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Abstract Choosing a subset of representative items from a set of alternatives6

is an important problem in many scientific fields such as environmental science7

and statistics. For most practical problems, however, a computationally efficient8

solution method is not known to exist. While this problem has attracted a signif-9

icant amount of attention, the majority of specifically designed algorithms do not10

scale well with respect to the problem size or do not provide a usable open-source11

package. In this study, we show that any global continuous optimization technique12

can be used for solving the representative subset selection problem. The latter is13

achieved by designing a simple transformation which embeds the problem’s dis-14

crete space into a larger continuous space. The proposed methodology is applied15

to design problems in environmental and statistical domains. We evaluate the pro-16

posed method using several open-source global optimization packages, and show17

that this technique compares favorably with existing direct methods.18

Keywords Ozone · Monitoring network design · D-optimal experimental design ·19

global optimization · space embedding20

1 Introduction21

Networks are pervasive in modern society. Environmental and distribution net-22

works (waste-water, power grids, aviation, World Wide Web), Social networks23

(Facebook, YouTube, Twitter), and biological networks (neural, metabolic, protein-24

protein interaction) all play a key role in the functioning of our world. Monitoring25

such networks is now an important part of scientific endeavor. For example, an im-26

proper monitoring of waste-water or carbon dioxide emission can result in a serious27

damage to the ecosystem (Stokes and Horvath, 2010; Mi et al., 2017; Park et al.,28

2013; Chan and Yao, 2008; Ramanathan and Carmichael, 2008; Bruns et al., 1991;29
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Wiersma, 1984; von Brömssen et al., 2018). Likewise, a diffusion of false informa-30

tion from social media (“fake news”), can potentially have a devastating effect on31

national security and political stability (Allcott and Gentzkow, 2017; Silverman32

and Singer-Vine, 2016). In this study, we address the monitoring network design33

problem (Le and Zidek, 2006) by introducing a general technique that allows one34

to use any global continuous optimization method for solving the problem. The35

proposed method provides high-quality solutions to the monitoring network design36

problem with minimal development effort.37

Regardless of the application domain, it is convenient to define a network as a38

graph withm vertices. These vertices can represent, for example, possible locations39

for a placement of wastewater monitoring sensor, web-servers, influential bloggers,40

or electrical re-transmission blocks. Due to the high operational cost associated41

with the size of modern networks, monitoring the entire system is generally un-42

feasible. Consequently, a natural approach is to analyze some representative part43

of the network in order to infer the entire network state. In this way, the optimal44

monitoring network design task can be viewed as an optimal fixed-size subset se-45

lection (OFSS) problem in which a subset of size k ≪ m vertices (from m initial46

vertices) has to be chosen such that a certain utility function is maximized. Under47

the monitoring network design setting, the utility function will generally measure48

the information gain obtained from a decision of choosing a particular subset of49

vertices.50

Because of the importance of the OFSS problem from both a theoretical and51

practical point of view, it has attracted a significant amount of research atten-52

tion (Wolters, 2015; Chao et al., 2015; Yu and Yuan, 1992). However, excluding53

some trivial cases, this problem belongs to the NP-hard complexity class (Natara-54

jan, 1995; Geoffrey et al., 1997; Chun-Wa et al., 1995), necessitating approximate55

solution methods. Due to the hardness result, no approximation algorithm can56

guarantee the discovery of the optimal solution to the OFSS problem. From the57

practical point of view, however, it is beneficial to implement a number of different58

approximation methods. In this way, the designer can then solve the problem with59

several algorithms, and adopt the best solution found.60

Despite the problem importance, there exists a deficit of freely available and ac-61

cessible software that is specifically designed to handle the OFSS problem (Ramiro62

et al., 2010; Wolters, 2015). In fact, to the best of our knowledge, the only open-63

source package available is kofnGA (Wolters, 2015). This study aims to address the64

above gap by introducing a simple transformation, which embeds the (discrete)65

solution space of the OFSS problem into a larger continuous space, allowing the66

practitioner to use any freely available or proprietary continuous global optimiza-67

tion software to obtain a solution to the OFSS problem. Since the majority of68

global optimization packages (Mullen, 2014) use different heuristics, the proposed69

technique introduces a significant practical advantage, in the sense that one can70

take advantage of diverse algorithms with minimal development effort.71

The rest of the study is organized as follows. In Section 2 we formulate the72

OFSS problem and show that both the optimal network monitoring design and the73

D-optimal experimental design problems fit into the OFSS framework. Then, we74

give a brief overview of the modern continuous global optimization research, and75

