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On alternative Monte Carlo methods for parameter
estimation in gamma process models with

intractable likelihood
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Abstract—Because of stochastic gamma processes adaptability,
they are now widely used to mimic a variety of degradation
events. However, in certain situations, measurement errors are
present in the degradation data, and an intractable probability
setting is emerging. When completing inference tasks, its in-
tractableness causes a significant practical difficulty. In order
to overcome the difficulty of producing maximum likelihood
estimators and the related confidence intervals for the model pa-
rameters, we propose a new technique. The rare-event problem,
which has a significant influence on the estimator efficiency and,
consequently, on the whole inference process, plagues previously
employed Monte Carlo approaches for intractable likelihood
estimation. We suggest using an alternative Monte Carlo method
to address this, while avoiding the establishment of a rare-
event issue. The Cross Entropy optimization approach, which
can handle objective functions that are tainted by noise, is then
added to this technique. We demonstrate that the suggested mix
can be implemented within an acceptable computation time and
lays the foundation for efficient, generic, and scalable inference
processes under the intractable likelihood scenario. Our results
show that, given the stochastic gamma process degradation
model assumption, the proposed technique may yield high-quality
inference results.

Index Terms—Degradation modeling, Stochastic Gamma pro-
cess, Maximum likelihood parameter estimation, Bootstrap,
Monte Carlo, Cross Entropy Method

I. INTRODUCTION

MOST intricate products and systems that fuel our daily
activities are prone to decay. This has an important

impact on the system’s lifespan, the service’s quality, and the
usage’s associated safety. Consequently, the consideration of
reliability management and prognostic programs is of utmost
significance. In order to understand different failure mech-
anisms, a reliability engineer requires an effective solution
to the statistical inference problems that arise in complex
degradation models. Such information eventually improves
the reliability of failure predictions and the capacity to take
extreme situations into consideration. Furthermore, to increase
the system’s safety, implement the best maintenance planning
regimes, and reduce downtimes, a knowledge of failure mech-
anisms is of critical importance. Given its adaptability for
modeling deterioration, stochastic gamma processes (GPs) are
at the forefront of the most recent state-of-the-art research [1]–
[3].

However, in many real-life problems, practitioners en-
counter measurement errors and the latter is usually accompa-
nied by intractable likelihoods [4], [5]. Intractable likelihoods
impose a serious challenge [6], [7]. Our study addresses this

problem by combining a new Monte Carlo (MC) approach
and the Cross Entropy (CE) optimization method, which is
capable of working with objective functions corrupted with
noise [8]. This blend allows one to complete the inference
task, namely, to deliver both the maximum likelihood point
estimates and the set of the corresponding confidence intervals
for the model parameters. The proposed framework provides
a novel approach for handling inference tasks subject to the
intractable likelihood setting.

There are countless examples of the degradation phenomena
in many different fields, and degradation processes have a
significant influence on our daily lives. Degradation processes,
such as the deterioration of forests, the decline of fish popula-
tions, and the deterioration of water quality brought on by
pollution, are frequent in ecology [9]–[12]. In manufactur-
ing, it is of interest to consider corrosion, the loss of solar
panel production, and aircraft engines [13]–[16]. Additional
examples include a micro-mechanical model for initiation of
hydrogen embrittlement in high strength steels [17], [18],
medicine (shelf life of pharmaceuticals and vaccines) [19],
[20], progression of chemical reactions [21], social science
(age-related cognitive decline) [22], [23], and many more
[24]–[26].

Coastal erosion and agricultural land deterioration [27],
[28] are two important environmental and economic problems.
While coastal erosion is mainly created by natural factors
such as ocean waves, agricultural land degradation is caused
by various human activities, including the production of food
and fibres by the farming sector. Therefore, the development
of sustainable risk management plans is of great interest
for the protection of the local environment. Additionally,
degradation mechanisms are commonly seen in medicine. The
Food and Drug Administration in United States specifically
mandates that the immediate container label for new drugs
include the matching shelf life information. Because the ac-
tive medication components are prone to degradation, this
condition is necessary. The mRNA-based immunization is a
more recent illustration [20]. Although mRNA vaccines are
in a strong position to emerge as the most effective COVID-
19 vaccine candidates, mRNA molecules have been observed
to spontaneously decay even when stored in the refrigerator.
Therefore, it is critical to study the mRNA breakdown process
accurately.

1975 saw the introduction of stochastic GPs to the field
of system reliability [29], [30]. GPs were recognized as being
useful in identifying good inspection and maintenance options.
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As a consequence, these processes were discovered to be well
suited for characterizing a variety of degradation scenarios
[31], [32]. For example, GPs were used to find optimal sand
nourishment sizes [33], optimal dike heightening [34], and
more [35]–[38]. Stochastic GP modeling is an active field
of research. For some recent examples, we refer to wheel
wear modeling [39], remaining useful life prediction [40],
and space-time-dependent reliability analysis [41]. Due to the
importance of GPs in the reliability domain, a natural question
of parameter inference comes to light.

For a perturbed gamma process model, which combines two
stochastic processes: a Brownian motion and a homogeneous
gamma process, Bordes et al. [42] provide both the parameters
estimation procedure and the corresponding asymptotic prop-
erties of the estimators, including consistency and asymptotic
normality. In addition, the Expectation–Maximization (EM)
algorithm, was applied for less general problems, such as, for
example, for GPs with random initial degradation but without
measurement errors [3]. In this manuscript, we propose to
apply a simpler and more general method, that can handle
multi-extremal optimization [43], is easier to implement, and
spares the potentially difficult development of the EM algo-
rithm [40], [44]. For additional recent examples, we refer to
a Markov Chain Monte Carlo (MCMC) method for parameter
estimation of the non-homogeneous GP, which was examined
by Guida et al. [45]. In addition, a non-homogeneous GP
with measurement errors was considered by Hazra et al. [1].
Moreover, Hazra et al. provided both a Likelihood MCMC
(L-MCMC) version of the algorithm, and introduced a novel
approach based on approximate Bayesian computation (ABC-
MCMC). While ABC-MCMC avoids the noisy likelihood
estimation problem, which is an essential ingredient of the
L-MCMC method, a certain compromise on accuracy should
be taken into account.

The major problem with the L-MCMC approach is the usage
of the Crude Monte Carlo (CMC) algorithm for intractable
likelihood estimation [46]. Specifically, the CMC method
introduces large variance. That is, the rare-event setting is
introduced by a naive CMC estimator; this will be considered
in details in Section II. In this paper, we propose a simple idea
that helps to overcome the rare-event problem. In particular,
we provide an alternative (CMC2) estimator, which can be
used as an objective function for an optimization procedure
with the view of obtaining maximum likelihood estimators
(MLEs). In this case, we propose to apply the CE optimization
method [47], [48], which has already been shown to perform
well under the noisy optimization setting [43]. We give a brief
overview of the CE method in Section III.

The major contribution introduced in this study is as fol-
lows.

Our first contribution is that we rigorously demonstrate that
it is preferable not to use the naive CMC method for the
noisy likelihood estimation under the GP model setting, since
this approach suffers from the rare-event problem phenomena.
Instead, the proposed alternative (CMC2) estimator avoids the
rare-event setting. Our second contribution is that we show
that one can apply a well-established noisy optimization CE
method (combined with the CMC2 algorithm) to produce

maximum likelihood point estimates of the GP process pa-
rameters. Moreover, by blending CE with a bootstrap method,
one can easily complete the inference task by providing
the corresponding confidence intervals. The alternative Monte
Carlo framework of the CMC2 algorithms opens the way to
future research. For example, the proposed CMC2 estimator
can be combined with likelihood-based MCMC methods (such
as the L-MCMC) [1]. Finally, a research software package
capable of handling real-life degradation inference problems
is provided. We show that the software is capable of achieving
good results while using a reasonable computation effort.

