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Abstract

In this paper we show how the permutation Monte Carlo method, orig-

inally developed for reliability networks, can be successfully adapted for

stochastic flow networks, and in particular for estimation of the probability

that the maximal flow in such a network is above some fixed level, called

the threshold. A stochastic flow network is defined as one, where the edges

are subject to random failures. A failed edge is assumed to be erased (bro-

ken) and, thus, not able to deliver any flow. We consider two models; one

where the edges fail with the same failure probability and another where

they fail with different failure probabilities. For each model we construct a

different algorithm for estimation of the desired probability; in the former

case it is based on the well known notion of the D-spectrum and in the

later one - on the permutational Monte Carlo. We discuss the convergence

properties of our estimators and present supportive numerical results.

Keywords. Permutation, Performance Analysis, Reliability Networks,

Stochastic Flow Networks.
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1 Introduction

The purpose of this paper is to investigate the probabilistic properties

of the maximal flow in a network with randomly failing edges. Edge

failure means that it is erased (broken) and is not able to deliver any flow.

Because of the randomness of these failures, the maximum flow from the

source to the sink is also a random variable. We call such a network, the

stochastic flow network.

Before proceeding let us define formally our network. The network is

a triple N = (V,E,C), where V is the set of vertices (nodes), |V| = n,

E is the set of edges, |E| = m, and C is the set of edge capacities C =

(c1; . . . ; cm), where ci is an item of type ci = {(a, b), wi} , where wi is

the maximal flow capacity from node a to node b along the directed edge

(a, b). In case that there are directed edges from a to b and from b to a,

these edges get different numbers, say r and s, and C will contain two

items of the above type: cr = {(a, b), wr} and cs = {(b, a), ws}.
Denote by s and t the source and sink nodes of the network. Denote

next by M the maximum flow when all edges are operational. Note that

3



there exist an extensive literature with several fast polynomial time al-

gorithms for finding the maximum flow in networks with perfect edges

[1]. Unless stated otherwise we shall use the Goldberg-Rao algorithm [13]

with the complexity O(min(|V | 23 ,
√
|E|)|E| ln( |V |2

|E| ) ln(U)), where U is the

largest edge capacity in the network.

The main goal of this paper is to obtain the probability that the max-

imal flow in a stochastic flow network is below some fixed level Φ =

γM, (γ < 1), called the threshold. We say that the network is in DOWN

state if its maximal flow is below Φ, otherwise it is in UP state. It is im-

portant to note that if the maximal flow drops to zero, the network (s and

t nodes) become disconnected. Therefore, the flow model can be viewed

as a generalization of the s− t connectivity in the classic reliability model

[9], which is based on the permutational Monte Carlo (PMC) method.

There exists a vast literature on stochastic flow networks with a number

of clever algorithms. For a good survey see [16] and the references therein.

It is not our goal to evaluate the PMC method for flow networks versus

its alternatives, but rather to show the beauty of this method, discuss its

convergence properties and present supportive numerical results.

We consider the following two models:

Model 1. All edges fail independently with the same failure proba-

bility q. For this model our goal is to find the probability P(DOWN ; q)

that the network is DOWN as a function of q, 0 < q ≤ 1.

Model 2. All edges fail independently, with arbitrary failure prob-

abilities q1, . . . , qm. For this model our goals is to find the probability

P(DOWN ; q) for fixed vector q = (q1, . . . , qm).

The rest of the paper is organized as follows. In Section 2 we consider

Model 1 and derive a closed expression for the function P(DOWN ; q).

It is based on the D-spectrum, which represents the distribution of the

so-called anchor for randomly generated permutations and which is ap-

proximated via a Monte Carlo procedure. The D-spectrum has been

widely used in the literature on stochastic network reliability analysis

[5, 4, 12, 7, 8, 9, 10, 11]. Numerically it is identical with the so-called

signature introduced in [19] and later on independently by [5] under the

name Internal Distribution (ID). Here we will also consider the main prop-

erties of the D-spectrum and its usefulness to stochastic flow networks, as

well as present numerical results for a flow network.
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Section 3 is devoted to Model 2 and in particular to estimation of

P(DOWN ;q) for non equal components of the vector q. Here we in-

troduce a specially designed evolution, also called construction or birth

process, first introduced in [5] and then widely used in network reliability

analysis [9, 15].

We describe in detail the procedure of obtaining permutations for this

process and construct an efficient Monte Carlo estimator for P(DOWN ;q).

A numerical example concludes this section.

Section 4 extends Model 2 to the case of random capacities. We show

that although the estimator of P(DOWN ;q) is not as accurate as in the

case of the fixed capacity vector C, the algorithm derived for fixed C

is also applicable here. A numerical example supporting our findings is

presented as well.

Section 5 presents concluding remarks and some directions for further

research.

2 Max Flow with Equal Failure Probabilities

Here we derive an analytic expression for P(DOWN, q) while considering

the Model 1, that is for the one with equal failure probabilities of the

edges. Our derivation is based on the notion of D-spectrum [9].

2.1 D-spectrum and its Properties

Denote network edges by e1, e2, . . . , em. Suppose that all edges are initially

operational and thus the network is UP . Let π = (ei1 , . . . , eim) be a

permutation of the network edges. Then the D-spectrum algorithm can

be described as follows:

Algorithm 2.1 (D-spectrum Algorithm ) Given a network and a

set of terminal nodes s and t, execute the following steps.

1. Start turning the edges down (erase them) moving through the per-

mutation from left to right, and check the state (UP/DOWN ) of the

network after each step.

