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Abstract

We show how a simple modification of the splitting method based on Gibbs
sampler can be efficiently used for decision making in the sense that one can
efficiently decide whether or not a given set of integer program constraints
has at least one feasible solution. We also show how to incorporate the clas-
sic capture-recapture method into the splitting algorithm in order to obtain a
low variance estimator for the counting quantity representing, say the num-
ber of feasible solutions on the set of the constraints of an integer program.
We finally present numerical with with both, the decision making and the
capture-recapture estimators and show their superiority as compared to the
conventional one, while solving quite general decision making and counting
ones, like the satisfiability problems.

Keywords. Decision Making, Gibbs Sampler, Cross-Entropy, Rare-Event, Combi-
natorial Optimization, Counting, Splitting.

0† This research was supported by the BSF (Binational Science Foundation, grant No 2008482)

1



Contents

1 Introduction: The Splitting Method 3

2 Decision Making 6

3 Counting with the Capture-Recapture Method 7
3.1 Application of the Classic Capture Recapture . . . . . . . . . . . . . 7
3.2 Application of the On-line Capture Recapture . . . . . . . . . . . . . 8

4 Numerical Results 8
4.1 Counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 Decision Making . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5 Concluding Remarks 12

6 Appendix: Splitting Algorithms 13
6.1 Basic Splitting Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 13
6.2 Enhanced Splitting Algorithm for Counting . . . . . . . . . . . . . . 14
6.3 Direct Splitting Algorithm . . . . . . . . . . . . . . . . . . . . . . . 16

2



1 Introduction: The Splitting Method

In this work we show how a simple modification of the splitting method introduced
in [14, 15] can be used for decision making. The goal of the decision making algo-
rithm is to decide whether or not a discrete set, like the set defined by the integer
programming constraints has a feasible solution.

Although there is a vast literature on the splitting method, (see [3], [4], [5], [6],
[7], [9], [15]), we follow [15] and present some background on the splitting method,
also called in [15] the cloning method. The main idea is to design a sequential
sampling plan, with a view of decomposing a “difficult” counting problem defined on
some set X ∗ into a number of “easy” ones associated with a sequence of related sets
X0,X1, . . . ,Xm and such that Xm = X ∗. Typically, splitting algorithms explore the
connection between counting and sampling problems and in particular the reduction
from approximate counting of a discrete set to approximate sampling of elements
of this set, where the sampling is performed by the classic MCMC method [17].

A typical splitting algorithm comprises the following steps:

1. Formulate the counting problem as that of estimating the cardinality |X ∗| of
some set X ∗.

2. Find a sequence of sets X = X0,X1, . . . ,Xm such that X0 ⊃ X1 ⊃ · · · ⊃ Xm =
X ∗, |Xm| = |X ∗| and |X | = |X0| is known.

3. Write |X ∗| = |Xm| as

|X ∗| = |X0|
m∏

t=1

|Xt|
|Xt−1| = `|X0|, (1)

where ` =
∏m

t=1
|Xt|
|Xt−1| . Note that ` is typically very small, like ` = 10−100,

while each ratio

ct =
|Xt|
|Xt−1| (2)

should not be small, like ct = 10−2 or bigger. Clearly, estimating ` directly
while sampling in |X0| is meaningless, but estimating each ct separately seems
to be a good alternative.

4. Develop an efficient estimator ĉt for each ct and estimate |X ∗| by

|̂X ∗| = |X0| ̂̀= |X0|
m∏

t=1

ĉt, (3)

where ̂̀= |X0|
∏m

t=1 ĉt.

It is readily seen that in order to obtain a meaningful estimator of |X ∗|, we have
to solve the following two major problems:

(i) Put the well known NP-hard counting problems into the framework (1) by
making sure that X0 ⊃ X1 ⊃ · · · ⊃ Xm = X ∗ and each ct is not a rare-event
probability.

(ii) Obtain a low variance estimator ĉt of each ct = |Xt|/|Xt−1|.
To proceed note that ` can be also written as

` = Ef

[
I{S(X)≥m}

]
, (4)
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where X ∼ f(x), f(x) is a uniform distribution on the set of points of X = X0,
m is a fixed parameter, like the total number of constraints in an integer program,
and S(X) is the sample performance, like the number of feasible solution generated
by the constraints of the integer program. It can be also written (see(1)) as

` =
T∏

t=1

ct, (5)

where

ct = |Xt|/|Xt−1| = Eg∗t−1
[I{S(X)≥mt−1}]. (6)

Here
g∗t−1 = g∗(x, mt−1) = `(mt−1)−1f(x)I{S(x)≥mt−1}, (7)

`(mt−1)−1 is the normalization constant and similar to (1) the sequence mt, t =
0, 1, . . . , T represents a fixed grid satisfying −∞ < m0 < m1 < · · · < mT = m. Note
that in contrast to (1) we use in (5) a product of T terms instead of a product of m
terms. Note that T might be a random variable. The later case is associated with
adaptive choice of the level sets {m̂t}T

t=0 resulting in T ≤ m. Since for counting
problems the pdf f(x) should be uniformly distributed on X , which we denote by
U(X ), it follows from (7) that the pdf g∗(x,mt−1) must be uniformly distributed
on the set Xt = {x : S(x) ≥ mt−1}, that is, g∗(x,mt−1) must be equal to U(Xt).
Although the pdf g∗t−1 = U(Xt) is typically not available analytically, it is shown in
[14, 15] that one can sample from it by using the MCMC method and in particular
the Gibbs sampler, and as the result to update the parameters ct and mt adaptively.
This is one of the most crucial issues of the cloning method.