To summarize, this study proposes an efficient method for
handling inference under GP setting with measurement errors.
In particular, we present a general technique for obtaining
both point estimators and confidence intervals for the GP
model parameters. The suggested combination of a simple
Monte Carlo method (CMC2) and the CE algorithm, provides
a viable alternative to the recently proposed ABC-MCMC
method of Hazra et al. [1]. For synthetically generated datasets,
the MLE and the corresponding confidence intervals provide
an accurate estimates of the actual model parameters. In
addition, we show that our method can work with real-life
datasets. One limitation of our study is that the provided
research package is single threaded. Therefore, in order to
handle larger data sizes, one would need to consider a parallel
implementation of the CE method.

This manuscript has the following organization. In Section
II, we formally define the inference problem and show that the
naive CMC method fails to provide an adequate instrument
for the corresponding intractable likelihood estimation. In
Section III, we develop the CMC2 estimator which does not
suffer from the rare-event problem, and provide a rigorous
description of the CE method. These will be used to obtain
MLEs and confidence intervals. Section IV presents an ex-
perimental study which demonstrates the performance of the
proposed method when applied to both synthetic and real-
life degradation data instances. We conclude with Section V,
where our findings are summarized and possible directions for
future research are outlined.

II. PROBLEM DEFINITION

A. The degradation model

In this section, we formally define the degradation problem
under consideration. Following Hazra et al. [1], let us consider
a system which consists of m ∈ N identical components.
At time t = 0, each component is assumed to have some
(random) initial degradation Ai for 1 ≤ i ≤ m. With time,
the system’s health starts to degrade. For the ith component,
the true degradation at time t is given by Ai + Xi(t). The
measurement error, provided that a measurement for the ith
component was performed at time t, is denoted by Zi(t); we
assume that errors are time invariant, that is, that the variance
of Zi(t) does not depend on t. Then, the measured degradation
of component i at time t, Yi(t), is given by:

Yi(t) = Ai +Xi(t) + Zi(t).
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We next make the following distribution assumptions. The
initial degradation of component i, Ai, is a Gaussian random
variable such that Ai ∼ N (µA, σA), where µA and σA are the
corresponding mean and the standard deviation, respectively.
The measurement error Zi(t) is assumed to be a zero-mean
Gaussian random variable such that Zi(t) ∼ N (0, σZ), where
σZ is the standard deviation of the measurement error, and
Zi(0)

def
= 0.

Following Hazra et al. and Van Noortwijk [1], [30], the
true degradation of component i at time t, excluding the
initial degradation Ai, namely Xi(t) for t ≥ 0, is modeled
as a general monotonic stochastic process. Here, we utilize
a nonstationary GP with a non-linear time-dependent shape
function α(t) and a scale parameter β. The function α(t)
is assumed to be non-decreasing, right-continuous, and real-
valued. Specifically, this paper examines a commonly used
power law function α(t) = αtη , α > 0, η > 0, and
α(0) = 0 [1]. Suppose that for a component i, 1 ≤ i ≤ m,
ni ∈ N measurements at times 0 ≤ ti,1 ≤ ti,2 ≤ · · · ≤ ti,ni

are executed. Then, the degradation increments for the ith
component (between time ti,j−1 and ti,j), are defined via
∆Xi,j = Xi(ti,j) − Xi(ti,j−1), where 1 ≤ j ≤ ni; it is
assumed that Xi(ti,0) = Xi(0) = 0. The increment ∆Xi,j

is an independent random variable which follows Gamma
distribution such that ∆Xi,j ∼ Gamma(α(ti,j)−α(ti,j−1), β)
for 1 ≤ i ≤ m and 1 ≤ j ≤ ni. The complete problem set-
ting, including the rigorous formulation of probability density
functions (PDFs) of random variables, is compactly described
in Table I.

B. The inference task and the likelihood function

The inference task is defined as follows. Given the mea-
surement data Y = {Yi(t) : t ∈ {ti,1, . . . , ti,ni

}}mi=1, find the
most plausible estimator for the set of the process parameters
θ = (α, η, β, µA, σA, σZ). Following Hazra et al. [1], we
will be concerned with the maximization of the likelihood
function L(θ; ∆y), where ∆y is the realization of observation
increments that is defined via ∆y = (∆y1, . . . ,∆ym)⊤.
Here, we have that ∆yi = (∆yi,1, . . . ,∆yi,ni

)⊤, ∆yi,j =
yi(ti,j+1) − yi(ti,j), yi(ti,0) = ai (where ai is a realization
of Ai), and ∆Zi,j = Zi(ti,j) − Zi(ti,j−1) for all 1 ≤ i ≤ m
and 1 ≤ j ≤ ni. The system components are assumed to be
independent and therefore it holds that:

L(θ; ∆y) =

m∏

i=1

L(θ; ∆yi).

Note that for all 1 ≤ i ≤ m and 1 ≤ j ≤ ni,

∆Yi,j = Yi(ti,j)− Yi(ti,j−1) = Ai +Xi(ti,j) + Zi(ti,j)

− (Ai +Xi(ti,j−1) + Zi(ti,j−1)) = ∆Xi,j +∆Zi,j ,

holds. That is, using a vector notation, for any component
1 ≤ i ≤ m, one can write: ∆Yi = ∆Xi+∆Zi, where ∆Xi =
(∆Xi,1, . . . ,∆Xi,ni

)⊤ and ∆Zi = (∆Zi,1, . . . ,∆Zi,ni
)⊤.

Since ∆Yi = ∆Xi + ∆Zi, it is of interest to consider
the distribution of ∆Xi and ∆Zi; these are discussed next.
The increments of the GP are independent, and thus it holds

that [1]:

f∆Xi(∆xi) =

ni∏
j=1

fG(∆xi,j ;α(ti,j)− α(ti,j−1), β) (1)

=

ni∏
j=1

β−(α(ti,j)−α(ti,j−1))

Γ(α(ti,j)− α(ti,j−1))
∆x

α(ti,j)−α(ti,j−1)−1

i,j e
−

∆xi,j
β

=

ni∏
j=1

β−(αt
η
i,j−αt

η
i,j−1)

Γ
(
αtηi,j − αtηi,j−1

)∆x
αt

η
i,j−αt

η
i,j−1−1

i,j e
−

∆xi,j
β 1{∆xi,j≥0}.

To derive the PDF f∆Zi
(∆zi), we follow [46] and note

that Zi = (Zi(ti,1), . . . , Zi(ti,ni
))⊤ has the multivariate

Gaussian distribution with mean zero and covariance matrix
Σi = σ2

ZIni×ni , where Ini×ni is the identity matrix of size
ni×ni. In addition, ∆Zi is a linear transformation of Zi, such
that ∆Zi = JiZi, where

Ji =




1 0 0 0 · · · 0

−1 1 0 0 · · · 0

0 −1 1 0 · · · 0

...
...

...
...

...
...

0 0 · · · −1 1 0

0 0 · · · · · · −1 1




ni×ni,

is an ni × ni matrix. Therefore, ∆Zi follows a multivariate
Gaussian distribution with mean zero and covariance matrix
Σ∆Zi

= JiΣiJ
⊤
i , where Σ∆Zi

is an ni × ni dimensional
matrix [8][Theorem 3.6]. Specifically, we have that

Σ∆Zi = 2σ2
Z



1
2
− 1

2
0 0 · · · 0

− 1
2

1 − 1
2

0 · · · 0

0 − 1
2

1 − 1
2
· · · 0

...
...

...
...

...
...