2. Find the position of the first edge ir when the network switches from

UP to DOWN. This can be done, for example, by using the Goldberg-

Rao maximum flow polynomial algorithm (oracle) [13]. The serial
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number r of this edge of π is called the anchor of π and denoted as

r(π).

3. Consider the set of all m! permutations and assign to each of them

the probability 1/m!

4. Define the event A(i) = {r(π) = i} and denote fi = P(A(i)). Obvi-

ously,

fi =
# of permutations with r(π) = i

m!
. (1)

The set of {fi , i = 1, . . . ,m} defines a proper discrete density func-

tion. It is called the density D-spectrum, where ”D” stands for ”de-

struction”.

5. Define the cumulative D-spectrum or simply D-spectrum as

F (x) =
x∑

i=1

fi, x = 1, . . . ,m. (2)

Note that Algorithm 2.1 can be speeded up by using a bisection proce-

dure for turning edges down instead of the sequential one-by-one. This is

implemented in our main permutational Algorithm 2.2 below.

The nice feature of the D-spectrum is that once F (x) is available one

can calculate directly the sought failure probability P(DOWN ; q) (see (4)

below). Indeed, denote by N (x) the number of network failure sets of size

x. Note that each such set is a collection of x edges whose failure result

in DOWN state of the network. So, if the network is DOWN when edges

Ax = {ej1 , . . . , ejx} are down (erased), and all other edges are operational,

we say that Ax is a failure set of size x. It is readily seen that

N (x) = F (x)

(
m

x

)
. (3)

This statement has a simple combinatorial explanation: F (x) is a frac-

tion of all failure sets of size x among all subsets of size x taken randomly

from the set of m components.

From (3) we immediately obtain our main result for Model 1.

P(DOWN ; q) =
m∑

x=1

N (x)qx(1− q)m−x. (4)
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Indeed, (4) follows from the facts that

• Network is DOWN if and only if it is in one of its failure states.

• For fixed q each failure set of size x has the probability ρx = qx(1−
q)m−x.

• All failure sets of size x have the probability N (x)ρx .

Example 2.1 Figure 1 represents a simple directed graph with n = 3

nodes denoted by s, b, t (s and t being the source and the sink), m = 3

edges denoted by sb, bt, st and a 3-dimensional flow capacity vector C =

(sb, bt, st) = (1, 2, 2).

��

�

� �

�

Figure 1: A network with e1 = (s, b), e2 = (b, t), e3 = (s, t) and capacity vector

C = (1, 2, 2)

It is easy to check that the maximal flow is M = 3. Assume that

Φ = 2, that is the network is DOWN when the max flow drops below

level 2. Let us find its D-spectrum. The total number of permutations

is 3!=6. If the permutation starts with edge e3, the anchor is r = 1.

In permutations (1, 3, 2) and (2, 3, 1) DOWN appears at the second step,

r = 2. In permutations having e3 on the third position, the flow becomes

0 at the third step. Thus f1 = f2 = f3 = 1/3 and F (1) = 1/3, F (2) =

2/3, F (3) = 1. Now by (3) we obtain that N (1) = 1, N (2) = 2, and

N (3) = 1. Indeed, in order for the network to be in the DOWN state,

there is one failure set of size one containing the edge {e3}, two failure
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sets of size two containing the edges {e2, e3} and {e1, e3} and one failure

set of size 3 containing the edges {e1, e2, e3}.
Simple calculations of (4) yield that P(DOWN ; q) = q.

A nice feature of (4) is that once N (x) is available we can calculate an-

alytically the probability P(DOWN ; q) simultaneously for multiple values

of q.

Remark 2.1 The D-spectrum is a purely combinatorial characteristic of

the network. It depends only on its topology, the edge capacity vector

C and the threshold value Φ. It does not depend on the probabilistic

mechanism which governs edge failure.

Note that instead of the destruction process one can use its dual ver-

sion, the so-called construction one. In the latter we start the system at

DOWN state and turn the edges from down to up one-by-one (or using

bisection) until the system becomes UP. We shall use the construction

process in Section 3.

Since network failure probability is a monotone function of its compo-

nent reliability, we immediately obtain the following

Corollary Let edges fail independently, and edge i fails with proba-

bility qi. Suppose that for all i, qi ∈ [qmin, qmax] . Then, obviously,

P(DOWN ; q1, . . . , qm) ∈ [P(DOWN ; qmin),P(DOWN ; qmax)] (5)

This corollary may be useful for the case where exact information about

edge failure probabilities is not available and the only statement we can

be made is that the edges fail independently and that their failure proba-

bilities lie within some known interval.

2.2 Estimation of D-spectrum and P(DOWN ; q)

For m ≤ 10, the total number of permutations m! is not too large, and the

probabilities fi, i = 1, . . . ,m and P(DOWN ; q) might be computed by full

enumeration. For m > 10 we need to resort to Monte Carlo simulation. In

our numerical examples below we shall show that with a sample size ofN =

106 of permutations one can estimate P(DOWN : q) with relative error not

exceeding 2% for flow networks with the number of edges m = 200− 300.

Note that the most time consuming part of the simulation process is to
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check after edge destruction whether or not the system switches from UP

to DOWN. As mentioned this can be done by a maximum flow algorithm

(oracle), and in particular by the Goldberg-Rao algorithm, which finds the

location of permutation anchor in O(min(|V | 23 ,
√

|E|)|E| ln( |V |2
|E| ) ln(U))

operations.

The Monte Carlo estimators of F (x) and P(DOWN ; q) is straightfor-

ward. Basically we apply Algorithm 2.1 N times. During each replication

we find the anchor r(π) of π. In analogy to (1) we estimate the density

f(x), x = 1, . . . ,m as follows

f̂(x) =
# of permutations with r(π) = x

N
. (6)

Note that (6) differs from (1) that m! is replaced by N . Note also that

f̂(x) represents a histogram of f(x) in (1).