introduce a simple transformation from the continuous to the original discrete state76

space. In Section 3 we perform a detailed experimental study using several popular77
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open-source global optimization packages. Finally, in Section 4 we summarize our78

findings and discuss possible directions for future research.79

2 Methodology80

2.1 The OFSS problem81

The formal definition of the OFSS problem is as follows. Let L = {1, . . . ,m} be
the set of indices that corresponds, for example, to m available locations for a
placement of wastewater monitoring sensor. Since we wish to select k ≤ m indices
from L, the set of all possible solutions of the k-sized OFSS problem is defined via

X =

{

x ∈ P ({1, . . . ,m}) , |x| = k

}

, (1)

where P stands for the power-set, and |x| denotes the cardinality of x. Recall82

that the selection should be performed subject to a maximization of certain utility83

criterion. Therefore, we define a utility function U : X → R, which we seek to84

maximize. Finally, the OFSS problem can be formulated via:85

max
x∈X

U(x), (2)

while the set of optimal indices is available from the solution of argmax
x∈X U(x).86

In this study, we consider two real-life applications that fall into the OFSS problem87

setting; the optimal monitoring network design, and the D-optimal experimental88

design.89

Entropy-based environmental monitoring network design90

Environmental monitoring networks design involves the selection of k representa-91

tive locations out of m ≥ k possible locations in a region of interest. For example,92

Fig. 1 from (Wolters, 2015) shows m = 100 potential locations (left panel), and93

k = 9 actual locations (right panel) of ozone monitoring stations in the state of94

New York (Le and Zidek, 2006).95
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Fig. 1: Potential (left panel), and existing (right panel), ozone monitoring sites in
the state of New York.
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Since the cost of auditing of all possible locations can be prohibitively high, we96

generally wish to select k ≪ m representative sites for the placement of monitoring97

stations. The selection is performed with a view to maximize some utility function98

such as an obtained information gain from the selection of a particular set of k99

monitoring sites. Formally, the ozone concentration data that is collected from a100

certain site can be modeled via a stochastic time series. In addition, it is convenient101

to model the data collected from all sites as a random field
{
Z(l) : l ∈ D ⊂ R

d
}
,102

where D generally represents a discretized subset of Rd. Our task is to select k103

locations from a finite set D. The monitoring network design problem is usually104

associated with the two-dimensional or the three-dimensional space, that is, we105

generally take d = 2 or d = 3.106

To put the monitoring networks design problem into the OFSS setting, we need107

to specify the utility function. Note that the m-dimensional vector of observations108

Z, which is obtainable from the entire set of m sites, can be partitioned into109

two vectors Z(1) and Z(2), where Z(1) represents m − k observations from the110

set of unmeasured sites and Z(2) represents the remaining k observations from111

the set of measured sites. Let D(z) be the joint probability density of Z. Then,112

the total uncertainty about Z is given by the entropy H(Z) = E [− lnD(Z)] =113

E

[

− lnD
(

Z(1),Z(2)
)]

(Shannon, 1948). Under the above setting, only the Z(2)
114

vector is observable, so we are interested in minimizing the uncertainty about Z(1)
115

given Z(2). That is, we seek to minimize the conditional entropy H
(

Z(1) | Z(2)
)

.116

From the chain rule of conditional entropy, namely, from117

H
(

Z
(1) | Z(2)

)

= H
(

Z
(1)

,Z
(2)

)

−H
(

Z
(2)

)

,

combined with the fact that the total system entropy H (Z) = H
(

Z(1),Z(2)
)

118

is fixed, we conclude that the minimization of H
(

Z(1) | Z(2)
)

is equivalent to119

the maximization of H
(

Z(2)
)

. Namely, our task is to maximize the entropy of120

observations associated with the observed sites.121

The definition of the corresponding utility function U : X → R is straightfor-122

ward. Specifically, for x = {x1, . . . , xk} ∈ X , let Zx = (Zx1
, . . . , Zxk

) be a k-sized123

vector of measurements which was extracted from Z = (Z1, . . . , Zm) using the set124

of indices x. Then, by defining U(x) , H (Zx), we establish the correspondence125

between the optimal network design and the OFSS problems.126

While the above setup is valid for a general joint probability density D(z),127

we concentrate on the important special case, for which D(z) is the multivariate128