0 0 · · · − 1
2

1 − 1
2

0 0 · · · 0 − 1
2

1


ni×ni,

(2)

and, ∆Zi ∼ MVN(0,Σ∆Zi) holds. Finally, since ∆Xi and
∆Zi are independent, the likelihood function for the ith
component data is a convolution integral which takes the form

L(θ;∆yi) =

∫
ai

∫
∆zi

f∆Xi(∆yi −∆zi|ai)fN(ai)

f∆Zi(∆zi) dai d∆zi,

and we conclude that

L(θ;∆y) =

m∏
i=1

∫
ai

∫
∆zi

f∆Xi(∆yi −∆zi|ai)fN(ai) (3)

f∆Zi(∆zi) dai d∆zi.

This likelihood involves the calculation of m +
∑m

i=1 ni

dimensional integral, and consequently, the computational
intractability suggests a Monte Carlo approach, which is
discussed in Section II-C.

C. The Crude Monte Carlo estimator for the intractable
gamma process likelihood

A straight-forward CMC approach is almost an immediate
consequence of (3). Specifically, let Ci be a random variable,
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TABLE I The nomenclature.

Notation Meaning

m ∈ N number of identical components

ni ∈ N number of measurements performed for component i

Ai ∈ R initial degradation of the ith component

Yi(t) ∈ R observed degradation measurement of the ith component at time t

Xi(t) ∈ R+ true degradation of the ith component at time t (excluding Ai)

Zi(t) ∈ R time invariant measurement error for the ith component at time t, where Zi(0)
def
= 0

Y = {Yi(t) : t ∈ {ti,j}ni
j=1}mi=1 observed degradation data with measurement errors

∆Zi,j = Zi(ti,j)− Zi(ti,j−1) measurement error increment of the ith component for 1 ≤ j ≤ ni

∆Xi,j = Xi(ti,j)−Xi(ti,j−1) true degradation increment of the ith component for 1 ≤ j ≤ ni

∆Yi,j = Yi(ti,j)− Yi(ti,j−1) observation increment of the ith component for 1 ≤ j ≤ ni

∆Y = (∆Y1, . . . ,∆Ym)⊤ observed increments

∆Yi = (∆Yi,1, . . . ,∆Yi,ni
)⊤ observed increments of the ith component

α(t) = αtη non-decreasing, right-continuous, time-dependent shape function

(corresponds to Gamma PDF shape parameter)

β > 0 scale parameter (corresponds to Gamma PDF)

W ∼ N(µ, σ) univariate Gaussian (normal) distribution

fN(w;µ, σ) = (2πσ2)−
1
2 e−

1
2 (

w−µ
σ )

2

, w ∈ R

W ∼ MVN(µ,Σd×d) multivariate Gaussian (normal) distribution

fMVN(w;µ,Σd×d) = (2π)−
k
2 |Σd×d|−

1
2 e−

1
2 (w−µ)⊤Σ−1

d×d(w−µ), w ∈ Rd

W ∼ Gamma(α, β) Gamma distribution

fG(w;α, β) =
β−α

Γ(α)w
α−1e−

w
β 1{w≥0}, where 1 is the indicator function

θ = (α, η, β, µA, σA, σZ) the set of process parameters

L(θ; ∆y) the likelihood function

which is defined via

Ci =

ni∏
j=1

β−(αt
η
i,j−αt

η
i,j−1)

Γ
(
αtηi,j − αtηi,j−1

) (4)

∆X
αt

η
i,j−αt

η
i,j−1−1

i,j e
−

∆Xi,j
β 1{∆Xi,j≥0},

where ∆Xi,j = ∆yi,j −∆Zi,j . Note that ∆yi,j is observed,
and that ∆Zi,j for 1 ≤ j ≤ ni, can be drawn from
MVN(0,Σ∆Zi

). Then, it holds that

L(θ;∆y) =︸︷︷︸
(3)

m∏
i=1

∫
ai

∫
∆zi

f∆Xi(∆yi −∆zi|ai) (5)

fN(ai)f∆Zi(∆zi) dai d∆zi

=

m∏
i=1

EAi,∆Zi [Ci] = E{Ai,∆Zi}mi=1

[
m∏
i=1

Ci

]
,

where the last equality follows from the independence of Cis
for 1 ≤ i ≤ m. Consequently, (5) suggests a CMC method

for the estimation of L(θ; ∆y). Specifically, let N ∈ N be a
predefined sample size, and let Ai ∼ N(µA, σA) and ∆Zi =
(∆Zi,1, . . . ,∆Zi,ni

) ∼ MVN(0,Σ∆Zi
), where Σ∆Zi

is given
in (2), be N independent realizations of A and ∆Z. Finally,
by defining

C
(k)
i ←

ni∏

j=1

β−(αtηi,j−αtηi,j−1)

Γ
(
αtηi,j − αtηi,j−1

)

∆X
αtηi,j−αtηi,j−1−1

i,j e−
∆Xi,j

β 1{∆Xi,j≥0},

where ∆Yi,j = yi(ti,j) − yi(ti,j−1) for 1 ≤ j ≤ ni

(∆yi,1 = yi,1 − Ai) and ∆Xi = (∆Xi,1, . . . ,∆Xi,ni
)⊤;

here: (∆Yi,1, . . . ,∆Yi,ni
)⊤ − (∆Zi,1, . . . ,∆Zi,ni

)⊤, the
L̂CMC(θ; ∆y) estimator is given by:

L̂CMC(θ; ∆y) =
1

N

N∑

k=1

m∏

i=1

C
(k)
i . (6)
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The major issue with L̂CMC(θ; ∆y), is the so-called rare-
event problem, which was also noted by Lu et al. [46]. In
particular, provided that at least one of ∆Xi,js for 1 ≤ j ≤ ni

is negative (which happens if ∆Yi,j < ∆Zi,j holds), we
have that C

(k)
i = 0 and that C(k) =

∏m
i=1 C

(k)
i = 0.

When the event {C(k) > 0} is relatively non-frequent, the
efficiency of (6) starts to deteriorate due to the increase in the
variance of L̂CMC(θ; ∆y); please refer to Section II-D for a
rigorous discussion. This setting, which is common to many
hard estimation tasks, corresponds to the rare event problem
in Monte Carlo [49].

D. The rare-event problem

Consider the below context to have a better grasp of the
rare-event phenomena [7]. Suppose that X and X ∗ ⊆ X are
sets and say that we are interested in the estimation of the
probability ℓ = |X ∗|/|X |; here, we assume that |X ∗| ≪ |X |.
Let X be a random variable and suppose that X is uniformly
distributed over the X set. In this case, ℓ = E[1{X∈X∗}], and
the corresponding estimator is: ℓ̂CMC = 1

N

∑N
i=1 1{Xi∈X∗}.

The collection {1{Xi∈X∗}}Ni=1s is the set of independent
and identically distributed (i.i.d.) random variables, where
each such variable is Bernoulli distributed. Thus, ℓ̂CMC is an
unbiased estimator of ℓ. Moreover, the variance Var

(
ℓ̂CMC

)

is: Var
(
ℓ̂CMC

)
= ℓ(1−ℓ)

N .
The efficiency, of the CMC estimator, is examined via the

relative error (RE) [50] and ℓ̂CMC’s RE is:

RE = RE
(
ℓ̂CMC

)
=

√
Var

(
ℓ̂CMC

)

E
(
ℓ̂CMC

) =
√
ℓ(1− ℓ)/N/ℓ.

Since rare-event setting implies ℓ≪ 1, it holds that:

RE ≈ (Nℓ)−0.5. (7)

Equation (7) sets a serious computational problem. For ex-
ample, consider the (rare-event) probability ℓ ≈ 10−12, and
suppose that we are concerned in a humble RE of 10%. Then,
(7) implies that the necessary number of samples N is about
1014 [7]. We next show that (6) suffers from the rare-event
setting. In particular, we show that this CMC estimator is not
suitable to handle certain parameter ranges.