The corresponding estimators of F (x) and P(DOWN ; q) (see (2) and

(4)) are

F̂ (x) =
x∑

i=1

f̂i, x = 1, . . . ,m (7)

and

P̂(DOWN ; q) =
m∑

x=1

F̂ (x)

(
m

x

)
qx(1− q)m−x, (8)

respectively.

Below we present our main algorithm for estimating F (x) and P(DOWN ; q).

Algorithm 2.2 (Main D-spectrum Algorithm for Estimating F (x)

and P(DOWN ; q))

Given a network and a set of terminal nodes s and t, execute the

following steps.

1. Simulate a random permutation π = (π1, . . . , πm) of the edges 1, . . . ,m.

2. Set low = 1 and high = m

3. Set b = low + ⌈high−low
2

⌉

4. Consider π1, . . . , πb and π1, . . . , πb+1 and use Goldberg-Rao algorithm

to check if the network changed its state from UP to DOWN at index

b+ 1 and b respectively.

If so, denote by r = r(π) the final number of the anchor of π,

corresponding to the non-operational network , output r(π) = b as
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the anchor at which the network is in DOWN state and go to step

5.

If the network state at b is still UP set high = b else, if for both b

and b+1 the network is in the DOWN state, set low = b and repeat

step 3.

5. Output r(π) = b as the anchor at which the network is in DOWN

state.

6. Repeat steps 1-5 N times and deliver F̂ (x) and P̂(DOWN ; q) as per

(7) and (8), respectively.

2.3 Numerical Results

Below we present simulation results for the D-spectrum and P(DOWN ; q)

for the following two models (i) dodecahedron graph and (ii) Erdos - Renyi

graph.

(i) Dodecahedron graph with |V | = 20, |E| = 54 is depicted in Figure 2.

We set s = 1 ant t = 10.

1

2

3

4
5

7 8

9

10

11

12
13

14

16

17

18

20

15

19

6

Figure 2: The dodecahedron graph.

Table 1 presents the values of the edge capacities c1, . . . , c54. They

where generated (for each edge independently) using a discrete uniform

pdf U(5, 10).
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Table 1: Edge capacities for the dodecahedron graph

e = (a, b) c(e) e = (a, b) c(a, b) e(a, b) c(a, b) e = (a, b) c(a, b)

(1,2) 5 (18,6) 8 (12,10) 7 (19,18) 5
(1,16) 6 (18,19) 10 (9,10) 7 (7,6) 8
(1,5) 5 (6,7) 8 (3,2) 5 (8,4) 9
(2,3) 9 (4,8) 5 (15,2) 7 (14,13) 7
(2,15) 9 (13,14) 7 (17,16) 8 (11,13) 7
(16,17) 6 (13,11) 6 (18,16) 7 (12,14) 6
(16,18) 7 (14,12) 6 (6,5) 8 (19,20) 5
(5,6) 6 (20,19) 5 (4,5) 8 (12,20) 9
(5,4) 8 (20,12) 10 (4,3) 9 (9,19) 9
(3,4) 10 (19,9) 9 (13,3) 5 (8,7) 6
(3,13) 6 (7,8) 7 (17,15) 7 (9,7) 6
(15,17) 10 (7,9) 9 (14,15) 8 (11,8) 7
(15,14) 7 (8,11) 9 (20,17) 6
(17,20) 6 (11,10) 8 (6,18) 8

Using the Goldberg-Rao algorithm we found that the maximum flow

with the perfect edges equals M = 16. For our simulation studies we

set the threshold level Φ = 14. In all our experiments below we took

N = 50, 000 samples.

Table 2 presents the D-spectrum estimator F̂ (x) as function of x for

the dodecahedron graph with Φ = 14 based on N = 5 · 104 replications.

Table 2: D-spectrum estimator F̂ (x) for the dodecahedron graph with Φ = 14

x F̂ (x) x F̂ (x) x F̂ (x) x F̂ (x)

1 0.0547 15 0.8899 29 0.99999 43 1
2 0.1148 16 0.9199 30 0.99999 44 1
3 0.1780 17 0.9435 31 0.99999 45 1
4 0.2475 28 0.9606 32 1 46 1
5 0.3212 19 0.9732 33 1 47 1
6 0.3993 20 0.9822 34 1 48 1
7 0.4804 21 0.9882 35 1 49 1
8 0.5592 22 0.9924 36 1 50 1
9 0.6359 23 0.9952 37 1 51 1
10 0.7072 24 0.9969 38 1 52 1
11 0.7701 25 0.9982 39 1 53 1
12 0.8263 26 0.9990 40 1 54 1
13 0.8721 27 0.9995 41 1
14 0.9086 28 0.9997 42 1

It follows from Table 2 that the network fails with probability equal at

least 0.7, 0.9 and 0.99, when the number x of failed edges exceeds 10, 14,
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and 22, respectively. It fails with probability one when x exceeds 31.

Recall that once F̂ (x) is available one can calculate analytically the

estimator P̂(DOWN ; q) of the true probability P(DOWN ; q) for any q by

applying (8).

Table 3 presents P̂(DOWN ; q) for different values of q. It also present

the corresponding relative error RE based on K = 10 independent runs of

the entire algorithm. The RE was calculated as

RE =
S

ℓ̃
, (9)

where

ℓ̂ = P̂(DOWN ; q), S2 =
1

K − 1

K∑
i=1

(ℓ̂i − ℓ̃)2 and ℓ̃ =
1

K

K∑
i=1

ℓ̂i.