Normal distribution; namely, Z ∼ Nm(µ,Σ). For this particular distribution, we129

have that H (Z) ∝ ln |Σ|, where |Σ| is the determinant of the covariance matrix130

(Ahmed and Gokhale, 2006). Therefore, the maximization of H
(

Z(2)
)

requires131

the maximization of the natural logarithm of a principal sub-matrix of Σ, indexed132

by the observable sites index set x. Such principal sub-matrix is denoted by Σx133

and one can extract it from Σ by taking all rows and columns of Σ that are in x.134

Finally, we define the utility function to be U(x) , ln |Σx|.135
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D-optimal experimental design136

The D-optimal experimental design problem involves a discovery of the best subset137

of m possible experiments. Formally, let X be an m × m model matrix. The D-138

optimal design is one that maximizes the determinant of the principal sub-matrix,139

X⊤
x Xx, where Xx is a k × k matrix (k ≤ m) extracted from X by taking all rows140

and columns of X that are indexed by x ∈ X (Goos and Bradley, 2011). The141

objective is to maximize the so-called D-optimality criterion. The latter is defined142

as a negative of natural logarithm of the experiment’s information matrix X⊤
x Xx143

(Roy, 2000). Therefore, by defining the utility function to be U(x) , ln |X⊤
x Xx|,144

we can easily see that the D-optimal experimental design problem corresponds to145

the OFSS setting (Wolters, 2015).146

Our objective is to develop an efficient procedure for the maximization of (2).147

However, since this problem is known to be hard (Chun-Wa et al., 1995), we148

resort to approximate evolutionary strategies. A brief overview of these methods149

is detailed in Section 2.2. We refer to (Mullen, 2014) for a detailed discussion of150

global optimization techniques.151

2.2 Global continuous optimization152

Initial popula-
tion creation

populations’s fit-
ness evaluation

selection of elite (best
performing) individuals

next population creation

is
terminal
criteria
met?

stop

Yes

No

Fig. 2: A general evolution-
ary framework.

Evolutionary strategies are stochastic optimiza-153

tion procedures that are motivated by a biolog-154

ical process of natural selection (Bäck, 1996).155

Specifically, these methods simulate the evolu-156

tionary mechanism by producing a sequence of157

population generations that (hopefully) improve158

the population’s average fitness (utility) over159

time. A very general evolutionary framework,160

which is implemented in many optimization161

packages, is summarized in Fig. 2. In this study,162

we consider several state-of-the-art evolutionary163

algorithms, namely, Differential Evolution (DE)164

(Price et al., 2005), Particle Swarm Optimization165

(PSO) (Kennedy and Mendes, 2002), Genetic al-166

gorithm (GA) (Melanie, 1998), and Cross En-167

tropy algorithm (CE) (Rubinstein and Kroese,168

2017).169

The major advantage of such nature-inspired170

methods, is that they can operate in both the171

discrete and the continuous state spaces. How-172

ever, for non-standard discrete applications such173

as the OFSS problem, an evolutionary method174

will customarily require an adjustment which175

will generally involve a development of a spe-176

cialized next population creation (see Fig. 2). De-177

signing such operations can be a time-consuming178

task that may require a substantial development179

effort. For example, the kofnGA (Wolters, 2015)180
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package, which is suitable for handling OFSS tasks, such as the optimal monitoring181

network design problems, is based on the discrete version of GA (Melanie, 1998).182

Motivated by the fact that the next population creation in the continuous183

space is quite standard (Mullen, 2014), we explore a possibility of adopting the184

continuous optimization approach. In particular, we design a transformation that185

allows us to use an embedding of the original discrete space of the OFSS problem186

into a larger continuous space. The transformation is detailed in Section 2.3.187

2.3 The transformation188

In this section, we assume that one has an access to a global continuous opti-
mization procedure (such as DE, PSO, GA, or CE), which is capable of handling
problems of the type:

max
y∈Rm

C(y) (3)

subject to: y ∈ Y ,

where C : Rm → R is an objective function, and Y ⊆ R
m is a compact convex set.189

The transformation from the continuous state space Y to the original discrete state190

space X (see (1)), and the corresponding calculation of the utility, is summarized191

in Algorithm 1.192

Algorithm 1: The transformation

Input: A vector of real numbers y ∈ Y ⊆ Rm, m,k ∈ N such that (k ≤ m), and a
utility function U : X → R from (2).

