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Abstract. A new approach to optimal maintenance of systems (networks)
is suggested. It is applied to systems subject to two external independent shock
processes. A system ’consists’ of two parts and each shock process affects only
its own part. A new notion of bivariate signature is suggested and used for
obtaining survival characteristics of a system and further optimization of the
preventive maintenance actions. The PM optimization is considered in the
univariate discrete scale that counts the overall numbers of shocks of both
types. An example of a transportation network is considered.
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1. Introduction

The goal of this paper is to introduce a new approach to optimal maintenance
of systems (networks) subject to two deterioration processes via constructing
a single (univariate) scale. We consider the case when this deterioration is
induced by two external shock processes and, therefore, is discrete in nature.
The univariate scale ’is counting’ the overall number of shocks experienced by
a system and thus can be considered as ’time free’, similar to our previous
work on univariate deterioration (see later). We see a remarkable potential in
the suggested approach that can be applied in the future to other important
in reliability practice settings.
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The literature on optimal preventive maintenance of technical systems con-
sists of thousands of entries starting with the ground-breaking paper by Barlow
and Hunter (1960) and followed by numerous papers and a number of mono-
graphs entirely devoted to this problem (e.g., Gertsbakh, 2002; Nakagawa,
2008; Wang and Pham, 2006). Most of the developed models deal with ei-
ther periodic strategy, where preventive maintenance (PM) is conducted at
deterministic or random instants of time or the age-based strategies, when the
next PM is performed at the time defined by the last failure (repair) or by the
state (condition) of an item. The latter is usually called the ”condition-based
maintenance” (see, e.g., Castro et al., 2013; Nicolai, 2008; Pham, 2012 and
references therein). It is important to note, that to the large extent, the PM
literature is devoted either to single unit systems or to simple multi-unit sys-
tems such as series systems. More complex structures such as networks usually
do not allow for tractable PM solutions.

In Finkelstein and Gertsbakh (2015, 2016)) we were the first to use signa-
tures of coherent systems (networks) for obtaining the corresponding optimal
preventive maintenance strategy. We have considered the n-component sys-
tems subject to a process of shocks. It was assumed that each shock ’kills” at
random one operating at this time component and that the shock process is
the only source of system failures. Our main goal was to consider this problem
in the time-free framework. It was shown that conventional analysis in the
time scale requires the Poisson assumption on the process of shocks and even
in this case derivations of the corresponding cost per unit of time function are
rather cumbersome. Therefore, we have considered the problem of optimal
PM in the time-free way employing the new alternative discrete scale. The
main advantage of the developed approach is that the type of the process of
shocks does not matter and that only the shocks counts are important. The
optimal PM had to be performed after a shock with the obtained number, or
on the failure of a system (repair), whichever comes first. We briefly review
the details of these approach in the next section.

In the current paper we will consider the case when the system is subject
to two independent shocks processes affecting its different parts. For instance,
one process can affect only edges and the other only nodes of a network. The
main question is: how to obtain the optimal strategy in the time-free approach
for this ’bivariate’ case? We will show that some practical and meaningful
assumptions allow for reducing the bivariate problem to the univariate one.

A natural object for applying in the future the developed theory is, the
so-called, multiplex network, (see for example Baxter et al. (2016)). These
networks have several sets of edges and a single set of nodes. For convenience,
the edges can be characterized by different colors. For example, in a multiplex
network, the green edges can correspond to the water supply and red edges
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can correspond to the power supply. The edges can fail due to shocks from
two different shock processes. The first shock process affects only the green
edges, whereas the second one affects only the red edges. The network failure
can be defined, for example, as an event when the number of nodes receiving
water and power supply falls below some critical level. The detailed example
of a simpler network is considered in Section 5. There are two types of nodes
in this network and each shock process affects only its own part, whereas the
edges are not affected by shocks.

The paper is organized as follows. In Section 2, we briefly review the uni-
variate case (one shock process) and discuss an important for further presen-
tation interpretation of the univariate setting. In the methodological Section
2, we consider the case of two ’parts’ of our system in series with each shock
process affecting only its own part. In Section 4, a more general case under
additional assumptions is considered. An example is presented in Section 5.
Finally, brief concluding remarks are given in Section 6.