Table 3: P̂(DOWN ; q) and RE for different values of q for the dodecahedron

graph

q 10−6 10−5 10−4 10−3 10−2 0.1 0.15

P̂(DOWN ; q) 2.99E-06 2.99E-05 2.99E-04 3.00E-03 3.05E-02 3.57E-01 5.54E-01

RE 1.84E-02 2.08E-02 1.84E-02 1.79E-02 1.41E-02 4.50E-03 2.96E-03

The CPU time for each P̂(DOWN ; q) equals to 6.6 seconds.

It follows from Table 3 that

• In order to guarantee network reliability 1− P̂(DOWN ; q) =0.9, the

probability q of edges failure must not exceed 0.1.

• A sample N = 5 · 104 guaranties relative error ≤ 1.9% for all q

scenarios.

(ii) Erdos - Renyi graph, named for Paul Erdos and Alfred Renyi. Our

graph was generated according to what is called the G(n, p) Erdos - Renyi

random graph [6].

In the G(n, p) model, (n is fixed) a graph is constructed by connecting

nodes randomly. Each edge is included in the graph with probability p

independent from every other edge. Equivalently, all graphs with n nodes

and m edges have the same probability

pm(1− p)(
n
2)−m.
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A simple way to generate a random graph in G(n, p) is to consider each

of the possible
(
n
2

)
edges in some order and then independently add each

edge to the graph with probability p. Note that the expected number of

edges in G(n, p) is p
(
n
2

)
, and each vertex has expected degree p(n − 1).

Clearly as p increases from 0 to 1, the model becomes more dense in the

sense that is it is more likely that it will include graphs with more edges

than less edges.

We considered an instance of Erdos-Renyi G(n, p) random graph with

p = 0.1 and |V | = 35 vertices. While generating it we obtained |E| = 109

connected edges. We set s = 1 and t = 35.

Similar to the dodecahedron graph, each capacity c1, . . . , c109 was gen-

erated independently using a discrete uniform U(5, 10) pdf. Using the

Goldberg-Rao algorithm we found that the maximum flow with the per-

fect edges equals M = 30. For our simulation studies we set the threshold

level Φ = 27. Again, as before, we set N = 50, 000.

Tables 4 and 5 present data similar to these of Tables 2 and 3 for the

above Erdos-Renyi graph with |V | = 35 vertices and |E| = 109. Note

again that each value of P̂(DOWN ; q) and the corresponding values RE

were calculated based on 10 independent runs. The results of the tables

are self explanatory.
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Table 4: The estimator F̂ (x) of the D-spectrum for the Erdos-Renyi graph with

Φ = 27

x F̂ (x) x F̂ (x) x F̂ (x) x F̂ (x)

1 0.0354 31 0.8931 61 0.99994 91 1
2 0.0722 32 0.9074 62 0.99996 92 1
3 0.1078 33 0.9200 63 0.99996 93 1
4 0.1436 34 0.9312 64 0.99997 94 1
5 0.1786 35 0.9414 65 0.99997 95 1
6 0.2122 36 0.9504 66 0.99998 96 1
7 0.2457 37 0.9584 67 0.99998 97 1
8 0.2798 38 0.9655 68 1 98 1
9 0.3128 39 0.9716 69 1 99 1
10 0.3469 40 0.9769 70 1 100 1
11 0.3785 41 0.9814 71 1 101 1
12 0.4100 42 0.9851 72 1 102 1
13 0.4420 43 0.9884 73 1 103 1
14 0.4735 44 0.9908 74 1 104 1
15 0.5059 45 0.9928 75 1 105 1
16 0.5362 46 0.9944 76 1 106 1
17 0.5669 47 0.9955 77 1 107 1
18 0.5955 48 0.9967 78 1 108 1
19 0.6239 49 0.9974 79 1 109 1
20 0.6526 50 0.9982 80 1
21 0.6812 51 0.9987 81 1
22 0.7076 52 0.9990 82 1
23 0.7319 53 0.9992 83 1
24 0.7563 54 0.9995 84 1
25 0.7797 55 0.9996 85 1
26 0.8015 56 0.9997 86 1
27 0.8223 57 0.9998 87 1
28 0.8422 58 0.9999 88 1
29 0.8608 59 0.9999 89 1
30 0.8777 60 0.9999 90 1

Table 5: P̂(DOWN ; q) and RE for different values of q for the Erdos-Renyi

graph

q 10−6 10−5 10−4 10−3 10−2 0.1 0.15

P̂(DOWN ; q) 4.05E-06 4.05E-05 4.05E-04 4.04E-03 3.98E-02 3.74E-01 5.45E-01

RE 1.68E-02 1.68E-02 1.67E-02 1.57E-02 9.54E-03 3.36E-03 2.32E-03

The CPU time for each P̂(DOWN ; q) equals to 22.4 seconds.

All numerical experiments were performed on Intel Core i5 650 3.20
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GHz CPU having GB RAM.

We also estimated P(DOWN ; q) for the Erdos-Renyi models with sev-

eral hundreds edges. For example, setting |V | = 55 and p = 0.1 we

generated a random graph with the number of connected edges |E| = 313.

We found that

• M = 28 and we set Φ = 25.

• In order to provide relative error RE ≤ 0.02 we need to take the

sample size N = 6 · 105

The CPU time was about 400 seconds.

3 Max Flow with Non-Equal Edge Failure Proba-

bilities

The simplest way to estimate P(DOWN, q) for different failure probability

vector q = (q1, . . . , qm) is to simulate the state vector X = (X1, . . . , Xm)

of edges i1, . . . , im failure from Ber(q) distribution with independent com-

ponents and then calculate for each realization of X = (X1, . . . , Xm) the

maximum flow in the network and the corresponding network state. This

naive Monte Carlo procedure is extremely time consuming, however.