Output: The utility of x ∈ X , where x corresponds to the continuous input y ∈ Y .
1 x′ , (x1, . . . , xm)← argsort(y)
2 x← {x1, . . . , xk}
3 return U(x)

In Line 1 of Algorithm 1, an ascending sorting procedure (Cormen et al., 2001)193

is used to determine the internal ordering of indices of y. Note that x′ is a permu-194

tation of (1, . . . ,m). Then, in line 2, we fix x to be a set that contains the k-sized195

prefix of x′; note that x ∈ X . Finally, in Line 3 we use the previously obtained x196

to calculate the utility in the discrete space.197

It is not very hard to see that there exists y∗ ∈ Y that corresponds (via198

the transformation in Algorithm 1), to the optimal (discrete) solution x∗ ∈ X ,199

such that U(x∗) ≥ U(x) for all x ∈ X . To see this, suppose without the loss of200

generality that x∗ contains the first k sites, that is, x∗ = {1, . . . , k}. Then, for201

example, y∗ = (0, . . . , 0
︸ ︷︷ ︸

k

, 1, . . . , 1
︸ ︷︷ ︸

n−k

) corresponds to x∗ = {1, . . . , k} via Algorithm 1.202

The proposed transformation opens the way for addressing the OFSS problem203

via any global continuous optimization method. To see this, note that Algorithm 1204

implements the function C(y) in (3). In Section 3 we perform a comprehensive205

experimental study to examine the performance of the proposed transformation.206
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3 Results and discussion207

We investigate the accuracy of the proposed method when applied to several rep-208

resentative examples. The rest of the section is structured as follows.209

1. The first example is a custom-made environmental monitoring design task210

for with we known the optimal solution. Specifically, we examine two regular211

lattices of dimensions 5 × 5 and 9 × 9. To ensure symmetry, we choose k = 9212

and k = 25 (see Fig. 3), for the first and the second lattice, respectively. This213

example enables the precise bench-marking of the proposed algorithm accuracy.214

2. Our second problem is a real-life example in which we consider the ozone215

concentrations in the state of New York. The example involves an analysis of216

100 potential locations for a placement of 15 monitoring stations.217

3. Next, we examine a larger monitoring network design instance with 1000 possi-218

ble site placements among which we seek to determine the optimal location of219

10, 15, and 20 monitoring stations. This example is motivated by the fact that220

nowadays, a monitoring network designer encounters typical networks with221

several hundreds of potential locations.222

4. To demonstrate the generality of the proposed technique, we conclude the223

numerical study with an example from a quite different domain. Specifically,224

we consider the optimal design of statistical experiments and in particular the225

D-optimal design problem (Goos and Bradley, 2011). The application of the226

method to the D-optimal design problem is feasible, since the latter can be227

modeled via the OFSS setting.228

The experimental setup229

All tests were implemented using the open-source R statistical software package230

(version 3.5.2). The software is available from the author’s web-page along with231

all examples from this section. The script was executed on 64 bit Windows 10232

desktop machine with Intel Core i7-3770 quad-core 3.4GHz processor and 16GB233

of RAM.234

With a view to provide a fair comparison between different global optimization235

algorithms, we use a set of freely available R packages. Specifically, we work with236

the following libraries: kofnGA version 1.3, DEoptim version 2.2.4, pso version 1.0.3,237

GA version 3.1.1, and CEoptim version 1.2. In addition, we ran a number of prelimi-238

nary benchmarks (not reported here), to determine a reasonably robust parameter239

setting for the optimization packages under consideration. While the optimal pa-240

rameter determination is subject to a further research, our objective was to allow241

an approximately equal running (CPU) time for all methods involved.242

Finally, note that we seek to maximize the entropy of the measurements ob-243

tained from the set of observable sites. In this section, we rather minimize the244

corresponding negative entropy. The latter is motivated by a purely technical245

consideration, since the majority of global optimization packages minimize the246

objective function. Specifically, instead of (3), we work with:247

min
y∈Rm

−C(y), subject to: y ∈ Y .