The random variable Ci in (4) is greater than zero if ∆Xi,js
are non-negative for all 1 ≤ j ≤ ni. Since ∆Yi,j = ∆Xi,j +
∆Zi,j , it holds that

∏m
i=1 Ci > 0 if ∆Zi,j ≤ ∆Yi,j for all

1 ≤ i ≤ m and 1 ≤ j ≤ ni. Next, we provide an upper bound
for the probability of the event {∏m

i=1 Ci > 0}. For simplicity,
suppose that Ai = 0 and that ni is even for all 1 ≤ i ≤ m.
Then,

P

(
m∏
i=1

Ci > 0

)
= P(∩1≤i≤m, 1≤j≤ni{∆Zi,j ≤ ∆Yi,j}) (8)

≤
m∏
i=1

ni/2∏
j=1

P(∆Zi,2j ≤ ∆Yi,2j),

where the last inequality follows from the fact that ∆Zi,2j for
1 ≤ j ≤ ni/2, namely (∆Zi,2 = Zi(ti,2)−Zi(ti,1), ∆Zi,4 =
Zi(ti,4) − Zi(ti,3), . . . ,∆Zi,ni

= Zi(ti,ni
) − Zi(ti,ni−1)),

are independent random variables. Since ∆Zi,2j is a differ-
ence between two univariate Gaussian random variables each
having mean zero and standard deviation σZ , it holds that
∆Zi,2j ∼ N(0,

√
2σZ). By defining ∆Yi = max{∆Yi,2j}ni/2

j=1 ,
∆Y = max{∆Yi}mi=1, and combining this with (8), we arrive
at

P

(
m∏
i=1

Ci > 0

)
≤

m∏
i=1

ni/2∏
j=1

P(∆Zi,2j ≤ ∆Yi,2j) (9)

≤
m∏
i=1

ni/2∏
j=1

P(∆Zi,2j ≤ ∆Y )

=

[
P
(
W ≤ ∆Y√

2σZ

)]∑m
i=1 ni/2

≤

[
P

(
W ≤

∣∣∆Y
∣∣

√
2σZ

)]∑m
i=1 ni/2

,

where W ∼ N(0, 1). Thus, we can conclude that the proba-
bility that C(k) = 0 satisfies:

P

(
m∏
i=1

Ci = 0

)
= 1− P

(
m∏
i=1

Ci > 0

)

≥ 1−

[
P

(
W ≤

∣∣∆Y
∣∣

√
2σZ

)]∑m
i=1 ni/2

.

When σZ →∞, |∆Y |√
2σZ
→ 0, and, if it also holds that ni →∞,

we arrive at P (
∏m

i=1 Ci = 0)→ 1−0.5
∑m

i=1 ni/2 → 1. While
this result is asymptotic, the situation can quickly become
quite dreadful in practice. Consider a data degradation example
with m = 20 components and ni = 10 examination times.
Then, for σZ ≥

∣∣∆Y
∣∣, we have that

P

(
m∏
i=1

Ci = 0

)
≥ 1− Φ

( ∣∣∆Y
∣∣

√
2σZ

)20×5

≥ 1− Φ
(
1/
√
2
)20×5

≈ 1− 1.246× 10−12,

where Φ(·) is the cumulative distribution function (CDF) of
the standard univariate Gaussian random variable with mean
0 and standard deviation 1. That is, the probability to get
a non zero product of Cis is a rare event which happens
with probability 1.246× 10−12, thus, the corresponding CMC
estimator is prohibitive from the computation point of view. In
order to overcome the rare-event problem, Buist [7] proposed
to apply the Sequential Monte Carlo approach. While this
helps to achieve the desired variance minimization, the overall
procedure is computationally demanding. In this work, we
propose a simpler Monte Carlo estimator which avoids the
above rare-event setting. This estimator, combined with the
CE optimization method which is capable of working with
noisy objective functions, opens the way for efficient inference
procedure in GPs with intractable likelihood. The details are
provided in Section III.

III. METHODS

A. An alternative Crude Monte Carlo estimator
We start with the development of a simple alternative to

the CMC estimator from (6). To do so, consider the joint
distribution of ∆Xi, ∆Yi and Ai. The degradation increments
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are independent of the initial degradation, and thus it holds
that:

f∆Xi,∆Yi,Ai(∆xi,∆yi, ai) = f∆Yi|∆Xi,Ai
(∆yi|∆xi, ai) (10)

f∆Xi|Ai
(∆xi|ai)fAi(ai)

= f∆Yi|∆Xi,Ai
(∆yi|∆xi, ai)f∆Xi(xi)fAi(ai).

Since ∆Yi = ∆Xi + ∆Zi for all 1 ≤ i ≤ m, where
∆Zi ∼ MVN(0,Σ∆Zi

), it holds (again, via [8][Theorem 3.6]),
that ∆Y|Ai,∆Xi ∼ MVN(∆Xi,Σ∆Zi). That is, the marginal
distribution of ∆Yi satisfies:

f∆Yi(∆yi) =

∫
ai

∫
∆xi

f∆Xi,∆Yi,Ai(∆xi,∆yi, ai)daid∆xi

=︸︷︷︸
(10)

∫
ai

∫
∆xi

f∆Yi|∆Xi,Ai
(∆yi|∆xi, ai)fAi(ai)f∆Xi(xi)daid∆xi

= EAi,∆Xi

[
f∆Yi|∆Xi,Ai

(∆yi|∆Xi, Ai)
]
, (11)

where f∆Yi|∆Xi,Ai
(∆yi|∆Xi, Ai) is the PDF of the multi-

variate Gaussian distribution with mean ∆Xi and the covari-
ance matrix Σ∆Zi . That is, one can conclude that

L(θ;∆y) =

m∏
i=1

L(θ;∆yi) =

m∏
i=1

f∆Yi(∆yi) (12)

=

m∏
i=1

EAi,∆Xi

[
f∆Yi|∆Xi,Ai

(∆yi|∆Xi, Ai)
]

= E{Ai,∆Xi}mi=1

[
m∏
i=1

f∆Yi|∆Xi,Ai
(∆yi|∆Xi, Ai)

]

= E{Ai,∆Xi}mi=1

[
m∏
i=1

Wi

]
,

where Wi is the value of the multivariate Gaussian PDF with
mean ∆Xi and the covariance matrix Σ∆Zi evaluated at ∆Yi

(please see line 6 of Algorithm 1). The last equality in (12)
follows from the independence of Wis for 1 ≤ i ≤ m. The
corresponding alternative Monte Carlo method which follows
immediately from (12), and from the fact that we can easily
sample from fAi(ai) and from f∆Xi(xi), is summarized in
Algorithm 1.

Algorithm 1 avoids the rare-event problem present in (6),
since W

(k)
i in line 6 of Algorithm 1 is never equal to zero

for all 1 ≤ i ≤ m. This desirable property makes the
L̂CMC2

(θ; ∆y) estimator to be a suitable candidate for the
noisy MLE optimization task. The latter will be performed
via the CE optimization procedure which is discussed in
Section III-B.

B. The Cross Entropy method

The CE technique is a sequential procedure used to progres-
sively alter a random search’s sampling distribution such that
the best result is more likely to appear throughout subsequent
phases of the algorithm’s execution. However, it is notewor-
thy that the CE approach makes use of strict information
theory and stochastic simulation principles [51]–[53], setting
it apart from similar evolutionary computation methods. The
CE method may be used for a wide range of estimation and
optimization tasks, making it extremely flexible. In particular,
CE is useful for discrete, continuous, and noisy optimization,
and rare-event estimation [48].