To overcome this difficulty we shall adopt here the evolution process of

Elperin, Gertsbakh and Lomonosov [5] originally developed for reliability

network estimation.

3.1 Transformation of the Static Flow Model into a Dynamic

The main idea of the evolution process is to replace a failing edge i having

a Bernoulli Ber(qi) distribution by one with an exponentially distributed

birth time τi with birth rate λi = − ln(qi). More specifically, at time t = 0

edge i starts its birth process which terminates at some random moment

τi. Once this edge is “born” it stays forever in up state. The probability

that this event happens before time t = 1 is

P(τi ≤ 1) = 1− exp(−λi · 1) = 1− exp(ln qi) = 1− qi = pi. (10)
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Thus, if we take a snapshot of the state of all edges at time instant t = 1

we can see the static picture in the sense that edge i will be up with

probability pi = 1− qi and down with probability qi.

With this in mind, we can represent the edge birth process as one

evolving in time in a form of a sequence of random sequential births

{Yj(k)}, j = 1, 2, . . . ,m, where Yj(·) is the instant of the j − th birth,

and k, k = 1, . . . ,m is the number of the born edge. Then the whole birth

history can be represented by the following sequence

0 < Y1(k1) < Y2(k2) < ... < Yj(kj) < ... < Ym(km). (11)

Note that here, in contrast to Model 1

• π = (k1, k2, . . . , km) represents an ordered sample reflecting the order

of edge birth sequence and not an arbitrary random permutation.

• It describes a construction process instead of a destruction one,

namely starting with the network in DOWN state and ending in

UP state.

Since all birth times are exponential, it is easy to generate a single birth

”history”, also called the sample path or trajectory.

3.2 Permutational Algorithm for Estimating P(DOWN ;q)

Before presenting the algorithm for estimating P(DOWN ;q) we make the

following observations.

1. The time to the first birth is a random variable ξ1 distributed expo-

nentially with parameter Λ1 =
∑m

i λi. It follows that

• The first birth will occur at edge k1 with probability λk1/Λ1.

• At the instant ξ1 all edges except the born one are not yet

born, but because of the memoryless property they behave as if

they all are born at that instant ξ1. This means that the time

interval ξ2 between the first and second births, given that edge

k1 is already born, is distributed exponentially with parameter

Λ2 = Λ1 − λk1 .

2. The second birth will occur at edge k2 with probability λk2/Λ1, and

so on. Clearly that given the edges k1, k2, . . . , ks are already born,
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the time ξks+1 to the next birth will be exponentially distributed with

parameter Λs+1, which equals the sum of λ-s of all non born edges,

and with probability λj/Λs+1 the next birth will occur at edge j.

Based on the above we can design a simple permutational Monte Carlo

algorithm for estimating P(DOWN ;q).

Algorithm 3.1 (Permutational Algorithm for Estimating P(DOWN ;q)

Given a network and a set of terminal nodes s and t, execute the following

steps.

1. Generate the birth times of the edges τ1, . . . , τm , with τi ∼ exp(λi),

and rate λi = − ln(qi).

2. Arrange these birth times in increasing order obtaining the order

statistics τ(1), . . . , τ(m), then ignore the actual birth times retaining

only the order in which the edges are born. This yields a permutation

π = (π(1), . . . , π(m)) of the edge numbers under which their birth

times occur.

3. Similar to Algorithm 2.2, use a combination of the Goldberg-Rao

algorithm (oracle) and the bisection procedure to allocate the edge rα

whose birth brings the network UP. Call the sequence (π1, . . . , πα) =

ω.

4. Calculate analytically P(ξ1+ ξ2+ ...+ ξα ≤ 1|ω). Note that ξ1+ ξ2+

...+ξα has a hypo-exponential distribution. Note also that the event∑α
i=1 ξi ≤ 1 is equivalent to the network being UP, by the definition

of α.

5. Repeat N times Steps 1- 4, and estimate P(DOWN ;q) as

P̂(DOWN ;q) = 1− 1

N

N∑
i=1

P(
α∑

j=1

ξj ≤ 1|ωi). (12)

Note that

• The complexity of Algorithm 3.1 is governed by the Goldberg-Rao

oracle and is therefore

O(N ln(m)[min(|V |
2
3 ,
√

|E|)|E| ln( |V |2

|E|
) ln(U)]) (13)
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This follows from the fact that a single run has complexity

O(ln(m)[min(|V | 23 ,
√

|E|)|E| ln( |V
2

|E| ) ln(U)]) and we perform N such

runs.

• As for networks reliability the relative error of the estimator P̂(DOWN ;q)

is uniformly bounded with respect to the λi values, (see [4, 7]).

• Besides the permutation Algorithm 3.1 one could apply some other

alternatives, such as the turnip [5], cross-entropy [14] and splitting

[2, 3, 17].

Example 3.1 Example 2.1 continued

Consider again the network of Example 1 and assume that edge ei fails

with probability qi. Let Φ = 2, that is assume that network is UP if the

maximum flow is either 2 or 3. Figure 3 shows the tree of all five possible

trajectories of the evolution process. It starts moving from the root to the

UP state shown by double circles.
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Figure 3: The evolution process for the network of Example 2.1

Let us consider one of them, namely the one corresponding to ω =

{1, 3}, meaning that the first birth occurs at edge e1 and the second at

edge e3. This trajectory will occur with probability

λ1

λ1 + λ2 + λ3

· λ3

λ2 + λ3

.
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The movement along this trajectory from the root to the UP state lasts

ξ = ξ1+ξ2 units of time, where ξ1 ∼ exp(λ1+λ2+λ3) and ξ2 ∼ exp(λ2+λ3).