Unless stated otherwise, each algorithm (kofnGA, DE, PSO, GA, and CE), was248

executed for 20 times. All CPU times are reported in seconds. To ensure repro-249
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ducibility, we use the same random seed (of “12345”) for all experiments reported250

in this section.251

3.1 Custom grid with known solution252

In order to benchmark the proposed method, we consider a custom 2D-grid (reg-253

ular lattice) of dimensions 5 × 5 and 9 × 9. Note that these examples represent254

random fields with m = 25 and m = 81 possible locations, respectively. In these255

benchmarks, we assume that the data is distributed according to the multivariate256

Normal distribution, namely Z ∼ Nm(µ,Σ), and that the covariance matrix Σ257

is known. Specifically, for each component Σi,j for 1 ≤ i, j ≤ m in Σ, we set258

Σi,j = 10 exp{−0.1dist(i, j)}, where dist(i, j) is the Euclidean distance between259

locations i and j in the lattice. We set k = 9 and k = 25 for the 5 × 5 and the260

9 × 9 grids, respectively. The corresponding optimal locations of the monitoring261

stations are shown in Fig. 3.

Fig. 3: Optimal locations for the 5× 5 k = 9 (left panel), and 9× 9 k = 25 (right
panel), latices.

262

The 5× 5 lattice263

We start with a small 5 × 5 lattice for which we wish to select k = 9 observable264

sites from m = 25 possible locations. In this particular setting, a full-enumeration265

procedure requires to consider
(
25
9

)
= 2042975 combinations. The optimal objec-266

tive function value found is −10.167694 and the obtained optimization results267

are shown in Fig. 4. As we are dealing with a small toy example, it is not very268

surprising to see that all methods deliver the optimal solution.269
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kofnGA DE PSO GA CE

−10

−10.5

−10.17

−10.3

N
eg
at
ed

en
tr
op

y

(a) The negative entropy as a function of
algorithm.

kofnGA DE PSO GA CE

3

4

5

ti
m
e
(s
ec
)

(b) CPU time as a function of algo-
rithm.

Fig. 4: The 5× 5 lattice optimization results.

The 9× 9 lattice270

Next, we continue with a bigger 9×9 lattice for which we setm = 81 and k = 25. In271

this situation, a full-enumeration procedure needs to consider
(
81
25

)
≈ 5.256× 1020272

combinations. The optimal objective function value found is −24.08018. Fig. 5273

summarizes the obtained optimization results. For this particular problem, CE274

always found the optimal solution, and the PSO was next to the best. Similar to275

the 5× 5 lattice example, the CE running time introduced a higher variance.276
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Fig. 5: The 9× 9 lattice results obtained with kofnGA, DE, PSO, GA, and CE.

3.2 Environmental monitoring277

In this section, we consider a real-life network monitoring design problem from (Le278

and Zidek, 2006). Since the authors examine 100 possible locations for placing 15279
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monitoring stations, the full-enumeration procedure requires the consideration of280
(
100
15

)
≈ 2.533× 1017 combinations.281
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Fig. 6: Existing sites (left panel), potential placements (middle panel), and a com-
bination of existing (◦) and optimal new (⊗) site placement (right panel).

The left and the middle panel of Fig. 6 show the 9 existing and the 100 potential282

site locations, respectively. The Fig. 6 right panel shows the nine original (◦)283

locations and the new placement of optimized locations (⊗) of 15 monitoring284

stations.285

Fig. 7 summarizes the optimization results obtained with different algorithms.286

We can see that for this particular problem, kofnGA, PSO, GA, and CE, managed287

to obtain the −30.9263 value for the objective function — the best solution known288

so far (Wolters, 2015).289
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Fig. 7: The m = 100 k = 15 environmental monitoring design problem optimiza-
tion results.

3.3 Custom covariance matrix290

To test the performance of the proposed technique on a larger network design291

problem, we consider a 1000× 1000 custom covariance matrix (m = 1000), with292

k = 10, k = 15, and k = 20. As mentioned in the beginning of this section, we293
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choose to examine a 1000 sites example, since many practical monitoring design294

tasks generally contain several hundreds of potential locations for the placement of295

monitoring stations. For this particular problem, we are not aware of any optimal296

solution, since the full-enumeration procedure requires a consideration of a large297

number of
(
1000
10

)
≈ 2.634× 1023,

(
1000
15

)
≈ 6.881× 1032, and

(
1000
20

)
≈ 3.395× 1041298

combinations, for k = 10, k = 15, and k = 20 cases, respectively. Therefore, we299

simply compare all algorithms and deliver the best solution found. Fig. 8, Fig. 9,300

and Fig. 10, summarize the obtained results. Among all algorithms, CE performed301

in the best fashion. Namely, the CE method manages to find the smallest values of302

−17.5699,−26.3084, and −35.0301 of the objective function, for k = 10, k = 15,303

and k = 20, respectively.304
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Fig. 8: The m = 1000 k = 10 custom monitoring design problem optimization
results.
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Fig. 9: The m = 1000 k = 15 custom monitoring design problem optimization
results.
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Fig. 10: The m = 1000 k = 20 custom monitoring design problem optimization
results.