Algorithm 1: The alternative CMC algorithm (CMC2)
for the estimation of L(θ; ∆y)

Input: m — the number of components, {ni}mi=1 —
the number of measurements for each
component, {{ti,j}ni

j=1}mi=1 — measurement
times, a vector of parameters
θ = (α, η, β, µA, σA, σZ), the observed data
y = {yi(t) : t ∈ {ti,1, . . . , ti,ni

}}mi=1, and a
sample size N ∈ N

Output: A CMC estimator L̂CMC2
(θ; ∆y) of

L(θ; ∆y)
1 for k ← 1 to N do
2 for i← 1 to m do
3 Draw Ai ∼ N(µA, σA)
4 Calculate ∆Yi = (∆Yi,1, . . . ,∆Yi,ni

)⊤; here
∆Yi,j = yi(ti,j)− yi(ti,j−1) for 1 ≤ k ≤ ni,
where ∆Yi,1 = yi,1 −Ai

5 Draw ∆Xi = (∆Xi,1, . . . ,∆Xi,ni
), where

∆Xi,j ∼ Gamma(α(ti,j)−α(ti,j−ti,j−1), β))

6 W
(k)
i ← fMVN(∆Yi; ∆Xi,Σ∆Zi

), where
Σ∆Zi is given in (2)

7 end
8 W (k) ←∏m

i=1 W
(k)
i

9 end
10 L̂CMC2

(θ; ∆y) = 1
N

∑N
k=1 W

(k)

11 return L̂CMC2
(θ; ∆y)

Recall that we are interested in the maximum likelihood
estimator and thus, under our setting, we deal with noisy
continuous optimization, since we only have access to an
estimator of L(θ; ∆y). To set the stage, consider a general
unconstrained optimization problem: maxx∈X S(x), where
S : X → R is a fitness (or an objective) function. Let

X ∗ = {x ∈ X : S(x) = max
x∈X

S(y), y ∈ X},

be the set of optimal solutions. A CE framework for con-
tinuous optimization is depicted in Fig. 1. For the discrete
optimization setting, we refer to [54].

We closely follow [54] and consider the CE algorithm that
will be derived from Fig. 1. The CE method begins with
the initialization step in which a PDF g1(x) for X ∈ X
is defined. Since X is a continuous space, a logical choice
for g1(x) can be, for example, a (truncated) Gaussian, or a
continuous uniform distribution over the set X . During the
initialization step, we also set the (1 − ρ)-th quantile of the
fitness function at time zero — γ0, to minus infinity and
initialize the iteration counter t. In the next step, we calculate
the (1 − ρ)-th quantile of the fitness function Y = S(X) at
time t; note that X ∼ gt(x) and assume that the CDF of Y

is F
(t)
Y (y); here, t is the current iteration counter. Using the

obtained (1 − ρ)-th quantile, we proceed to the update the
sampling distribution step. In order to increase the frequency
of sampling of better solutions, we skip the specifics of the
update phase at this point (they will be covered below).
However, the modified distribution will be employed in the
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Fig. 1: The Cross Entropy continuous optimization framework.

following iteration. When a predetermined stopping condition
is satisfied, the CE procedure ends. For example, since we deal
with noisy optimization, one might want to stop when the γt
quantile does not change considerably for several iterations.

Under some (not very realistic) assumptions, namely, pro-
vided that S(X) can be calculated without noise, and provided
that an infinite number of samples can be obtained from X ∼
gt(x), one can observe the following. In every iteration (t), the
fitness function value of X ∼ gt(x) satisfies S(X) ≥ γt−1.
Moreover, the sequence (γ0, γ1, . . .) is strictly increasing. That
is, the procedure will eventually converge to some x ∈ X ∗.
However, in practice, we neither have access to the infinite
sample size, nor exact S(X) value is available. That is, from
the practical point of view, we will need to resolve several
issues with the framework from Fig. 1; these are detailed next.
First of all, the X space is infinite, and thus, exact computation
of the (1−ρ)-th quantile is infeasible. Moreover, as mentioned
above, S(x) is not available analytically, namely, we can only
hope to achieve an estimate of S(x). Finally, the third issue
is the sampling from the PDF gt(x) for all t > 1.

The quantile problem is not very hard to resolve. Specifi-
cally, provided that a finite sample from gt(x) is available, an
approximate fitness quantile (or, in other words, an (1 − ρ)-
th sample fitness quantile) γ̂t, can be readily obtained from
{S(Xi)}Ni=1, where Xl ∼ gt(x) for 1 ≤ l ≤ N . While S(x)
is not available analytically, we further assume that an estimate
of S(x) can be obtained using a Monte Carlo algorithm. The
sampling from gt(x) can be a very hard problem. It will
be rigorously addressed in Section III-C. We proceed with
the definition of a rigorous CE procedure, while providing

solutions to the above-mentioned problems.

C. Cross Entropy method for noisy maximum likelihood opti-
mization

Under our setting, define X = Rk, where k = |θ|. That
is, x = (x1, . . . , xk)

⊤ ∈ X , and let the objective function
be S(x) = LCMC2

(θ; ∆y). Please note that we do not have
access to the exact value of L(θ; ∆y), and thus, an estimator
S(x) is used instead. Consider now the definition of the proba-
bility distribution of the random variable X = (X1, . . . , Xk)

⊤,
where Xi ∈ R for i = 1, . . . , k. The sampling from the PDF
defined in the Update the sampling distribution phase in Fig. 1,
namely, from

gt+1(x) =
1{S(x)≥γt}gt(x)∑

x∈X 1{S(x)≥γt}gt(x)
, (13)

is generally hard. In order to resolve this problem, we approx-
imate (13) using a parametric family

f(x;µt+1,σt+1) =

k∏
d=1

(
2πσ2

t+1,i

)− 1
2 e

− 1
2σ2

t+1,d
(xi−µt+1,d)

2

,

(14)

where µt+1 = (µt+1,1, . . . , µt+1,k), and σt+1 =
(σt+1,1, . . . , σt+1,k). The PDF in (14) is a joint PDF of k
independent univariate Gaussian random variables. That is, in
order to approximate the sequence of PDFs {gt}t∈N\{0} in
(13), we need to obtain the corresponding parameter vectors
µt and σt for all t ∈ N \ {0}. As soon as these parameters
are available, the sampling from (14) is straight-forward, and
we can proceed to the resolution of CE issues from the
end of Section III-B. Specifically, we show how to obtain
the sample fitness quantile, and the sequence of parameters
{µt,σt}t∈N\{0}.

The calculation of sample quantiles. Provided that µt and
σt are readily available, the calculation of γ̂t is not very hard.
In particular, given a sample of independent random variables
{Xl}Nl=1, such that Xl ∼ f(x;µt,σt) for 1 ≤ l ≤ N , and the
corresponding set {S(Xl)}Nl=1, let S(1) ≤ · · · ≤ S(N) be the
ascending ordering of the {S(Xl)}Nl=1 set. Then, the sample
fitness (1− ρ)-th quantile γ̂t is equal to S(⌈N×(1−ρ)⌉).

The approximation of the sampling PDF. Here, our objective
is to approximate the sampling PDF (13) via f(x;µt+1,σt+1),
where f(x;µt+1,σt+1) belongs to the parametric family
defined in (14). In other words, we aim to recover µt+1 and
σt+1, using samples from iteration t. This task is completed
by minimizing the relative entropy (divergence of Kullback-
Leibler) of f(x;µt+1,σt+1) with respect to gt+1(x) [51].
Definition 1 provides the formal characterization of the relative
entropy.