Once sampling from g∗t−1 = U(Xt) becomes available, the final estimator of `
(based on the estimators of ct = Eg∗t−1

[I{S(X)≥mt−1}], t = 0, . . . , T ), can be written
as

̂̀=
T∏

t=1

ĉt =
1

NT

T∏
t=1

Nt, (8)

where

ĉt =
1
N

N∑

i=1

I{S(Xi)≥mt−1} =
Nt

N
, (9)

Nt =
∑N

i=1 I{S(Xi)≥mt−1}, Xi ∼ g∗t−1 and g∗−1 = f .
We next show how to cast the problem of counting the number of feasible solu-

tions of the set of integer programming constraints into the framework (4)- (7).

Example 1.1 Counting on the set of an integer programming constraints
Consider the set X ∗ containing both equality and inequality constraints of an integer
program, that is,

∑n
k=1 aikxk = bi, i = 1, . . . , m1,

∑n
k=1 ajkxk ≥ bj , j = m1 + 1, . . . , m1 + m2,

x = (x1, . . . , xn) ≥ 0, xk is integer ∀k = 1, . . . , n.

(10)

Our goal is to count the number of feasible solutions (points) of the set (10). We
assume that each component xk, k = 1, . . . , n has d different values, labeled 1, . . . , d.
Note that the SAT problem represents a particular case of (10) with inequality
constraints and where x1, . . . , xn are binary components. If not stated otherwise we
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will bear in mind the counting problem on the set (10) and in particular counting
the number of true (valid) assignments in a SAT problem.

It is shown in [15] that in order to count the number of points of the set (10)
one can associate it with the following rare-event probability problem

` = Ef

[
I{S(X)=m}

]
= Ef

[
I{Pm

i=1 Ci(X)=m}
]
, (11)

where the first m1 terms Ci(X)’s in (11) are

Ci(X) = I{Pn
k=1 aikXk=bi}, i = 1, . . . ,m1, (12)

while the remaining m2 ones are

Ci(X) = I{Pn
k=1 aikXk≥bi}, i = m1 + 1, . . . ,m1 + m2 (13)

and S(X) =
∑m

i=1 Ci(X). Thus, in order to count the number of feasible solutions
on the set (10) one can consider an associated rare-event probability estimation
problem (11) involving a sum of dependent Bernoulli random variables Ci i = m1 +
1, . . . , m, and then apply |̂X ∗| = ̂̀|X |. In other words, in order to count on X ∗
one needs to estimate efficiently the rare event probability ` in (11). A rare-event
probability estimation framework similar to (11) can be readily established for many
NP-hard counting problems [15].

It follows from above that the proposed algorithm will generate an adaptive
sequence of tuples

{(m0, g
∗(x,m−1)), (m1, g

∗(x,m0)), (m2, g
∗(x, m1)), . . . , (mT , g∗(x,mT−1))}

(14)
Here as before g∗(x,m−1) = f(x) = U(X ), g∗(x,mt) = U(Xt), and mt is obtained
from the solution of the following non-linear equation

Eg∗t−1
I{S(X)≥mt} = ρ, (15)

where ρ is called the rarity parameter [17]. Typically one sets 0.1 ≤ ρ0.01. Note that
in contrast to the classic cross-entropy (CE) method [13], [16], where one generates
a sequence of tuples

{(m0,v0), (m1, v1), . . . , (mT ,vT )}, (16)

and, where {vt, t = 1, . . . , T} is a sequence of parameters in the parametric family
of distributions f(x, vt), here in (14), {g∗(x,mt−1) = g∗t−1, t = 0, 1, . . . , T} is a
sequence of non-parametric IS distributions. Otherwise, the CE and the splitting
algorithms are very similar.

In Appendix (see Section 6), following [15], we present two versions of the split-
ting algorithm: the so-called basic version and the enhanced version having in mind
Example 1.1. Here we also present what is called the direct estimator and an as-
sociated Algorithm 6.3, which can be viewed as an alternative to the conventional
product estimator |X̂ ∗| generated by Algorithm 6.2. This estimator is based on
direct counting of the number of samples obtained immediately after crossing the
level m, that is without involving the product of ĉt. The drawback of the direct
Algorithm 6.3 is that it is able to count only if |X ∗| is up to the order of thousands.

Note that the splitting algorithm in [15] is also suitable for optimization. Here
we shal use the same sequence of tuples (14), but without involving the product of
the estimators ĉt, t = 1, . . . , T .

The rest of the paper is organized as follows. In Section 2 we present two
heuristics for speeding up the direct splitting Algorithm 6.3. They are called (i)
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local mt updating and (ii) global mt updating, respectively and will be used for
decision making. Recall that decision making here is merely to decide whether or
not the set X ∗ of the integer programming constraints (10) has a feasible solution.
Section 3 shows how to combine the well known capture-recapture (CAP-RECAP)
method with splitting in order to obtain a low variance alternative to both the
product estimator |̂X ∗| in (3) and the direct estimator |̂X ∗dir| in (22). Note that
the CAP-RECAP estimator (see (17) below) can be viewed as a generalization of
the direct one |̂X ∗dir| in the sense that once mt = m it involves two Gibbs samples
instead of one sample. In Section 4 supportive numerical results are presented. In
particular we show that the CAP-RECAP estimator outperforms the product one
|̂X ∗|. Finally, in Section 5 some concluding remarks are given.