Computing P(ξ ≤ 1|ω) is a simple task.

3.3 Numerical Results

Here we apply the permutation Algorithm 3.1 to estimate P(DOWN ; q)

for the same two models in Section 2.

Tables 6 and 7 present data similar to Tables 3 and 5 while assuming

that all components of the vector q are equal. This was done purposely

with view to see how the performance of the permutation Algorithm 3.1

compares with that of the D-Spectrum Algorithm 2.2.

It follows from comparison of Tables 6, 7 with Tables 3, 5 that both

produce almost identical P̂(DOWN ; q) values and they also close in terms

of RE and CPU times. The main difference is that with Algorithm 2.2

we was calculated P̂(DOWN ; q) simultaneously for different values of q

using a single simulation, while with Algorithm 3.1 we required to cal-

culate P̂(DOWN ; q) separately for each q value, that is using multiple

simulations.

Table 6: P̂(DOWN ; q) and RE for different values of q for the dodecahedron

graph

q 10−6 10−5 10−4 10−3 10−2 0.1 0.15

P̂(DOWN ; q) 2.99E-06 3.02E-05 3.00E-04 3.00E-03 3.06E-02 3.57E-01 5.54E-01

RE 2.08E-02 1.94E-02 1.53E-02 2.11E-02 1.09E-02 3.13E-03 2.81E-03

The CPU time for each P̂(DOWN ; q) equals to 8.6 seconds.

Table 7: P̂(DOWN ; q) and RE for different values of q for the Edrdos-Renyi

graph

q 10−6 10−5 10−4 10−3 10−2 0.1 0.15

P̂(DOWN ; q) 4.01E-06 4.00E-05 4.03E-04 3.99E-03 3.97E-02 3.73E-01 5.44E-01

RE 2.84E-02 1.64E-02 2.36E-02 2.74E-02 1.07E-02 3.84E-03 3.77E-03

The CPU time for each P̂(DOWN ; q) equals to 34 seconds.
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Tables 8 and 9 present data similar to Tables 6 and 7, but for different

values of the components of the vector q. More specifically, define α1 and

α2 to be the minimal and the maximal failure probability, respectively.

Define next δ = (α2−α1)/|E|. Then, we set qi = α1+iδ for i ∈ {0, . . . |E|−
1}. In all tables below we set α2 = q and α1 =

α2

10
= q

10
.

Table 8: P̂(DOWN ; q) and RE for different values of q for the dodecahedron

graph

q 10−6 10−5 10−4 10−3 10−2 0.1 0.15

P̂(DOWN ; q) 3.42E-07 3.50E-06 3.50E-05 3.55E-04 3.97E-03 8.04E-02 1.52E-01

RE 1.76E-02 2.01E-02 2.16E-02 2.21E-02 2.39E-02 1.32E-02 5.23E-03

The CPU time for each P̂(DOWN ; q) was 9 seconds.

Table 9: P̂(DOWN ; q) and RE for different values of q for the Edrdos-Renyi

graph

q 10−6 10−5 10−4 10−3 10−2 0.1 0.15

P̂(DOWN ; q) 2.16E-06 2.14E-05 2.16E-04 2.13E-03 2.14E-02 2.10E-01 3.11E-01

RE 2.54E-02 1.29E-02 2.95E-02 2.49E-02 1.71E-02 5.55E-03 5.47E-03

The CPU time for each P̂(DOWN ; q) was 34.8 seconds. The results

are self explanatory.

We also applied Algorithm 3.1 for Erdos-Renyi models with the size of

several hundreds edges. As for Algorithm 2.2 we

• Considered the model with p = 0.1, |V | = 55 and |E| = 313.

• In order to keep the RE ≤ 0.05 we required to increase the sample

size from N = 5 · 104 to N = 105 .

The CPU time was about 9 minutes for each q value.

4 Extension to Random Capacities

Algorithm 3.1 can be readily modified for the case where not only the

edges are subject of failure, but the capacity vector is random as well,

that is when the capacity ck of each edge k, k = 1, ...,m is a random
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variable independent of edge failure Ber (q) distribution. We assume that

the capacity random vector is unbiased with respect to the true vector

C and has independent components with some known distribution F =

(F1, . . . ,Fm). Denote the joint distribution of Fk and Ber(1− qk) by Rk,

that isRk = Fk· Ber(1−qk), k = 1, . . . ,m and call it the modified capacity

distribution. In this case, only Step 1 of Algorithm 3.1 should be modified

as

Generate the birth times τ1, . . . , τm of the edges τi ∼ exp(λi), and put

λi = − ln(qi). Generate a capacity random vector Z = (Z1, . . . , Zm) ac-

cording to the modified capacity distribution R = (R1, . . . ,Rm), while the

rest of Algorithm 3.1 remains the same. Note that as soon the edge birth

times and the edge capacities were generated at step 1 all the remaining

steps do not change and the Goldberg-Rao algorithm is applied on those

capacities.

Clearly the variability of such a noise estimator P(DOWN ; q) increases

with the variability of Z. Our numerical results below support this.

4.1 Numerical Results

Wemodel each component Zk of the random capacity vectorZ = (Z1, . . . , Zm)

by setting Zk = ζkck(1 + εη), where ζk ∼ Ber(1 − qk) and η is a random

variable with Eη = 0 and Varη = σ2. Note that for ε = 0 (deterministic

capacities) we have Zk = ckζk and for perfect edges, Zk reduces to Zk = ck.