Definition 1 (Relative entropy). The relative entropy of a PDF
f(·) with respect to a PDF g(·) is given by:

D(g, f) = Eg ln

(
g(X)

f(X)

)
=

∫
ln

(
g(x)

f(x)

)
g(x) dx

=

∫
g(x) ln g(x) dx−

∫
g(x) ln f(x) dx.

Definition 1 implies that:

min
µt+1,σt+1

D(gt+1(x), f(x;µt+1,σt+1)) (15)



8

= min
µt+1,σt+1

(∫
gt+1(x) ln gt+1(x) dx

−
∫

gt+1(x) ln f(x;µt+1,σt+1) dx︸ ︷︷ ︸
(∗)

)
.

By noting that the optimization problem (15) is with respect to
the µt+1 and the σt+1 parameters, we arrive to the conclusion
that (15) is equivalent to the maximization problem of the (∗)
term with respect to µt+1 and σt+1. Namely, one can consider:

min
µt+1,σt+1

D(gt+1(x), f(x;µt+1,σt+1)) (16)

= max
µt+1,σt+1

∫
gt+1(x) ln f(x;µt+1,σt+1) dx.

By adopting f(x;µt,σt) as an approximation of gt(x), (16)
can be written as:

max
µt+1,σt+1

∫
gt+1(x) ln f(x;µt+1,σt+1)dx (17)

= max
µt+1,σt+1

∫
1{S(x)≥γt}gt(x)∑

x∈X 1{S(x)≥γt}gt(x)
ln f(x;µt+1,σt+1)dx

= max
µt+1,σt+1

∫
1{S(x)≥γt}f(x;µt,σt)∫
1{S(x)≥γt}f(x;µt,σt)dx

× ln

(
k∏

d=1

(
2πσ2

t+1,d

)− 1
2 e

− 1
2σ2

d
(xd−µt+1,d)

2
)
dx

= max
µt+1,σt+1

∫
1{S(x)≥γt}f(x;µt,σt)

× ln

(
k∏

d=1

(
2πσ2

t+1,d

)− 1
2 e

− 1
2σ2

d
(xd−µt+1,d)

2
)
dx

= max
µt+1,σt+1

Ef(x;µt,σt)1{S(X)≥γt}

× ln

(
k∏

d=1

(
2πσ2

t+1,d

)− 1
2 e

− 1
2σ2

d
(xd−µt+1,d)

2
)
.

The correctness of (17) is due to the fact that the denomi-
nator

∫
1{S(x)≤γt}f(x;µt,σt)dx is constant which does not

depend on the parameters µt+1 and σt+1.

While the exact solution of (17) is generally not avail-
able analytically, it can be approximated via samples from
f(x;µt,σt). In fact, this is common to consider the so-
called stochastic counterpart [48], and to examine the solution
of (17), which can be approximated via:

max
µt+1,σt+1

1

N

N∑
l=1

1{S(Xl)≥γ̂t} (18)

× ln

(
k∏

d=1

(
2πσ2

t+1,d

)− 1
2 e

− 1
2σ2

t+1,d
(Xl,d−µt+1,d)

2
)
,

where Xl = (Xl,1, . . . , Xl,k)
⊤ ∼ f(x;µt,σt) for l =

1, . . . , N . Given the sample {Xl}Nl=1, consider a subset E =
{X ∈ {Xl}Nl=1 : S(X) ≥ γ̂t}. Then, (18) is equivalent to

max
µt+1,σt+1

∑
X∈E

ln

(
k∏

d=1

(
2πσ2

t+1,d

)− 1
2 e

− 1
2σ2

t+1,d
(Xd−µt+1,d)

2
)
,

which, for any coordinate 1 ≤ d ≤ k, can be recognized as
the log-likelihood maximization problem under the univariate
Gaussian model setting with unknown mean and variance.
That is, (see [55, Example 7.2.12]), the optimal parameters
µ∗

t+1 = (µ∗
t+1,1, . . . , µ

∗
t+1,k) and σ∗

t+1 = (σ∗
t+1,1, . . . , σ

∗
t+1,k)

which maximize (18), are given by:

µ∗
t+1,d =

∑N
l=1 1{S(Xl)≥γt}Xl,d∑N

l=1 1{S(Xj)≥γt}

and

σ∗
t+1,d =

(∑N
l=1 1{S(Xl)≥γt}(Xj,d − µ∗

t+1,d)
2∑N

l=1 1{S(Xl)≥γt}

) 1
2

∀ 1 ≤ d ≤ k.

In other words, for any coordinate 1 ≤ d ≤ k, the optimal
µ∗
t+1,d and σ∗

t+1,d are the sample mean and the sample
standard deviation of the samples from the E = {X ∈ {Xl ∼
f(x;µt,σt)}Nl=1 : S(X) ≥ γ̂t} set, respectively. That is, the
t+1 CE iteration parameters (µt+1 and σt+1), can be calcu-
lated from the set of best-performing samples from the current
iteration t. This discussion combined with the framework from
Fig. 1, leads to the CE method for the maximum likelihood
problem. The corresponding CE algorithm is summarized in
Algorithm 2.

We now explore the smoothing step in lines 11-13 and the
termination condition in line 2 to wrap up the discussion of the
CE method. Given that we are working with noisy likelihood
estimates, we can declare the algorithm terminated if the
sample quantile sequence stops moving significantly for some
t > t′. Alternatively, we can limit the number of iterations
performed by Algorithm 2, namely, define 1{t>T} to be the
stopping criteria for some predefined threshold parameter T ,
say T = 300.

The smoothing step in lines 11-13 of Algorithm 2 was
shown to help the CE algorithm to converge to optimal
solutions [43]. In particular, note that smoothing is just a
combination of the previous iteration Gaussian distribution
parameters (µt and σt) and the solution of the stochastic
counterpart optimization problem (µ̃t+1 and σ̃t+1). We do not
use the newly obtained solution (µ̃t+1, σ̃t+1) directly in the
t + 1-th iteration, as the stochastic counterpart solution may
be obtained from the possibly some that unfavorable sample
set at a specific iteration. This (if no smoothing is performed),
may cause the CE algorithm to focus on a sub-optimal part
of the search space, and thus the CE method can terminate
its execution in such an inadequate region. This unfavorable
scenario can happen especially if the sample size NCE is too
small. In other words, by slowing down the update of the
probability distribution parameters, the smoothing step enables
control of the pace of convergence of the CE algorithm. For
additional details about the smoothing step, we refer to [43],
[47], [48].

Recall that θ̂MLE can be immediately recovered from the
mean µt of the sampling distribution f(x;µt,σt) in the last
iteration of the CE Algorithm 2, since

µt = (α̂(MLE), η̂(MLE), β̂(MLE), µ̂A(MLE), σ̂A(MLE), σ̂Z(MLE)).

That is, Algorithm 2 can be readily used for obtaining
maximum likelihood estimators for the GP problem under
consideration. However, CE can be also utilized for acquiring
confidence intervals (CIs). Specifically, we propose to use the
non-parametric bootstrap method for the construction of the
corresponding CIs [56], [57]. To do so, one is required to
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Algorithm 2: The Cross Entropy algorithm
Input: m — the number of components, {ni}mi=1 —

the number of measurements for each
component, {{ti,j}ni

j=1}mi=1 — measurement
times, a vector parameters
θ = (α, η, β, µA, σA, σZ), k = |θ| , the
observed data
y = {yi(t) : t ∈ {ti,1, . . . , ti,ni}}mi=1, a sample
size NCMC2

∈ N, a CE rarity parameter
ρ ∈ (0, 1), a CE smoothing parameters
υ1, υ2 ∈ (0, 1), and a CE sample size
NCE ∈ N.

Output: Approximate maximum likelihood estimator
θ̂MLE.