2 Decision Making

Here we present two heuristics for speeding up the direct Algorithm 6.3, which will
be used for decision making. They are called (i) local mt updating and (ii) global
mt updating, respectively. It is important to note that they are applicable only for
the direct estimator (see (22) below), but not for the product one (8).

Local mt updating In this version, at each iteration t we replace the fixed
mt value in the Gibbs sampler with the elite sample values at that iteration. To
clarify, consider for simplicity the sum of n Bernoulli random variables. Let for
concreteness n = 5, N = 100 and ρ = 0, 01. Assume that while taking the sample of
size N = 100 we obtained the following sequence of elite vectors Xt1 = (1, 1, 0, 1, 0),
Xt2 = (1, 0, 0, 1, 0), Xt3 = (1, 0, 1, 1, 0), Xt4 = (1, 0, 0, 1, 0), Xt5 = (1, 0, 0, 1, 1).
The corresponding elite sample values are S(Xt1) = 3, S(Xt2) = 2, S(Xt3) =
3, S(Xt4) = 2, S(Xt5) = 3, and clearly mt = 2. Thus, in this version we simple
replace mt = 2 by the corresponding S(X) elite values 3, 2, 3, 2, = 3, while all
ather data in the direct Algorithm 6.3 remaining the same.

Global mt updating In this version we want the sample performance S(X) to
be a non-decreasing function as Gibbs proceeds, like the one in Figure ?? cor-
responding to the non-decreasing random work. To clarify, assume that at it-
eration t we have the same elite sample as before, that is Xt1 = (1, 1, 0, 1, 0),
Xt2 = (1, 0, 0, 1, 0), Xt3 = (1, 0, 1, 1, 0), Xt4 = (1, 0, 0, 1, 0), Xt5 = (1, 0, 0, 1, 1)
with mt = 2. Let us pick up one of the elites, say the first one corresponding to
Xt1 = (1, 1, 0, 1, 0) and let us apply to it the systematic Gibbs sampler. Notic-
ing that Xt1 has 3 unities, we simply replace the original level mt = 2 by the
current value S(Xt1) = 3 and set a new sub-level mt1 = S(Xt1) = 3. We then
proceed from Xt1 = (1, 1, 0, 1, 0) with mt1 = 3 to a new value denoted as X

(1)
t1 .

Assume that while applying systematic Gibbs sampler to the first components we
obtained X

(1)
t1 = (1, 1, 0, 1, 0), that is X

(1)
t1 = Xt1 = (1, 1, 0, 1, 0). We next pro-

ceed from X
(1)
t1 = (1, 1, 0, 1, 0) (with mt2 = 3) to a new vector X

(2)
t1 by applying

systematic Gibbs sampler to the second components. Let X
(2)
t1 = (1, 1, 1, 1, 0).

Since X
(2)
t1 = (1, 1, 1, 1, 0) contains 4 unities, we set the new sub-level mt3 =

4. Assume that proceeding further we obtain mt5 = mt4 = mt3 = 4 and let
also X

(4)
t1 = X

(3)
t1 = X

(2)
t1 = (1, 1, 1, 1, 0). The resulting sequence of sub-levels

mti in the systematic Gibbs sampler starting at Xt1 = (1, 1, 0, 1, 0) is therefore
(mt1, mt2,mt3,mt4,mt5) = (3, 3, 4, 4, 4) and similar for the remaining four elite val-
ues Xt2 = (1, 0, 0, 1, 0), Xt3 = (1, 0, 1, 1, 0), Xt4 = (1, 0, 0, 1, 0), Xt5 = (1, 0, 0, 1, 1).
After that we define a new common level mt+1 for iteration t + 1. In Section 4 we
present some numerical results with the above heuristics.
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3 Counting with the Capture-Recapture Method

Here we show how the well known capture-recapture (CAP-RECAP) method can be
used as alternative to the product estimator |̂X ∗| in (3).

We consider two versions of (CAP-RECAP) (i) the classic one (ii) the proposed
on-line one.

3.1 Application of the Classic Capture Recapture

Originally the capture-recapture method was used to estimate the size, say M , of
unknown population, under the assumption that two independent samples are taken
from that population.

To see how the CAP-RECAP method works consider an urn model model with
a total of M identical balls. Denote by N1 and N2, the sample sizes taken at the
first and the second draw. Assume in addition that

1. The second draw take place only after all N1 balls are returned back to the
urn.

2. Before returning the N1 balls back we mark each of them, say we paint them
in a different color.

Denote by R the number of balls from the first draw that also appear at the second
one. Clearly that the estimate of M , denoted by M̃ is

M̃ =
N1N2

R
.

This is so since
N2

M
≈ R

N1
.

Note that the name capture-recapture comes from the name of model where one
is interested to estimate the animal population size in a particular area, provided
two visits are available to the area. In this case R denotes the number of animals
captured on the first visit that were then recaptured on the second one.

It is well know that a slightly better unbiased estimate of M is

M̂ =
(N1 + 1)(N2 + 1)

(R + 1)
− 1. (17)

The corresponding variance is

Var (M̂) =
(N1 + 1)(N2 + 1)(N1 −R)(N2 −R)

(R + 1)(R + 2)(R + 3)
. (18)

Application of The CAP-RECAP to counting problems is trivial. We set |X ∗| =
M and note that N1 and N2 correspond to the screened out Gibbs samples at the
first and second draws, which are performed after Algorithm 6.2 reaches the desired
level m.