Remark 1 Since only the CE algorithm obtained the best known objective function305

values for all cases, we allowed all algorithms to run for an additional time. Specifi-306

cally, we increased the CPU time limit by a factor of 10 for each global optimization307

method. Each algorithm was executed for 5 times. As a consequence, both CE and308

GA, managed to achieve the (possibly) optimal results for all k ∈ {10, 15, 20}. Ta-309

ble 1 summarizes the best results obtained by all optimizationmethods when using310

the the additional computational time.311

Table 1: The minimal negative entropy achieved by global optimization algorithms
using the increased computational time limit.

algorithm k = 10 k = 15 k = 20

kofnGA −17.4434 −26.1002 −34.7382

DE −17.4304 −26.1307 −34.6078

PSO −17.3985 −26.0879 −34.5897

GA −17.5699 −26.3084 −35.0301

CE −17.5699 −26.3084 −35.0301

By analyzing the results from Sections 3.1, 3.2, and 3.3, one can arrive to312

a wrong conclusion about the CE algorithm superiority as compared to other313

methods. To see that there is no single best algorithm, we will examine a problem314

from a different domain, the D-optimal experimental design.315
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3.4 D-optimal experimental design316

In this section, we consider an instance of the D-optimal design problem called317

the robustness experiment (Goos and Bradley, 2011). Following (Wolters, 2015),318

we view this task as an OFSS problem with m = 81 and k = 24. Consequently, a319

full-enumeration procedure requires the evaluation of
(
81
24

)
≈ 2.305×1020 combina-320

tions. For this problem, Wolters (Wolters, 2015) manages to obtain the (probably)321

optimal result (of −47.728 on the negative log scale) in four out of 20 runs of the322

problem using the kofnGA method. We repeat the experiment using DE, PSO,323

GA, and CE algorithms. Similar to previous experiments, we set the parameters324

such that the running times of all algorithms are comparable. Fig. 11 summarizes325

the obtained results.326
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Fig. 11: The m = 81 k = 24 D-optimal design problem optimization results.

Table 2: Frequency of obtaining the best-known solution.

algorithm success rate

kofnGA 15%

DE 100%

PSO 70%

GA 5%

CE 0%

Table 2 shows the frequencies of obtaining the best-known solution using dif-327

ferent algorithms. It is interesting to note that the CE method always failed to328

achieve the best known objective function value. Nevertheless, the DE algorithm329

always managed to obtain the optimal result, and the PSO method performed rea-330

sonably well, too. The kofnGA and GA methods achieved a relatively law success331

rate of 15% and 5%, respectively.332
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4 Conclusion333

In this study we showed that any global continuous optimization method is appli-334

cable for solving the optimal fixed-size subset selection problem. We presented a335

suitable embedding of the original discrete state space into the continuous state336

space, and introduced a transformation that allows to employ continuous opti-337

mization procedures for the original discrete problem solution. Our numerical338

study indicates that the achieved performance compares favorably with the ex-339

isting open-source specifically designed software. We showed that by utilizing the340

proposed method, one can run several algorithms in parallel and report the best341

solution obtained. Moreover, this procedure can be carried out with a minimal342

development effort. Unsurprisingly, our numerical study indicates that there is343

no singe best method available, and in practice, we advise to run several global344

optimization algorithms side-by-side.345

While this study introduce a number of obvious benefits, it also suggests sev-346

eral promising directions for future research. First, we explored only a very limited347

number of continuous global optimization methods, namely, the Differential Evo-348

lution, the Particle Swarm Optimization, the Genetic Algorithm, and the Cross349

Entropy method. Our numerical study, and in particular, the D-optimal design ex-350

ample from the statistical domain, shows that it is important to explore additional351

continuous optimization techniques. The second promising direction is to explore352

different transformations from the continuous to the discrete space. A successful353

transformation should be constructed with a view to a satisfaction of smoothness354

condition of the objective function. A carefully designed embedding can assist a355

global optimization algorithm to improve both the speed of convergence and the356

solution obtained. Finally, it is important to note that the the Cross Entropy357

method deserves an additional attention as compared to other methods, since it358

can operate in stochastic environments. That is, it can be potentially used for an359

on-line monitoring network designs, and thus improve our capabilities of decision360

making under uncertainty.361
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