1 Set t← 1 and some initial µt ← (µt,1, . . . , µt,k),
σt ← (σt,1, . . . , σt,k).

2 while termination criterion is not satisfied do
3 Sample Xl ∼ f(x;µt,σt), and calculate

S(Xl) = L̂CMC2
(Xl; ∆y) via Algorithm 1 with

NCMC2 sample size for 1 ≤ l ≤ NCE.
4 Let S(1) ≤ · · · ≤ S(NCE) be the elements of the

{S(Xl)}NCE

l=1 set sorted in an ascending order.
5 γ̂t ← S(⌈NCE×ρ⌉) /* Sample fitness’

ρ-quantile */
/* Calculate µt+1 and σt+1 */

6 for d = 1, . . . , k do
7

µ̃t+1,d =

∑NCE
l=1 1{S(Xl)≥γt}Xl,d∑NCE

l=1 1{S(Xl)≥γt}

and

σ̃t+1,d =

(∑NCE
l=1 1{S(Xl)≥γt}(Xl,d − µ̃t+1,d)

2∑NCE
l=1 1{S(Xl)≥γt}

) 1
2

.
8

/* note that Xl,d is the d-th
component of Xl */

9 end
10

µ̃t+1 ← (µ̃t+1,i, . . . , µ̃t+1,k), and
σ̃t+1 ← (σ̃t+1,i, . . . , σ̃t+1,k).

/* The smoothing step */
11 µt+1 ← υ1 µ̃t+1 + (1− υ1)µt

12 Bmod ← υ2 − υ2
(
1− 1

t

)5
13 σt+1 ← Bmod σ̃t+1 + (1−Bmod)σt

14 t← t+ 1
15 end

/* Note that µt is the desired vector

(α̂(MLE), η̂(MLE), β̂(MLE), µ̂A(MLE), σ̂A(MLE), σ̂Z(MLE))

*/
16 Set θ̂MLE ← µt

17 return θ̂MLE

sample m degradation trajectories with replacement from the
original dataset Y = {Yi(t) : t ∈ {ti,1, . . . , ti,ni

}}mi=1. Then,

using some number (say B = 100) of such bootstrap datasets
and Algorithm 2, we can obtain the maximum likelihood
estimates θ(1), . . . ,θ(B). The {θ(b)}Bb=1 set can be readily
used for the CIs construction. In this paper, we utilize the
95% Normal (CIN), the 95% pivotal (CIpiv), and the 95%
percentile (CIper) confidence intervals [56].

IV. EXPERIMENTAL STUDY

In this section, we concentrate on the performance evalua-
tion of the proposed combination of the CMC2 algorithm and
the CE method. For each model under consideration, we apply
our algorithm for parameter estimation. The experimental
study shows that the proposed paradigm is very effective and
that it is scalable in practice in the sense that it is able
to provide reliable estimates for real-sized data instances.
Specifically, we consider two synthetic datasets along with one
real-life application. The following case studies are examined.

1) A synthetic stationary model for data similar to the
one presented by Hazra et al. [1], is considered in the
first case study. The degradation data was generated for
m = 5 components, and the corresponding measurements
were taken at times t ∈ {5, 10, 15} for each component.
The set of parameters used to generate the data is θ∗ =
(α∗, η∗, β∗, µ∗

A, σ
∗
A, σ

∗
Z) = (4, 1, 0.015, 0.0, 0.0, 0.1). Here the

focus is on a synthetic dataset, since for such data, the avail-
ability of the true parameter set θ∗, allows us to benchmark
the performance of the method proposed in this manuscript.

2) Similarly to the first case study, we follow Hazra et al.
[1] and consider a synthetic dataset generated from a non-
stationary model. The degradation data was simulated for
m = 10 components. For every component, the measurements
were taken at times t ∈ {2, 4, 6}. In this case study, we
used the set of parameters: θ∗ = (α∗, η∗, β∗, µ∗

A, σ
∗
A, σ

∗
Z) =

(2, 2.5, 0.01, 0.5, 0.1, 0.1).
3) The use of the GP degradation model with actual data is

the subject of our third case study. In particular, we consider
the drug potency degradation dataset from Hamada et al. and
Chow et al. [58], [59]. This data reflects the so-called drug’s
shelf life (SL). Specifically, since a drug potency generally
degrades over time, its SL is determined by the time at which
the drug’s potency reaches some predefined threshold value
(in our case, we set the threshold to be 90%). There is a great
practical importance when considering drug SLs. For example,
if the actual SL (say with 95% confidence), is smaller than the
declared one, the product has to be recalled [59]. A shorter
SL can also indicate that a manufacturing problem is present.
In addition, if the actual SL is longer than stated, an adjusted
labeled SL for the product may be applied, thus giving a clear
financial benefit to the manufacturer.

The experimental setup. Both the CMC2 algorithm and the
CE method were implemented in Python (version 3.9.16). All
the software and the research data are freely available on
request from the authors. No optimization was undertaken and
the implementation is single-threaded. While the paralleliza-
tion of the CE algorithm is (relatively) easy to implement,
our objective is to demonstrate that even a relatively slow-
performing scripting language can already provide satisfactory
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results. The tests were executed on Intel Core i7-6920HQ CPU
2.90GHz processor with 32GB of RAM running 64 bit Debian
11 “bullseye”. A crucial aspect of the proposed method is the
CE method (input) parameter choice, which is important from
both the computational complexity and the inference accuracy
points of view. Using several preliminary experiments, we
obtained a set of parameters that work well for the case
studies under consideration; please see Remark 1 for addi-
tional information regarding these preliminary experiments.
Since the CE algorithm is capable of working with noisy
objective functions, we set NCMC2

= 1. The additional CE
parameters are as follows: the rarity parameter, the smoothing
parameters, and the CE sample size, are set to be ρ = 0.1,
υ1 = υ2 = 0.7, and 50 × |θ|, respectively. That is, for case
study 1, where we consider 3 unknown (inference) parameters,
namely (α, β, σZ), NCE = 50×3 = 150. For the full inference
procedure, and in particular for case studies 2 and 3, we set
NCE = 50×6 = 300. For all case studies, we execute the CE
algorithm for 300 iterations; namely, the termination criteria in
line 2 of Algorithm 2 is 1{t>300}. In order to obtain confidence
intervals, we use the non-parametric bootstrap method with
B = 100 bootstrap rounds [56], [57].

A. Case study 1: the synthetic stationary data

For the first case study, we follow Hazra et al. [1], and
consider a synthetic data with m = 5 fictitious components.
The data was generated using the parameter set

θ∗ = (α∗, η∗, β∗, µ∗
A, σ

∗
A, σ

∗
Z) = (4, 1, 0.015, 0.0, 0.0, 0.1);

the inspection times for every component are t ∈ {5, 10, 15}.
For this case study, we assume that η, µA and σA are fixed
and known in advance. That is, we are interested in the MLE
for three remaining parameters α, β, and σZ .

To benchmark the CE method, we first execute the CMC
Algorithm 1 to obtain the log L̂CMC2

(θ∗; ∆y) estimator for
θ∗ = (4, 1, 0.015, 0.0, 0.0, 0.1). In this case, it was found
that a sample size of N = 100, 000 is sufficient to obtain
a relative error (RE) [50], which is smaller than 2%. Specif-
ically, we found that log L̂CMC2(θ

∗; ∆y) = 8.2010 and that
RE = 0.0122. Fig. 2 shows the typical dynamics of the CE
algorithm.

1 50 100 150 200 250 300

−20

0
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20

t

γ̂
t

CE dynamics

log L̂CMC2
(θ∗,∆Y )

Fig. 2: The typical dynamics of the CE algorithm for the
first case study. The figure depicts the performance of the CE
method (γ̂t) as a function of the CE iteration t. The runtime
of the CE algorithm is about 7.9 seconds.

