.6 0.99 0.13754 0.13415 0.25
0.7 0.8 0.04932 0.49060 0.45
0.7 0.9 0.04551 0.04450 0.45
0.7 0.99 0.04442 0.04400 0.46
0.8 0.9 0.00877 0.00862 1.10
0.8 0.99 0.00844 0.00834 1.10
0.9 0.99 0.00053 0.00049 0.40

Table 2: P (DOWN) for edge failure: estimated and simulated values, N = 1, 000, 000.
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Figure 3: Contour plot for data of Table 2 (edge failures).

Interesting information is provided by the contour plot on Fig. 3. Area
with P (DOWN) < 0.05 is shown by deep blue color. The adjacent blue area
corresponds to DOWN probabilities in the interval [0.05-0.1].

t p2 = e−2t p1 = e−t P (DOWN)
0.1 0.819 0.905 0.0058
0.2 0.801 0.895 0.0086
0.3 0.779 0.882 0.0132
0.4 0.751 0.867 0.0214
0.5 0.716 0.846 0.0371
0.6 0.670 0.819 0.0692
0.7 0.606 0.779 0.1410
0.8 0.513 0.717 0.3142
0.9 0.368 0.607 0.7010
1.0 0.135 0.368 0.9990

Table 3: P (DOWN) as a function of time.

We also investigated the situation with edges are deteriorating in time.
It as assumed that strong edge reliability p2(t) depends on time as p1(t) =
e−t, and the remaining edges have p2(t) = e−2t. The numerical results are
presented in Table 3.
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3.2. Unreliable nodes

We also have studied the network reliability when the nodes are subject
to failure. Six nodes 20, 22, 23, 28, 30 and 31 are declared to be the x-type
nodes. They include the capital (node 31) and �ve nodes circularly located
around the capital. The remaining 23 nonterminal nodes are of y-type. Table
4 presents the results of the numerical investigation of network reliability.
Again it is seen that our algorithm provides quite accurate results with a
small relative error. Fig. 4. (right) shows the area of parameters (p1, p2)
where the DOWN probability is smaller than 0.05 (shown by deep blue).

In order to see how in�uential is the location of the strong nodes, we re-
located these nodes to periphery. Now nodes 14, 15, 18, 11, 10, 7 are declared
to be strong nodes of x-type. As it could be expected, the network with relo-
cated strong nodes is less reliable, as it is seen from last column P (DOWN)?

of Table 4, and the contour surface plot on Fig. 4, on the left. Deep blue area
shows low P (DOWN) values, and is, therefore, the area of high reliability.
It is considerably larger for the original location of the strong nodes (the plot
on the right).

p2 p1 P (DOWN) Pcmc Rel.err. % P (DOWN)?

0.5 0.6 0.33666 0.33633 0.14 �
0.5 0.7 0.23340 0.23360 0.18 �
0.5 0.8 0.14375 0.14359 0.24 0.26697
0.5 0.9 0.06719 0.06660 0.30 0.20931
0.5 0.99 0.00647 0.00634 0.12 0.16008
0.6 0.7 0.16476 0.16541 0.22 0.19729
0.6 0.8 0.09654 0.09634 0.30 0.14738
0.6 0.9 0.04240 0.04259 0.47 0.10304
0.6 0.99 0.00394 0.00393 1.60 0.06956
0.7 0.8 0.05727 0.05686 0.40 0.06905
0.7 0.9 0.02374 0.02373 0.60 0.04076
0.7 0.99 0.00220 0.00211 2.12 0.02234
0.8 0.9 0.01030 0.01046 0.95 0.01214
0.8 0.99 0.00083 0.00089 3.40 0.00435
0.9 0.99 0.00024 0.00021 6.40 0.00029

Table 4: P (DOWN) for node failure: estimated and simulated values, N = 1, 000, 000
runs.
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Figure 4: Contour plots for data of Table 4. Nodes relocated (left), original - (right)