2. Preliminaries. One process of shocks

Our previous work (see Finkelstein and Gertsbakh (2015, 2016)) was using
signatures as a crucial tool of the developed approach to optimal PM, there-
fore, let us first briefly recall the basics of this approach. We have considered
n-component systems subject to an orderly (without multiple occurrences)
process of shocks (each shock ’kills” at random one operating at this time
component and it is the only source of failures). In the next sections we will
generalize the setting to the bivariate case when a system is subject to two
point processes of shocks.

It is well known that the structure function of the coherent system with i.i.d.
components can be effectively defined by the values of the discrete distribution
(f1, f2, ..., fn) where fi is the probability that the system failure takes place at
the i-th consecutive failure of a system’s component (Samaniego, 1985, 2007;
Gertsbakh and Shpungin, 2011). The corresponding discrete distribution

F (x) =
x∑

i=1

fi, (1)

is sometimes also called the cumulative D-spectrum (Gertsbakh and Shpungin,
2009). It is clear that we can describe our setting by signatures as well. Thus,
with the ith shock 1 ≤ i ≤ n , the system fails with probability fi.

When the system fails, all failed components are replaced and the system
continues operation. For simplicity, all repair actions are assumed to be in-
stantaneous. As with each survived shock, the number of failed components
is increasing and it is maximal (n) at failure of the system, it can be cost-wise
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reasonable to perform the PM action replacing all failed components. As often
in the PM problems we adopt the criterion of the minimal long-run expected
costs per unit of ’time’ for obtaining the optimal level of PM. The ’time’ is now
counted in the new discrete scale, which is the number of shocks experienced
by a system. In accordance with the definition of the signature, the expected
cost of a renewal of the failed system (to ”as good as new state”) is defined as

c0(f1 + 2f2 + ...+ nfn) + cER, (2)

where the first term is the expected cost of the failed components and cER is the
additional cost for ’emergency repair’. As degradation in our model is mono-
tone and is induced by shocks experienced by a system, we can consider the
corresponding number of shocks as a new alternative scale (discrete). There-
fore, we want to find an optimal k for the PM replacing all failed components
that will minimize the corresponding long-run cost per unit of ’time’.

The mean length of the renewal cycle with the PM scheduled at (just after)
the kth shock, 1 ≤ k ≤ n− 1,is (Finkelstein and Gertsbakh, 2015):

L(k) =
k∑

i=1

ifi + k(1− F (k)) (3)

and the average cost per cycle is

(1− F (k))(kc0 + cPM) +
k∑

i=1

(c0i+ cER)fi, (4)

where the PM action is performed replacing k failed components with the ad-
ditional PM cost cPM . Then the average cost per unit of ’time’ is C(k) =
D(k)/L(k) and the corresponding optimization problem is to find k∗ that sat-
isfies

C(k∗) = min
k

(C(k), k = 1, 2, ..., n).

In Finkelstein and Gertsbakh (2015) this optimization problem was ana-
lyzed and illustrated by the network with 34 links and 24 nodes and the optimal
k∗ was numerically obtained. In Finkelstein and Gertsbakh (2016) these re-
sults were extended to the case when each shock kills one of the components
with probability p and it survived with probability 1− p.

We will now present another simple but meaningful for further discussion
in this paper and for the future work interpretation of the above setting with
one shock process. Consider an object (e.g., material, system) with a ran-
dom strength described by the Cdf F (x) with support in [1, 2, ...,∞];F (0) =
0, F (∞) = 1. Denote the corresponding pmf by (f1, f2, ..., ), f0 = 0 and as-
sume that each shock affecting our object decreases its strength by one unit.
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Alternatively, we can describe the setting in terms of degradation, i.e., there
is a random threshold for the accumulated degradation; each shock increases
degradation on one unit and an object fails when the accumulated degradation
reaches this threshold. Thus F (x) in (1) gives now a probability that an object
will be destroyed after x shocks. Note that fi ̸= 0, i ≥ 1 in this setting. When
the object fails, the object is perfectly repaired meaning that degradation is set
to the initial level and it continues operation. For simplicity, all repair actions
are assumed to be instantaneous. As previously, it can be cost-wise reasonable
to perform the PM action that decreases degradation to initial level. Thus c0
now defines the cost of decreasing degradation on one unit and cPM and cER

have the same meaning as previously. Obviously, the optimization problem is
formulated in the same way and equations (2)-(4) hold with the slight differ-
ence that the support of our distribution is now [0,∞), but the finite upper
bound can be also considered in this interpretation as well.

Another important distinction of this interpretation from the one consid-
ered in our previous work, is that now we can consider the imperfect PM, i.e.,
the degradation can be reduced not to the initial ’perfect’ level but to the
intermediate one. However, this topic needs further investigation.