As an example, assume that in both experiments (draws) we set originally N =
10, 000 and then we obtained N1 = 5, 000, N2 = 5, 010 and R = 10. The capture-
recapture (CAP-RECAP) estimator of |X ∗|, denoted by ̂|X ∗|cap is therefore

̂|X ∗|cap = 2, 505, 000.

Clearly, the direct estimator ̂|X ∗|dir can not handle such big number.
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Our numerical results below clearly indicate that the CAP-RECAP estimator
̂|X ∗|cap is typically more accurate than the product one |̂X ∗|, that is

Var |̂X ∗| > Var ̂|X ∗|cap,

provided that the the sample N is limited, say by 10,000 and if |X ∗| is large but
limited, say by 107. If, however, |X ∗| is very large, say |X ∗| > 107, then ̂|X ∗|cap

might become meaningless, since with the budget of N = 10, 000 we will obtain
often R = 0, provided |X ∗| > 107. However, the latter case has limited application,
since if |X ∗| is very large we can estimate it with the crude Monte Carlo.

3.2 Application of the On-line Capture Recapture

To see how the CAP-RECAP method works on-line consider again the urn model
with a total of M unknown identical balls. In this case we take only one draw of
size N instead of two ones (of sizes N1 and N2, respectively as before) and proceed
as follows:

1. We draw the N balls one-by-one with replacement.

2. Before returning each of the N balls back to the urn we mark it.

3. As in classic method we count the number of marked balls.

Note that the marking procedure here is different from the classic one. Also
note that by drawing the N balls on-line (sequentially), each ball can be drawn
with positive probability up to N times, while in the classic one each ball has a
positive probability to be drawn only up to two times. Now having R marked balls
at hand how can we find the on-line estimator of M , denoted by |̂X ∗on| (recall that
in our case M = |X ∗|), its expected value and the associated variance. We proceed
argue as follows.

The probability that the same ball will appear exactly N times is (1/M)N ;
exactly 2 times is N(1− 1/M)(1/M)N−1, etc.

Proceeding we can readily obtain that the on-line estimator of M and the asso-
ciated variance. Although this will be done some where else, it is intuitively clear
that the on-line CAP-RECAP estimator |̂X ∗on| is more exact than the classic one
|̂X ∗cap|, provided N = N1 + N2. The reason is that the on-line one is based on
conditioning and conditioning always reduces variance.

Remark 3.1 As a third alternative to both the classic and the on-line CAP-
RECAP estimators we can use the direct estimator |̂X ∗dir| in (22) to estimate M
by taking into account the number of screened out elements at the level m, which
is equal to N − |̂X ∗dir|. As an estimator of X ∗, denoted by |̂X ∗scr| we can take the
following one.

|̂X ∗scr| = |̂X ∗dir| if |̂X ∗dir| ≤ N/2 and |̂X ∗scr| = N2

|̂X∗dir|
, otherwise.

4 Numerical Results

Below we present numerical results with CAP-RECAP method for counting and
with the global mt heuristics for decision making.
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4.1 Counting

Consider the random 3-SAT with the instance matrix A = (75 × 325) taken from
www.satlib.org and its truncated version A = (75× 305).

Table 1 presents comparison of the performance of the product estimator |̂X ∗|
and its counterpart |̂X ∗cap| using the enhanced splitting Algorithm 6.2 for A =
(75× 305). Table 2 presents similar data for A = (75× 325). We set N = 10, 000,
ρ = 0.1 and b = η. Table 3 presents the dynamic of one of the runs of Algorithm
6.2 for A = (75×305). We found that the the average CPU time is about 6 minutes
for each run.

Note that the sample N1 was obtained as soon as soon as Algorithm 6.2 reaches
the final level m, and N2 was obtained while runing Algorithm 6.2 for one more
iteration at the same level m. The actual sample sizes N1 and N2 were chosen
according to the following rule: sample until Algorithm 6.2 screens out 50% of the
samples and then stop. It follows from Tables 1 that for model A = (75× 305) this
corresponds to N1 ≈ N2 ≈ 26, 000 and R ≈ 22, 000, while for model A = (75× 325)
it follows from Table 2 that N1 ≈ N2 ≈ R ≈ 2, 200. It also follows that for
A = (75× 305) and A = (75× 325) the relative error of |̂X ∗cap| is about 10 and 100

times smaller as compared to |̂X ∗|. It is readily seen that by enlarging the samples
N1 and N2 only at the last two iterations of Algorithm 6.2 the relative error of
|̂X ∗cap| will further decrease.

Table 1: Comparison of the performance of the product estimator |̂X ∗| with its
counterpart |̂X ∗cap| for SAT (75× 305) model.