We assume for concreteness that η ∼ U(−0.5, 0.5).

Before proceeding with numerical results lets us discuss the choice of

the threshold level Φ for random capacities. Consider, for example the

dodecahedron graph. Recall that with deterministic capacities the maxi-

mal flow was M = 16 and we selected Φ = 14 for our simulation studies.

Observe also that in the case of random capacities (even with perfect

edges) the maximal flow is a random variable, which will fluctuate from

replication to replication. Denote by M = (M1, . . . ,MN) the maximal

flow random vector corresponding to a simulation of length N . Clearly,

that the variability of the components of M = (M1, . . . ,MN) increases

in ε and it is quite easy to chose an ε (perhaps large enough) such that

many the components of M = (M1, . . . ,MN) will be below some fixed

threshold Φ and in particular below our earlier one, Φ = 14. It follows

from above that setting, say Φ = 14 for large ε is meaningless.
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To resolve this difficulty we propose the following adaptive algorithm

based on what is called elite sampling [18] for finding a meaningful Φ.

Algorithm 4.1 (Adaptive Algorithm for Fining Φ in a Flow Net-

work with Random Capacities)

Given a network and a set of terminal nodes s and t, execute the

following steps.

1. Generate a sample of random capacity vectors Z1, . . . ,ZN . Calcu-

late the corresponding maximum flow values M1, . . . ,MN using the

Goldberg-Rao algorithm.

2. Order them from the smallest to the largest. Denote the ordered

values by M(1), . . . ,M(N). Write M(1), . . . ,M(N) as

M(1), . . . ,M(e);M(e+1), . . . ,M(a);M(a+1), . . . ,M(N). (14)

Here

• M(a) ≤ Ma ≤ M(a+1), M(a) =
1
N

∑N
i=1 Mi is the sample aver-

age of M1, . . . ,MN .

• M(e) corresponds to the sample (1−ρ)-quantile of the sequence

(14), namely M(e) = MNe and N e = ⌈(1− ρ)N⌉. In other

words M(e) corresponding to ρ% of the largest sample value in

the sequence (14) starting from the left.

3. Set Φ = M(e) and call it the adaptive threshold. Note that the

“distance” |Ma(ε)−M(e)(ε)| between Ma and M(e) increases in ε.

If not stated otherwise we assume that the sample quantile ρ = 0.05.

Tables 10 and 11 present M(e) and |Ma − M(e)| as function of ε for

the dodecahedron and Erdos- Renyi graphs with ρ = 0.05.

Table 10: M(e) and |Ma −M(e)| as function of ε for the dodecahedron graph

with ρ = 0.05

ε 0.5 1 2 3 4 5 6
M(e) 15.516 15.033 14.063 13.099 12.119 11.145 10.168

|Ma −M(e)| 0.484 0.967 1.939 2.901 3.866 4.794 5.682
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Table 11: M(e) and |Ma − M(e)| as function of ε for the Erdos-Renyi graph

with ρ = 0.05

ε 0.5 1 2 3 4 5 6
M(e) 29.440 28.880 27.762 26.645 25.518 24.390 23.231

|Ma −M(e)| 0.560 1.120 2.238 3.356 4.466 5.560 6.648

It follows from Tables 10 and 11 that

1. For ε ≤ 2 one can use our earlier (deterministic) threshold values

Φ = 14 and Φ = 27 for the dodecahedron and Erdos-Renyi graphs,

respectively and still be within the 5% of elites.

2. For ε > 2 one should use the appropriate threshold values given

in Tables 10 and 11. For example, for ε = 3 the thresholds are

Φ = 13.099 and Φ = 26, 645 for the dodecahedron and the Erdos-

Renyi graphs, respectively and for ε = 6 they are Φ = 10.146 and

Φ = 23.231, respectively.

We proceed below with the following 3 scenarios of ε: (i) ε = 0.5, (ii) ε = 3

and (iii) ε = 6. Note that (i) corresponds to the above case 1 (ε ≤ 2), while

(ii) and (iii) corresponds to the case 2 (ε > 2).

In all three experiments we set the sample size N = 5 · 104.
Experiment (i), ε = 0.5. It follows from Tables 10 and 11 that in this

case we can still use the original thresholds Φ = 14 and Φ = 27 chosen

for the deterministic capacities for the dodecahedron and Erdos-Renyi

graphs, respectively. Based on that Tables 12 and 13 present data similar

to Tables 8 and 9 for ε = 0.5, with Φ = 14 and Φ = 27, respectively.

Table 12: P̂(DOWN ; q) and RE for different values of q for the dodecahedron

graph with ε = 0.5

q 10−6 10−5 10−4 10−3 10−2 0.1 0.15

P̂(DOWN ; q) 9.76E-07 9.77E-06 9.98E-05 9.98E-04 1.02E-02 1.27E-01 2.11E-01

RE 2.48E-02 2.41E-02 2.51E-02 2.16E-02 2.02E-02 8.29E-03 5.53E-03

The CPU time for each P̂(DOWN ; q) equals to 6.53 seconds.
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Table 13: P̂(DOWN ; q) and RE for different values of q for the Erdos-Renyi

graph with ε = 0.5

q 10−6 10−5 10−4 10−3 10−2 0.1 0.15

P̂(DOWN ; q) 2.45E-06 2.42E-05 2.45E-04 2.46E-03 2.44E-02 2.35E-01 3.43E-01

RE 1.77E-02 2.31E-02 2.34E-02 2.38E-02 2.64E-02 4.52E-03 3.84E-03

The CPU time for each P̂(DOWN ; q) equals to 26.1 seconds It is read-

ily seen that with N = 5 · 104 samples we obtained RE ≤ 2.5% in both

cases.