3. Two shock processes. Series system

Assume first, that our system consists now of two independent parts in series
and each shock process affects only its own part. For definiteness, assume that
the survival of each part is described via the random strength concept as above.
The example of a more general system (not a series one) will be considered
in Section 4. The assumption of independence here is important, as it will
allow us to formulate the optimization problem explicitly and to understand
the meaning of the main role players for a general case, where the explicit in
the defined sense formulation is not possible or too complex.

Assume that the shock processes are independent and they are the only
causes of failures of a system. Denote by X and Y the random number of
shocks till failure for the first and the second part, respectively. Let

F 1(x) = P [X ≤ x] =
x∑
0

f 1
i , f

1
0 = 0, x ∈ [0, 1, 2...,∞);

F 2(y) = P [Y ≤ y] =
y∑
0

f 2
i , f

2
0 = 0, y ∈ [0, 1, 2, ...,∞).

Then, obviously, due to independence, the corresponding bivariate Cdf and
the survival functions are given as

F (x, y) = Pr[X ≤ x, Y ≤ y] = F 1(x)F 2(y) =
x∑

i=0

y∑
j=0

f 1
i f

2
j ,
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F (x, y) = Pr[X > x, Y > y] = F
1
(x)F

2
(y) = (1−

x∑
0

f 1
i )(1−

y∑
0

f 2
y ).

The survival function for our series system is the same as above, i.e.,
F s(x, y) = F (x, y), whereas the probability that a system will fail if it ex-
periences not more than x and y shocks, respectively, is

Fs(x, y) = 1− F s(x, y) = F 1(x) + F 2(y)− F 1(x)F 2(y). (5)

Alternatively, we can also write the following representation,

F (x, y) =
x∑

i=0

y∑
j=0

fij, f00 = 0, (6)

where fij can be interpreted as the analogue of the univariate signature in the
bivariate case: it is the probability that the system will fail on the (i + j)th
shock, were i is the number of shocks of the first type and j is the number
of shocks of the second type. As the shocks arrive consequently, obviously, in
this case the system can fail only either on the ith shock of type 1 (after expe-
riencing j shocks of type 2) or on the jth shock of type 2 (after experiencing
i shocks of the first type). Note that summation starts from 0 as the failure
can occur even if there are no shocks of one type. The corresponding matrix
||fij||∞i,j=0 can be considered as a definition for the new notion of the bivariate
signature for the described specific case.

Due to the independence of the parts of our series system we can define fij
in (6) explicitly via univariate signatures as

fij = f 1
i + f 2

j − f 1
i f

2
j , (7)

which is consistent with (5) and (6), as substituting (7) into (6) results in (5).
It follows from our description, that distinct from the univariate case, fij is not
the probability mass function for F (x, y) as Pr[X = i, Y = j] = f 1

i f
2
j ̸= fij.

After these preliminary considerations, we will discuss now how to reduce
our setting to the one dimensional case in order to proceed with optimal PM
of the system. Note that we observe two independent shock processes and the
overall state of the system. Thus our information is: the numbers of shocks of
each type experienced by the system and the event of a failure of a system if it
occurs. Ideally, we would like to stop and perform the PM at some values of x
or y or on failure of a system, whichever comes first (the bivariate setting). This
can be hopefully done via the corresponding numerical bivariate optimization.
However, it can be more practically efficient to reduce the problem to univariate
optimization via one alternative scale. There can be various ways of choosing
one equivalent scale. This topic was considered previously in the literature
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only for the continuous scales, e.g., time and mileage (see Kordonsky (1997),
Finkelstein (2004,2008)), whereas we are dealing here with the discrete ones.
For instance we can ’forget’ about one shock process and count the shocks only
from the other one and then solve the optimization problem for the univariate
case described in the previous section. This, of course, can lead to substantial
errors. On the other hand, we can count all shocks and define the overall shock
number for the PM that minimizes expected costs per unit of ’time’. This
approach seems reasonable but requires additional assumptions or knowledge
of the relevant characteristics of the shock process. In what follows, we will
deal with this reduction to a single univariate scale and leave the discussion of
the formal bivariate (multivariate) settings for further studies.