Run N0 Iterations d|X ∗| RE of d|X ∗| |̂X ∗cap| RE of |̂X ∗cap| N1 N2 R

1 21 2.67E+04 1.39E-01 3.07E+04 4.49E-02 23993 23908 18681

2 21 4.10E+04 3.22E-01 3.27E+04 1.57E-02 27064 26945 22333

3 21 2.85E+04 8.08E-02 3.19E+04 7.33E-03 26638 26567 22176

4 21 2.96E+04 4.36E-02 3.09E+04 3.83E-02 23907 23993 18552

5 21 2.87E+04 7.29E-02 3.29E+04 2.41E-02 26967 27120 22214

6 21 3.63E+04 1.71E-01 3.23E+04 4.25E-03 26838 26762 22247

7 21 2.39E+04 2.28E-01 3.30E+04 2.64E-02 26719 26697 21618

8 21 4.10E+04 3.22E-01 3.29E+04 2.32E-02 26842 26878 21933

9 21 2.72E+04 1.23E-01 3.21E+04 1.44E-03 26645 26578 22060

10 21 2.70E+04 1.29E-01 3.21E+04 1.75E-03 26512 26588 21965

Average 21 3.10E+04 1.63E-01 3.21E+04 1.87E-02

Variance 0 3.77E+07 9.71E-03 6.45E+05 2.34E-04

9



Table 2: Comparison of the performance of the product estimator |̂X ∗| and its
counterpart |̂X ∗cap| for SAT (75× 325) model.

Run N0 Iterations d|X ∗| RE of d|X ∗| |̂X ∗cap| RE of |̂X ∗cap| N1 N2 R

1 24 2.02E+03 1.03E-02 2.21E+03 6.55E-03 2201 2195 2191

2 24 1.94E+03 2.95E-02 2.20E+03 7.01E-03 2200 2202 2198

3 24 1.59E+03 2.03E-01 2.24E+03 7.86E-03 2234 2235 2232

4 24 2.34E+03 1.70E-01 2.23E+03 2.45E-03 2221 2223 2219

5 24 1.69E+03 1.54E-01 2.20E+03 1.11E-02 2194 2191 2190

6 24 2.38E+03 1.89E-01 2.24E+03 6.96E-03 2230 2230 2225

7 24 1.63E+03 1.86E-01 2.22E+03 6.53E-04 2215 2216 2210

8 24 2.38E+03 1.89E-01 2.23E+03 5.15E-03 2225 2229 2223

9 24 1.97E+03 1.66E-02 2.22E+03 1.55E-03 2217 2219 2213

10 24 2.12E+03 6.03E-02 2.21E+03 3.86E-03 2206 2208 2203

Average 24 2.01E+03 1.21E-01 2.22E+03 5.31E-03

Variance 0 9.10E+04 6.55E-03 2.04E+02 1.03E-05

Table 3: Dynamics of of one of the runs of the enhanced Algorithm for the random
3-SAT with matrix A = (75× 305).

t |̂X ∗| |̂X ∗cap| Nt N
(s)
t m∗

t m∗t ρt

1 4.62E+21 − 1223 1223 285 274 0.122
2 6.88E+20 − 1490 1490 288 279 0.149
3 7.52E+19 − 1093 1093 291 283 0.109
4 8.62E+18 − 1146 1146 292 286 0.115
5 1.57E+18 − 1817 1817 293 288 0.182
6 2.33E+17 − 1489 1489 296 290 0.149
7 2.46E+16 − 1053 1053 296 292 0.105
8 7.34E+15 − 2987 2987 297 293 0.299
9 1.93E+15 − 2635 2635 298 294 0.264
10 4.74E+14 − 2454 2454 300 295 0.245
11 1.07E+14 − 2251 2251 299 296 0.225
12 2.09E+13 − 1960 1960 300 297 0.196
13 3.65E+12 − 1742 1742 302 298 0.174
14 5.66E+11 − 1551 1551 302 299 0.155
15 7.22E+10 − 1276 1276 303 300 0.128
16 8.34E+09 − 1155 1155 304 301 0.116
17 7.64E+08 − 917 917 304 302 0.092
18 5.10E+07 − 667 667 304 303 0.067
19 2.10E+06 − 412 412 305 304 0.041
20 3.28E+04 − 156 156 305 305 0.016
21 3.38E+04 3.21e+004 10000 8484 305 305 1.000

Here we used the following notations

1. Nt and N
(s)
t denote the actual number of elites and the one after screening,

respectively.

2. m∗
t and m∗t denote the upper and the lower elite levels reached, respectively.
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3. ρt = Nt/N denote the adaptive rarity parameter.

4.2 Decision Making

Recall that the goal of the decision making algorithm is to decide whether or not
the set X of the integer program constraints (10) has a feasible solution. The
decision making algorithm presents a simple modification the direct Algorithm 6.3.
In particular:

1. Instead of counting according to (22), that is

|̂X ∗dir| =
N∑

i=1

I{S(X
(d)
i )≥m},

we make decision in the sense that we need to decide whether |X̂ ∗dir| > 0 or
|X̂ ∗dir| = 0.

2. Apply global mt policy from instead of the standard splitting step (see Step
3. in Algorithm 6.3.

We call such modified Algorithm 6.3 as the decision making Algorithm.
We run the decision making Algorithm 6.3 for different SAT problems taken

from www.satlib.org using the global mt policy. In particular we took 40 instances
out of more than 200 instances available, each presenting a random 3-SAT with
the instance matrix A of size (250 × 1065) and with |X̂ ∗dir| > 1. We set the burn
in parameter b = 10, N = 10, 000 and ρ = 0.5. The CPU time was about 10
minutes. We always obtained that |X̂ ∗dir| > 1, that is we found that our algorithms
works nicely. For N = 1, 000 we found, however that our algorithm failed for some
instances. The same was true for N = 10, 000 and ρ < 0.5.