Experiment (ii), ε = 3. The corresponding thresholds (see Tables

10 and 11) are Φ = 13.099 and Φ = 26, 645 for the dodecahedron and the

Erdos-Renyi graphs, respectively.

Based on that Tables 14 and 15 present data similar to Tables 12 and 13

for ε = 3 for the dodecahedron and the Erdos-Renyi graphs, respectively.

Table 14: P̂(DOWN ; q) and RE for different values of q for the dodecahedron

graph with ε = 3 and Φ = 13.099

q 10−6 10−5 10−4 10−3 10−2 0.1 0.15

P̂(DOWN ; q) 8.61E-07 8.58E-06 8.55E-05 8.64E-04 8.58E-03 7.87E-02 1.12E-01

RE 2.33E-02 2.59E-02 3.64E-02 2.12E-02 2.08E-02 1.68E-02 8.21E-03

The CPU time for each P̂(DOWN ; q) equals to 2.64 seconds.

Table 15: P̂(DOWN ; q) and RE for different values of q for the Erdos-Renyi

graph with ε = 3 and Φ = 26, 645

q 10−6 10−5 10−4 10−3 10−2 0.1 0.15

P̂(DOWN ; q) 1.02E-06 1.02E-05 1.01E-04 1.01E-03 1.01E-02 9.84E-02 1.43E-01

RE 2.33E-02 3.22E-02 4.09E-02 4.30E-02 1.59E-02 8.16E-03 9.98E-03

The CPU time for each P̂(DOWN ; q) equals to 26.1 seconds It is read-

ily seen that with N = 5 ·104 samples we obtained the RE ≤ 2.5% in both

cases.

Experiment (iii), ε = 6. The corresponding thresholds (see Tables

10 and 11) are Φ = 10.168 and Φ = 23.231 for the dodecahedron and the
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Erdos-Renyi graphs, respectively. Based on that Tables 16 and 17 present

data similar to Tables 14 and 15 for ε = 6 for the dodecahedron and the

Erdos-Renyi graphs, respectively.

Table 16: P̂(DOWN ; q) and RE for different values of q for the dodecahedron

graph with ε = 6 and Φ = 10.168

q 10−6 10−5 10−4 10−3 10−2 0.1 0.15

P̂(DOWN ; q) 6.44E-07 6.46E-06 6.51E-05 6.37E-04 6.31E-03 5.98E-02 8.55E-02

RE 3.58E-02 3.33E-02 2.15E-02 3.23E-02 2.31E-02 9.60E-03 1.38E-02

The CPU time for each P̂(DOWN ; q) equals to 1.77 seconds.

Table 17: P̂(DOWN ; q) and RE for different values of q for the Erdos-Renyi

graph with ε = 6 and Φ = 23.231

q 10−6 10−5 10−4 10−3 10−2 0.1 0.15

P̂(DOWN ; q) 8.82E-07 9.01E-06 9.01E-05 9.10E-04 9.02E-03 8.89E-02 1.31E-01

RE 4.00E-02 2.68E-02 3.13E-02 2.42E-02 2.65E-02 1.46E-02 1.07E-02

The CPU time for each P̂(DOWN ; q) equals to 9.2 seconds. It is

readily seen that with N = 5 · 104 samples we obtained the RE ≤ 4.0% in

both cases.

We also estimated P(DOWN ; q) for the Erdos-Renyi models with sev-

eral hundreds edges with different ε values. In particular we considered

our previous model with p = 0.1, |V | = 55 and |E| = 313. We found that

• For ε = 3 one should set Φ = 24.634 in order to insure ρ = 0.05 (5%

elites).

• In order for the relative error RE ≤ 0.05 (with Φ = 24.634), we need

to increase the sample size from N = 5 · 104 to N = 5 · 105.

The CPU time for this scenario was about 25 minutes.

5 Concluding Remarks and Further Research

We show how the permutation Monte Carlo method originally developed

for reliability networks [5] can be successfully adapted for stochastic flow
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networks, and in particular for estimation of the probability that the max-

imal flow in such a network is above some fixed level, called the threshold.

A stochastic flow network is defined as one, where the edges are subject

to random failures. A failed edge is assumed to be erased (broken) and,

thus, not able to deliver any flow. We consider two models; one where the

edges fail with the same failure probability and another where they fail

with different failure probabilities. For each model we construct a different

algorithm for estimation of the desired probability; in the former case it is

based on the well known notion of the D-spectrum and in the later one -

on the permutational Monte Carlo. We discuss the convergence properties

of our estimators and present supportive numerical results.

One of our directions of further research will be in obtaining efficient

Monte Carlo estimators based on network edge important measures (see

[12, 9]) and their applications to stochastic flow networks with a particular

emphasis on the optimal network design under some budget constraints.

Another direction will be an extension of our permutational technique

to a wider class of functionals associated with network edges. The cru-

cial property for the applicability of that methodology for computing the

probability that the maximal s− t flow M exceeds the threshold level Φ is

the monotonicity of the maximal s− t in the process of edge destruction

(construction). This means that the maximal s− t flow in the destruction

process,can only decrease, or equivalently, the ”birth” of new edges can

lead only to a increase of the maximal s − t flow and similarly for the

construction one. But this “edge monotonicity” property holds true not

only for the network flow. Consider, for example, the total weight Wmax

of the maximal spanning tree of the network. Wmax decreases if the edges

are sequentially eliminated. Similar monotone behavior exhibit the min-

imal distance between any pair of fixed nodes in the network, the total

number of s− t paths in it, and many other of its important combinatorial

characteristics.
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