Assume that we have additional information on the shock processes of the
following nature. We assume or know that the resulting (univariate) shock
process is the mixture of two independent shock processes: each event from
this process is of type 1 with probability p and of type 2 with probability
1 − p. Thus, we will count the arriving shocks without distinguishing the
types (sometimes in applications we even do not observe the type of a shock)
and make our decision to perform the PM based on the number of observed
shocks. This model takes into account different rates of the shock processes.
Denote the rates of the overall processes by r(t). Then, in accordance with
our assumption it can be written as,

r(t) = r1(t) + r2(t) = pr(t) + (1− p)r(t),

where r1(t) and r2(t) are the rates of the shock processes affecting each part
of the system, respectively. However, as we are not considering the problem
in the time scale, we will need only the mixing probability p.

We must modify the procedure of the previous section for the described
setting. We will need to obtain the equation for the univariate signatures for
the system in this case via the univariate signature for the parts. We cannot
use (7) for this as the mixing probability should be involved now. Therefore,
(7) can be ’modified’ to

fij,p = pf 1
i + (1− p)f 2

j , i, j ≥ 0, f00 = 0. (8)

where the sub index ”p” indicates that this variant of the signature already
takes into account the specific shock process. The meaning of (8) is as follows.
The system had experienced i + j shocks. If the last shock was of the first
type than the probability of failure is pf 1

i and (1− p)f 2
j , otherwise. Let us call

the corresponding matrix ||fij,p||∞i,j=0 the bivariate p-signature for our system.
Obviously

∑∞
i=0

∑∞
j=0 fij,p = 1, which follows from (8) and the definitions of

the univariate signatures.
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In order to obtain the univariate signature, we will count now the overall
number of shocks experienced by the system and will denote it also by i. Thus
the probability that the system will fail on the i-th shock in the described mixed
process, i.e., fsi,p, i = 1, 2, ...,, and the corresponding cumulative distribution
can be obtained respectively as

fsi,p =
i∑

m=1

Ci
m−1p

m−1(1− p)i−m+1(pf 1
m + (1− p)f 2

i−m), Fsp(x) =
x∑
1

fsi,p. (9)

where (fs1,p, fs2,p, ..., fsn,p, ...) can be interpreted as the univariate p-signature
of our system and Cn

k = n!/(k!(n − k)!) denotes the number of combinations
of k-out-of n.

The structure of (9) is as follows: if, for instance, with probability p the
last shock is of the first type, then the probability of the failure of the first part
on this shock is f 1

m (if it was the m-th shock of type 1) and we must multiply
it by the corresponding binomial probability. The similar reasoning applies to
the second term.

The PM decreases the accumulated degradation to a zero level for each
part of the system. Then, similar to (3), the mean length of the renewal cycle
with the PM on the k-th shock (or the renewal on the failure, whichever comes
first) is

Ls(k) =
k∑

i=1

ifsi,p + k(1− Fsp(k)). (10)

Recall that each shock increases degradation on one unit, but generally
these units are different for different parts of our system. If they are the same
c01 = c10 = c0, then the average cost on a cycle is similar to (4):

(1− Fsp(k))(kc0 + cPM) +
k∑

i=1

(c0i+ cER)fsi,p, (11)

and we can proceed with optimization in the same way as in the previous
section, just substituting fi by fsi,p obtained in (9). However, if they are
different,

Ds(k) = (1− Fsp(k))
k∑

m=0

Ck
m(p

m(1− p)i−m(c01m+ c02(k −m) + cPM)

+
k∑

i=1

i∑
m=1

Ci
m−1(p

m−1(1− p)i−m+1((pf 1
m(mc01 + cER) +

(1− p)f 2
i−m((i−m)c02 + cER)). (12)

Indeed, the first term in the right hand side of (12) corresponds to the mean
cost on the renewal cycle for the case when the system did not fail. When
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c01 = c02 = c0 it obviously reduces to the first term in the right hand side of
(4). The structure of the second term is based on the univariate signature (9).
Then the average cost per unit of ’time’ is

Cs(k) =
Ds(k)

Ls(k)
(13)

and the corresponding optimization problem is

Cs(k
∗) = min

k
(Cs(k), k = 1, 2, ...).

In practice, C(k) can be numerically obtained for each k > 1 and the mini-
mal value chosen. It follows also from general considerations, that there should
be an optimal solution for the sufficiently large cER− cPM . The procedure and
reasoning are the same for the finite number of shocks. For instance, this oc-
curs when each part of a system contains the finite number of components and
the shock of each kind kills with equal probabilities one operating component
of the corresponding part (Finkelstein and Gertsbakh, 2015).