Table 4 presents the dynamics of one of such runs.

Table 4: Performance of the decision making Algorithm 6.3 with global mt policy for
the random 3-SAT with the clause matrix A = (250× 1065), N = 10, 000, ρ = 0.5
and b = 10

t |̂X ∗| |X̂ ∗dir| Nt N
(s)
t m∗

t m∗t ρt

1 8.76e+074 0 5161 4841 972 933 0.48
2 4.27e+074 0 7436 7079 1050 1023 0.49
3 1.84e+074 0 7288 6106 1058 1043 0.43
4 7.49e+073 0 6601 4970 1062 1051 0.41
5 2.85e+073 0 8318 5665 1062 1056 0.38
6 8.43e+072 0 6383 3353 1064 1059 0.30
7 2.48e+072 0 6745 2965 1065 1061 0.29
8 3.65e+071 0 6090 1745 1065 1063 0.15
9 5.90e+070 0 10470 1690 1065 1064 0.16
10 1.09e+070 1871 10140 1873 1065 1065 0.18
11 1.09e+070 11238 11238 11238 1065 1065 1.00

Table 5 presents the dynamics of a run with the same global mt policy Algorithm
6.3 for the random SAT with the instance matrix A = (122×663) and a single valid
assignment, (|X ∗| = 1), taken from http://www.is.titech.ac.jp/ watanabe/gensat.
We set N = 50, 000, ρ = 0.95 and b = 10. The results are self- explanatory. Note
that

11



1. For ρ < 0.95 Algorithm 6.3 is stacked some where before 663.

2. The CPU time is about 5 hours.

3. For this difficult model with a single valid assignment we found that the
global mt policy Algorithm 6.3 has approximately the same running time as
the enhanced cloning Algorithm 6.2, for which we used the same N = 50, 000,
but ρ = 0.1 instead of ρ = 0.95.

Table 5: Performance of the global mt policy Algorithm 6.3 for the random 3−4-SAT
with the instance matrix A = (122× 663), N = 50, 000, ρ = 0.95 and b = 10

t |̂X ∗| |X̂ ∗dir| Nt N
(s)
t m∗

t m∗t ρt

1 5.03e+036 0 28777 28412 627 585 0.96
2 4.77e+036 0 54792 53926 650 622 0.96
3 4.43e+036 0 52042 50652 653 634 0.97
4 4.18e+036 0 49586 48082 655 639 0.98
5 3.90e+036 0 47238 45392 656 642 0.98
6 3.63e+036 0 44824 42724 657 644 0.99
7 3.15e+036 0 41357 37781 658 646 0.97
8 2.85e+036 0 37781 34972 658 647 1.00
9 2.62e+036 0 34972 31710 658 648 1.00
10 2.20e+036 0 31710 27547 658 649 1.00
11 2.03e+036 0 55094 45921 660 650 1.00
12 1.44e+036 0 45921 34996 660 651 1.00
13 5.36e+035 0 34996 23854 660 652 1.00
14 4.20e+035 0 47708 28573 660 653 1.00
15 4.19e+035 0 57146 28378 660 654 1.00
16 3.43e+035 0 56756 22473 661 655 1.00
17 1.07e+035 0 44946 13879 661 656 1.00
18 1.66e+032 0 41637 7867 661 657 1.00
19 1.08e+031 0 31468 3390 661 658 1.00
20 9.72e+030 0 30510 1126 663 659 1.00
21 6.98e+024 0 30402 204 663 660 1.00
22 1.99e+017 0 30600 3 663 661 1.00
23 1.10e+010 0 30600 1 663 662 1.00
24 1.10e+010 1 30600 1 663 663 1.00

5 Concluding Remarks

We showed how a simple modification of the splitting method based on Gibbs sam-
pler can be efficiently used for decision making in the sense that one can efficiently
decide whether or not a given set of integer program constraints has at least one
feasible solution. Our decision making is based on what is called the local mt and
global mt modification of the direct splitting Algorithm 6.3. We also show how to
incorporate the classic capture-recapture method into the direct Algorithm 6.3 in
order to obtain a low variance estimator for the counting quantity representing, say
the number feasible solution on the set defined as by the constraints of an integer
program. We finally present numerical with with both, the decision making and the
capture-recapture estimators and show their superiority as compared to the conven-
tional product one |̂X ∗|, while solving quite general decision making and counting
ones, like the satisfiability problems.
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6 Appendix: Splitting Algorithms

Below, following [15], we present two versions of the splitting algorithm: the so-
called basic version and the enhanced version having in mind Example 1.1.

6.1 Basic Splitting Algorithm

Let N , ρt and Nt be the fixed sample size, the adaptive rarity parameter and the
number of elite samples at iteration t, respectively (see [15] details). Recall [15] that
the elite sample X̂1, . . . , X̂Nt corresponds to the largest subset of the population
{X1, . . . , XNt

}, for which S(Xi) ≥ m̂t, that is m̂t is the (1 − ρt) sample quantile
of of the ordered statistics values of S(X1), . . . , S(XN ). It follows that the number
of elites Nt = dNρte, where d·e denotes rounding to the largest integer.

In the basic version at iteration t we split each elite sample ηt =
⌈
ρ−1

t

⌉
times.