4. ‖g(k, r)‖ Matrix and �Shock Process� Trajectories

Suppose that the network is subject to a two-dimensional �shock process�
which is a random sequence of type �x�-shocks which hit randomly the strong
components (strong nodes or strong edges), permuted randomly with type
�y�-shocks which hit the weak components. This process stops when the
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Figure 5: Contour plot for ‖g(k, r)‖ matrix
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network fails. As it follows from the de�nition of the permutation destruc-
tion process, the networks fails at the �stopping point� determined by the
permutation anchor. The distribution of the location (x = V, y = U) of the
�stopping point� is shown on Fig. 5 by means of surface contour plot. In this
example the �shocks� kill strong and weak nodes.

The exact probabilistic meaning of this plot is the following. The elements
of matrix G = ‖g(k, r)‖ present the conditional probabilities that the shock
process stops at coordinate (V = k, U = r), given that network is DOWN :

g(k, r) = P ((V = k, U = r)|DOWN),

where V, U are the numbers of strong and weak destroyed components at the
stopping point, respectively.

Let us examine the plot on Fig. 5. The horizontal axis is for weak nodes,
vertical axis - for strong. By deep blue is shown the area where the trajectory
does not stop. Here the trajectory does not stop at all. The adjacent area
(light blue) shows points having stopping probability between 0.005 and 0.01.
Next area closer to the center shows the points having probabilities between
0.01 and 0.015, and so on. So,the point g(V = 2, U = 7) lies in the probability
interval [0.010, 0.015].

The ‖g(k, r)‖matrix is a valuable structural characteristic of the network.
Let us demonstrate its use by investigating so-called �quantile areas�.

Contrary to the de�nition of a quantile for one-dimensional case, for more
dimensions there are many ways to determine the area which has probabilistic
mass q, see e.g. [16]. Let us consider here the triangular areas of type
U + V 6 D. Omitting the routine calculations, we present the following
results for D = 4, 5, 6, 7, 8, 9:

P (U + V 6 4) = 0.0068, P (U + V 6 5) = 0.015, P (U + V 6 6) = 0.030,

P (U + V 6 7) = 0.052, P (U + V 6 8) = 0.084, P (U + V 6 9) = 0.128.

So, for example, the network fails with probability 0.128 if the total number
of failed nodes is less than 9.

Comparing the size of equal quantile areas may serve as an instrument
to compare the reliability of alternative structures. For example, structure
A is more reliable than structure B if the two dimensional 0.1-quantile area
DA(q = 0.1) for A is larger than the similar area DB(q = 0.1) for structure B.
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5. More than two types of components � concluding remarks

Suppose that the network has K > 2 di�erent groups of i.i.d. compo-
nents. Then the expression for network DOWN probability will be a natu-
ral extension of (3) to more variables. Denote by ni the number of i-th type
components, n1 + 22 + . . . , nK = n, and let C(x1, . . . , xK) be the number of
failure sets having xi components of i-th type down, i = 1, .., K. Then

P (DOWN) =
∑

06xi6ni,i=1,...,K

C(x1, x2, . . . , xK)
K∏
i=1

qxi
i

K∏
i=1

pni−xi
i .

The main problem remains estimation of C(x1, . . . , xK), the numbers of
failure sets.This can be done in the framework of the above described Algo-
rithm, with obvious modi�cations. Now the random permutation will have
K types of symbols for denoting components of K groups, and now the fail-
ure sets of anchor-type and of generated type will have xi components of
i-th type, i = 1, . . . , K For K = 3, for example, the F -matrix will become a
three-dimensional cubic matrix.

There are several important issues left outside the scope of the present
paper. Let us mention on the �rst place the investigation of component im-
portance, see e.g. [5]. Similar to the networks with one type of components,
for several types of components, importance issues are the key to optimal net-
work design and to the �nomination� of the components to be the �strong�
ones.

Very interesting would be also to compare several competing network
structures by analyzing their q-quantile �areas�, as it was brie�y discussed in
Section 4. We leave these issues for the future research.
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