The reasoning of this section has an important methodological aspect. We
define and discuss the notion of bivariate signatures for the simple series sys-
tem. In the next section a more general case will be considered and later
illustrated by a practical example.

4. Two shock processes. General system

Consider now a general, not necessarily series system with two parts or, better
to say, with two types of components (edges and links, of a network, or weaker
and stronger components, for example). The first shock process affects only
the components of the first type, whereas the second shock process affects
only the components of the second type. The shock processes are statistically
independent. Can we generalize our approach with a single alternative scale
of the described above type to this case? It turns out that the reasoning
can be even simpler than in the previous section, however, we need stronger
assumptions for implementing our approach.

Let, as previously, in the independent case, ||f̃ij|| be the bivariate signature
of our system: the probability of its failure either on the i-th shock of the first
type or on the j-th shock of the second type (see the definition in the previous
section). However, apart from the division into two parts, our system has a
general, not specified structure. Therefore, we do not have explicit expressions
similar to (7) and (8) and as a result, we cannot proceed in the same line simi-
lar to equations (9)-(12). Knowing the structure and the dependence structure
between the parts, we probably can proceed for some special cases, but hav-
ing in mind further PM optimization, the problem seems to be too complex.
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Therefore, we will move in the following direction. Assume that for the spec-
ified mixed shock process (with its p and 1 − p) we can perform a simulation
experiment for our system and obtain in this way the matrix ||f̃ij,p|| directly
(see the next section for the corresponding example). Alternatively, these val-
ues can be obtained from the ’historical data’ if relevant. Thus the elements
of this matrix, distinct from the previous section are already obtained for the
given shock process, whereas in the previous section, (8), due to independence
is defined via the corresponding univariate signatures.

It follows from our definition that:

∞∑
i=1,j=1

f̃ij,p =
∞∑
i=1

∞∑
j=1

f̃ij,p = 1. (14)

Similar to the previous section, we will perform now the reduction to the
univariate scale and denote the probability that the system will fail on the
i-th shock in this scale by f̃si,p, i = 1, 2, .... Obviously, the discrete distribu-

tion (f̃s1,p, f̃s2,p, ..., f̃sn,p, ...) can be interpreted as the corresponding univariate
signature. Thus similar to (9), but for a more general case,

f̃si,p =
i∑

m=0

f̃m,i−m,p, (15)

and

F̃s,p(x) =
x∑

i=1

f̃si,p. (16)

It should be noted once again that in (9) we had an explicit expression for the
univariate signature (series system) and in (15) (general system) the bivariate
p-signature ||f̃ij,p|| is obtained from the simulation experiment.

As previously, let the PM be performed just after the shock with the number
k or after the failure, whichever comes first. The mean length of a cycle has
the similar to (8) form:

L̃s(k) =
k∑
1

if̃si,p + k(1− F̃sp(k)), (17)

where f̃sp and F̃sp(x) are defined now by (15) and (16), respectively. Due to
methodological and practical reasons, let us make simplifications in the cost
structure, as compared with the cost structure in the previous section. Let any
PM (after a shock of an arbitrary number) has the cost cPM < cER which is
similar to the classical PM problems for the continuous case (see, e.g., Barlow
and Hunter ( 1960), Nakagawa (2008)). Note that cPM and cER are now not
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the additional costs as in the previous sections but the overall costs of PM and
emergency repair.

Then the expected cost on the cycle is (see, e.g., Barlow and Hunter (1960),
Ross (1996), Wang (2002), Wang and Pham (2006), Nakagawa (2008) for the
corresponding continuous case)

D̃s(k) = (1− F̃sp(k))cPM + cERF̃sp(k) (18)

and the cost per ’unit of time’ is defined also by

C̃s(k) =
D̃s(k)

L̃s(k)
.

Of course, when we suggest different costs of PM for both parts similar
to what we have in the previous section, the situation is more complex and
probabilities of the events of the shocks of the two kinds should be involved.
In this case, the structure of the system should be employed.

The corresponding optimization problem for finding optimal k∗ that mini-
mizes this ratio is formulated as above:

˜Cs(k∗) = min
k

(C̃s(k), k = 1, 2, ...).

Note, if our system can experience only finite number of shocks of both types
(say n and l), then fij,p = 0 for j ≥ n and j ≥ l, which means that if necessary
the corresponding cells in the matrix should be populated by zeroes (see the
example below).