By doing so we generate
⌈
ρ−1

t Nt

⌉ ≈ N new samples for the next iteration t + 1.
The rationale is based on the fact that if all ρt are not small, say ρt ≥ 0.01, we have
at each iteration t enough stationary elite samples, and all what the Gibbs sampler
has to do for the next iteration is to generate N ≈ ⌈

ρ−1
t Nt

⌉
new samples uniformly

distributed on Xt+1.

Algorithm 6.1 (Basic Splitting Algorithm for Counting) Given the initial
parameter ρ0, say ρ0 ∈ (0.01, 0.25) and the sample size N , say N = nm, execute
the following steps:

1. Acceptance-Rejection Set a counter t = 1. Generate a sample X1, . . . , XN

uniformly on X0. Let X̂0 = {X̂1, . . . , X̂N0} be the elite samples. Take

ĉ0 = ̂̀(m̂0) =
1
N

N∑

i=1

I{S(Xi)≥bm0} =
N0

N
(19)

as an unbiased estimator of c0. Note that X̂1, . . . , X̂N0 ∼ g∗(x, m̂0), where
g∗(x, m̂0) is a uniform distribution on the set X1 = {x : S(x) ≥ m̂0}.

2. Splitting Let X̂t−1 = {X̂1, . . . , X̂Nt−1} be the elite sample at iteration
(t−1), that is the subset of the population {X1, . . . , XN} for which S(Xi) ≥
m̂t−1. Reproduce ηt−1 =

⌈
ρ−1

t−1

⌉
times each vector X̂k = (X̂1k, . . . , X̂nk)

of the elite sample {X̂1, . . . , X̂Nt−1}, that is take ηt−1 identical copies of
each vector X̂k. Denote the entire new population (ηt−1Nt−1 cloned vectors
plus the original elite sample {X̂1, . . . , X̂Nt−1}) by Xcl = {(X̂1, . . . , X̂1), . . . ,
(X̂Nt−1 , . . . , X̂Nt−1)}. To each of the cloned vectors of the population Xcl

apply the MCMC (and in particular the random Gibbs sampler) for a single
period (single burn-in). Denote the new entire population by {X1, . . . , XN}.
Note that each vector in the sample X1, . . . , XN is distributed g∗(x, m̂t−1),
where g∗(x, m̂t−1) has approximately a uniform distribution on the set Xt =
{x : S(x) ≥ m̂t−1}.

3. Estimating ct Take ĉt = Nt

N (see (9)) as an estimator of ct in (7). Note again
that each vector of X̂1, . . . , X̂Nt of the elite sample is distributed g∗(x, m̂t),
where g∗(x, m̂t) has approximately a uniform distribution on the set Xt+1 =
{x : S(x) ≥ m̂t}.

4. Stopping rule If mt = m go to step 5, otherwise set t = t + 1 and repeat
from step 2.
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5. Final Estimator Deliver ̂̀given in (8) as an estimator of ` and |X̂ ∗| = ̂̀|X |
as an estimator of |X ∗|.

Note that at iteration t Algorithm 6.1 splits each elite sample ηt =
⌈
ρ−1

t

⌉
times.

By doing it generates
⌈
ρ−1

t Nt

⌉ ≈ N new samples for the next iteration t + 1. The
rationale is based on the fact that if all ρt are not small, say ρt ≥ 0.01, we have
at each iteration t enough stationary elite samples, and all what the Gibbs sampler
has to do for the next iteration is to generate N ≈ ⌈

ρ−1
t Nt

⌉
new samples uniformly

distributed on Xt+1.
Figure 1 presents a typical dynamics of the splitting algorithm, which terminates

after two iterations. The set of points denoted ? and • is associated with these two
iterations. In particular the points marked by ? are uniformly distributed on the
sets X0 and X1. (Those, which are in X1 correspond to the elite samples). The
points marked by • are approximately uniformly distributed on the sets X1 and X2.
(Those, which are in X2 = X ∗ likewise correspond to the elite samples).

Figure 1: Dynamics of Algorithm 6.1

6.2 Enhanced Splitting Algorithm for Counting

Here we introduce an enhanced version of the basic splitting Algorithm 6.1, which
contains (i) an enhanced splitting (splitting) step instead of the original one as in
Algorithms 6.1 and a (ii) new screening step.

(i) Enhanced cloning step Denote be ηt the number of times each of the
Nt elite samples is reproduced at iteration t, and call it the cloning (splitting)
parameter. Denote by bt the burn-in parameter, that is the number of times each
elite sample has to follow through the MCMC (Gibbs) sampler. The purpose of
enhanced cloning step is to find a good balance, in terms of bias-variance of the
estimator of |X ∗|, between ηt and bt, provided the number of samples N is given.

Let us assume for a moment that bt = b is fixed. Then for fixed N , we can define
the adaptive cloning parameter ηt−1 at iteration t− 1 as follows

ηt−1 =
⌈

N

bNt−1

⌉
− 1 =

⌈
Ncl

Nt−1

⌉
− 1. (20)
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Here Ncl = N/b is called the cloned sample size, and as before Nt−1 = ρt−1N
denotes the number of elites and ρt−1 is the adaptive rarety parameter at iteration
t− 1 [see [17] for details).

As an example, let N = 1, 000, b = 10. Consider two cases: Nt−1 = 21 and
Nt−1 = 121. We obtain ηt−1 = 4 and ηt−1 = 0 (no cloning ), respectively.