5. Example

As a numerical example, we consider a transportation network with 34 nodes,
and and 68 edges (Barabasi-Albert,1999). Five nodes of the network are ’de-
clared’ as terminals, whereas the remaining 29 nodes are subject to failures.
The nodes are of two types: six ”strong” nodes and 23 ”weak” nodes. The
network (nodes) is subject to a mixed shock process. Each arriving shock
destroys one of the operable strong nodes with probability p=0.25 and with
probability 1− p = 0.75 it destroys one of the operable weak nodes.

Network failure is defined as the loss of terminal connectivity, i.e., one or
several terminals become isolated from other terminals. The described settings
can be also interpreted in terms of the enemy attacks on some infrastructures.

For the sake of further notation in this example, let us re-denote fij as fxy
and omit the ’wave’ over fxy. We have simulated the shock process affecting
our network and obtained the estimates of the fxy values. We remind that fxy
is the probability that the network fails either on the xth failure of the weak
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node or on the yth failure of the strong node. Fig 1 presents the ||fxy|| matrix
in the form of the map. The horizontal axes is for the weak nodes (x) and the
vertical axes is for strong ones (y).

0 5 10 15 20

0

2

4

6

8

Figure 1: The map of ||fxy||. In the dark area, the cells fxy are zeroes, and
each change of the intensity of color marks the increase of fxy by 0.05. The
central area correspond to the values of fxy above 0.03.

We have calculated f̃si,p values following (15), and F̃sp(i)- following (16).
The graph of F̃sp(i) is presented in Fig 2, We see that the network failure
can occur starting already with i = 5 shocks and it will be destroyed with
probability 1 after 28 shocks.

5 10 15 20 25
k

0.2

0.4

0.6

0.8

1.0

Fs

Figure 2: The graph of F̃sp(k).
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After obtaining the values of f̃si,p and F̃s(i) and using (17) and (18), we
can obtain now the optimal value of k that defines the optimal maintenance
strategy. Let cER = 1, and cPM = 0.1, 0.2, 0.3. Fig 3 shows the corresponding
curves for C̃s(k) for these values of cPM

5 10 15 20 25
k

0.02

0.04

0.06

0.08

0.10

C k

Figure 3: The C̃s(k) curves for: cPM = 0.1 (lower), cPM = 0.2 (middle) and
cPM = 0.3 (upper).

It can be seen from these graphs that the optimal PM ’time’ is on the 7th
shock (for cPM = 0.1), on the 8th shock for cPM = 0.2, and after observing 10
shocks for cPM = 0.3. The he optimal PM policy gives a significant cost reduc-
tion, as compared to ”repair only at system failure” policy that corresponds
to k=28 (approximately twice (!) for the middle curve).

6. Concluding remarks.

The conventional PM literature considers either single unit systems or simple
multi-unit, e.g., parallel-series systems. More complex structures such as net-
works usually do not allow for tractable optimal PM solutions. Our approach
deals with these systems for the specified setting.

The goal of this paper is to generalize our approach suggested in Finkelstein
and Gertsbakh (2015, 2016) to the case when a system (network) is subject to
two types of independent shock processes and each shock can affect only its own
part of a system. This generalization appeared to be not straightforward at
all and we had to come up with the new notion of the corresponding bivariate
signature and the new procedure for the conversion of the problem from the
bivariate to the univariate case. In order to do so, an alternative single discrete
scale was suggested.

The essence of our approach is to use the overall number of shocks (of both
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types) experienced by a system as a discrete parameter for minimization of the
long-run costs per unit of ’time’. Thus the optimal PM is performed after the
shock with the obtained optimal number or the replacement of the whole failed
system occurs, whichever comes first. For finding the optimal solution, we need
only the bivariate signature of the system (and the corresponding basic costs),
which dramatically differs from the conventional age-based or condition-based
approaches to preventive maintenance.

We have demonstrated how our approach works for an example of a road
(communication) network subject to a combined ”attacks” on its nodes. It
was shown that the optimal PM can decrease substantially the long-run costs.

The developed theory can be also applied in the future to the, so-called.
multiplex networks (see Baxter etal 2016). These networks have several ”lay-
ers” of edges connecting the same set of nodes. For convenience, the edges can
be characterized by different colors. For example, a multiplex network with
green and red edge sets is a natural representation of a supply network, where
the green edges correspond to the water supply and the red edges correspond to
the power supply. The edges can fail due to shocks generated by two external
shock processes. The first shock process affects only the green edges, whereas
the second one - only the red edges. The network failure can be defined, for
example, as an event when the number of nodes receiving water and power
supply falls below some critical level,
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