As an alternative to (20) one can use the following heuristic strategy in defining
b and η: find bt−1 and ηt−1 from bt−1ηt−1 ≈ N

Nt−1
and take bt−1 ≈ ηt−1. In short,

one can take

bt−1 ≈ ηt−1 ≈
(

N

Nt−1

)1/2

. (21)

Consider again the same two cases for Nt−1 and N We have bt−1 ≈ ηt−1 = 7 and
bt−1 ≈ ηt−1 = 3, respectively. We found numerically that both versions work well,
but unless stated otherwise we shall use (21).

(ii) Screening step. Since the IS pdf g∗(x,mt) must be uniformly distributed
for each fixed mt, the splitting algorithm checks at each iteration whether or not
all elite vectors X̂1, . . . , X̂Nt

are different. If this is not the case, we screen out
(eliminate) all redundant elite samples. We denote the resulting elite sample as
X̂1, . . . , X̂Nt and call it, the screened elite sample. Note that this procedure pre-
vents (at least partially) the empirical pdf associated with X̂1, . . . , X̂Nt from devi-
ating from the uniform.

Algorithm 6.2 (Enhanced Splitting Algorithm for Counting) Given the pa-
rameter ρ, say ρ ∈ (0.01, 0.25) and the sample size N , say N = nm, execute the
following steps:

1. Acceptance-Rejection - the same as in Algorithm 6.1.

2. Screening Denote the elite sample obtained at iteration (t− 1) by
{X̂1, . . . , X̂Nt−1}. Screen out the redundant elements from the subset {X̂1, . . . , X̂Nt−1},
and denote the resulting (reduced) one as {X̂1, . . . , X̂Nt−1}.

3. Splitting (Cloning) Given the size Nt−1 of the screened elites {X̂1, . . . , X̂Nt−1}
at iteration (t−1), find the splitting and the burn-in parameters ηt−1 and bt−1

according to (21). Reproduce ηt−1 times each vector X̂k = (X̂1k, . . . , X̂nk) of
the screened elite sample {X̂1, . . . , X̂Nt−1}, that is, take ηt−1 identical copies
of each vector X̂k obtained at the (t − 1)-th iteration. Denote the entire
new population (ηt−1Nt−1 cloned vectors plus the original screened elite sam-
ple {X̂1, . . . , X̂Nt−1}) by Xcl = {(X̂1, . . . , X̂1), . . . , (X̂Nt−1 , . . . , X̂Nt−1)}.
To each of the cloned vectors of the population Xcl apply the MCMC (and
in particular the Gibbs sampler) for bt−1 burn-in periods. Denote the new
entire population by {X1, . . . , XN}. Note that each vector in the sample
X1, . . . , XN is distributed approximately g∗(x, m̂t−1), where g∗(x, m̂t−1) is
a uniform distribution on the set Xt = {x : S(x) ≥ m̂t−1}.

4. Estimating ct - the same as in Algorithm 6.1.

5. Stopping rule -the same as in Algorithm 6.1.

6. Final estimator - the same as in Algorithm 6.1.

Note that the basic Algorithm 6.1 (with b = 1 and without screening) presents
a particular case of the enhanced Algorithm 6.2.
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6.3 Direct Splitting Algorithm

The direct estimator below can be viewed as an alternative to the estimator |X̂ ∗|
obtained by Algorithm 6.1. This estimator is based on direct counting of the num-
ber of screened samples obtained immediately after crossing the level m. Such a
counting estimator, denoted by |X̂ ∗dir|, is associated with the empirical distribution
of the uniform distribution g∗(x,m). We found numerically that |X̂ ∗dir| is extremely
useful and very accurate. Note that it is applicable only for counting problems with
|X ∗| not too large. Specifically |X ∗| should be less than the sample size N , that is
|X ∗| < N . Note also that counting problems with values small relative to |X | are
the most difficult ones and in many counting problems one is interested in the cases
where |X ∗| does not exceed some fixed quantity, say N . Clearly, this is possible
only if N ≥ N . It is important to note that |X̂ ∗dir| is typically much more accurate
than its counterpart, the standard estimator |X̂ ∗| = ̂̀|X |. The reason is that |X̂ ∗dir|
is obtained directly by counting all distinct values of Xi, i = 1, . . . , N satisfying
S(Xi) ≥ m, that is it can be written as

|̂X ∗dir| =
N∑

i=1

I{S(X
(d)
i )≥m}, (22)

where X
(d)
i = Xi, if Xi 6= Xj , ∀j = 1, . . . , i − 1 and X

(d)
i = 0, otherwise. Note

that we set in advance X
(d)
1 = X1. Note also that there is no need here to calculate

ĉt at any step.

Algorithm 6.3 ( Direct Algorithm for Counting) Given the rarity parame-
ter ρ, say ρ = 0.1, the parameters a1 and a2, say a1 = 0.01 and a2 = 0.25, such
that ρ ∈ (a1, a2), and the sample size N , execute the following steps:

1. Acceptance-Rejection - same as in Algorithm 6.2.

2. Screening - same as in Algorithm 6.2.

3. Splitting - same as in Algorithm 6.2.

4. Stopping rule - same as in Algorithm 6.2.

5. Final Estimator For mT = m, take a sample of size N , and deliver |X̂ ∗dir| in
(22) as an estimator of |X ∗|.

Note that the counting Algorithm 6.3 can be readily modified for combinatorial
optimization, since an optimization problem can be can be viewed as a particular
case of counting, where the counting quantity |X ∗| = 1.
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