One can observe that the CE method reaches a log-
likelihood value which is close to 8.2 in about 50 iteration.
The CE method delivers an MLE estimator

θ̂MLE = (α̂(MLE), η̂(MLE), β̂(MLE), µ̂A(MLE), σ̂A(MLE), σ̂Z(MLE))

= (3.5086, 1, 0.0184, 0, 0, 0.1098),

and, when executing Algorithm 1 with N = 100, 000 sample
size, we obtain log L̂CMC2

(θ̂MLE; ∆y) = 8.2966 with RE =
0.0091. This result is comparable to the one obtained with the
true parameter set, namely, to log L̂CMC2(θ

∗; ∆y).

Remark 1 (CE parameters). Fig. 2 is instructive in the sense
that similar CE dynamics plots can be used in preliminary
experiments to determine a suitable set of the CE algorithm
parameters. Specifically, by running the CE method several
times and observing the corresponding dynamics, one can
determine both the required sample size and the number of
CE iterations needed to achieve a good solution. To do so, it
is advisable to monitor the performance γ̂t to determine when
it ceases to improve. While the proposed rarity parameter ρ
and the set of smoothing parameters v1 and v2 can be found in
a similar fashion, namely, by monitoring the convergence of
γ̂t, we used a common set of values, specifically, ρ = 0.1 and
v1 = v2 = 0.7. These, according to our experience, usually
work well in practice [48]. Finally, it is advisable to run the
algorithm with different random generator seeds to ensure that
the algorithm converges to solution of similar quality.

By utilizing the non-parametric bootstrap method with
B = 100 replications, we obtain confidence intervals for the
set of parameter of interest. Table II provides a summary of
confidence intervals. For this case study, all types of CIs,
namely, CIN, CIpiv, and CIper, perform similarly and contain
all the true model parameters α∗, β∗, and σ∗

Z .

Remark 2 (The number of bootstrap rounds B). Our numer-
ical experiments indicate that B = 100 bootstrap rounds are
sufficient for obtaining adequate CIs. To see this, consider
Figure 3 which shows the changes to the CIs widths as
a function of the number of bootstrap rounds B. Similar
sensitivity results (not presented here), were obtained for case
study 2 and case study 3.

B. Case study 2: the synthetic non-stationary data

In this case study, we again consider the experiment
from Hazra et al. [1], by examining a synthetic dataset of
m = 10 fictitious components. The data was generated
using the parameter set θ∗ = (α∗, η∗, β∗, µ∗

A, σ
∗
A, σ

∗
Z) =

(2, 2.5, 0.01, 0.5, 0.1, 0.1), where we assume that the inspec-
tion times for each component are t ∈ {2, 4, 6}. Similar to
the first case study, Algorithm 1 is executed and we obtain
log L̂CMC2

(θ∗; ∆y) = 12.6967 with RE = 0.0103. To
obtain an RE that is smaller than 2%, Algorithm 1 requires
N = 10, 000, 000 sample size.

Fig. 4 shows the typical dynamics of the CE algorithm.
Here, the CE method reaches a log-likelihood value which is
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TABLE II Case study 1 CIs based on B = 100 bootstrap rounds. The total execution time is 867.9 seconds.

parameter name θ∗ θ̂MLE 95% CIN 95% CIpiv 95% CIper

α 4.0 3.5086 (2.0896, 4.9276) (2.0369, 4.9546) (2.0627, 4.9804)

η 1.0 1.0 — — —

β 0.015 0.0184 (0.0091, 0.0277) (0.0057, 0.0233) (0.0135, 0.0311)

µA 0 0 — — —

σA 0 0 — — —

σZ 0.1 0.1098 (0.0802, 0.1377) (0.0854, 0.1366) (0.0814, 0.1325)
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Fig. 3: Case study 1 CI width as a function of the number of bootstrap rounds for parameters α, β, and σZ .

close to 12.7. The MLE estimator obtained by the CE method
is:

θ̂MLE = (α̂(MLE), η̂(MLE), β̂(MLE), µ̂A(MLE), σ̂A(MLE), σ̂Z(MLE))

= (3.3128, 2.5586, 0.0055, 0.5377, 0.03499, 0.1270).

It is interesting to note that Algorithm 1 with N = 100, 000
sample size, delivers log L̂CMC2(θ̂MLE; ∆y) = 13.5679 with
RE = 0.0155. That is, we have that log L̂CMC2(θ̂MLE; ∆y) >
log L̂CMC2

(θ∗; ∆y).
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−40
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Fig. 4: The typical dynamics of the CE algorithm for the
second case study. The figure depicts the performance of the
CE method (γ̂t) as a function of the CE iteration t. The
runtime of the CE algorithm is about 23.8 seconds.

Similar to the first case study, we use a non-parametric
bootstrap method with B = 100 bootstrap rounds to obtain
confidence intervals for the set of parameters of interest.
Table III provides a summary of confidence intervals. Our

experiments (not reported here), indicate that B = 100
bootstrap rounds are sufficient for obtaining adequate CIs.

C. Case study 3: the drug potency data

Here we examine the drug potency data from Chow et al.
[59]. In this case, we do not know the set of true parameters
θ∗. The typical dynamics of three independent runs of the CE
algorithm is shown in Fig. 5. Note that CE quickly reaches
a point after which, no large improvement in performance is
observed. All three independent runs of the CE method reach
the log-likelihood value of about −102.135 ≈ −136, and a
typical obtained MLE estimator is:

θ̂MLE = (α̂(MLE), η̂(MLE), β̂(MLE), µ̂A(MLE), σ̂A(MLE), σ̂Z(MLE))

= (4.3689, 1.0753, 0.0414,−4.5703, 0.1918, 1.3191).
By executing Algorithm 1 with N = 1, 000, 000 sample size,
we obtain log L̂CMC2

(θ̂MLE; ∆y) = −136.5 with RE =
0.0096.

As usual, we apply the non-parametric bootstrap method
with B = 100 bootstrap rounds, to obtain confidence intervals
for the parameter set of interest. Table IV provides a summary
of confidence intervals.

As for the first and the second case studies, our experiments
indicate that B = 100 bootstrap rounds are sufficient for
obtaining adequate CIs.

We proceed with the calculation of the true degradation
and the corresponding confidence intervals. Recall that the
true degradation at time t is given by A + X(t). The
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Fig. 5: The typical dynamics of the CE algorithm for the third
case study. The figure depicts the logarithm of performance of
the CE method (− log(−γ̂t)) as a function of the CE iteration
t for three independent runs of the CE method. The runtime
of the CE algorithm is about 42.1 seconds.

mean degradation is given by µA + βαtη , since EA = µA

and EX(t) = βαtη [1]. Thus, given θ̂MLE, the average
degradation can be readily estimated using the corresponding
parameters from θ̂MLE. Specifically, the average degradation at
time t is given by µ̂A(MLE)+β̂(MLE)α̂(MLE)t

η̂(MLE) . To obtain
the corresponding CIs, we can again apply the non-parametric
bootstrap approach. Specifically, given a bootstrapped sample
θ(b) = (α(b), η(b), β(b), µ

(b)
A , σ

(b)
A , σ

(b)
Z ) for 1 ≤ b ≤ B, the

average bootstrapped degradation is µ(b)
A +β(b)α(b)tη

(b)

. These
bootstrapped degradation values can be used in the usual
way to obtain the CIs. For the drug potency data, the mean
degradation and the corresponding CIs are depicted in Fig. 6.
Again, it appears that B = 100 bootstrap rounds are sufficient
and similar to Chow et al. [59], we arrive at the conclusion
that the shelf-life is longer when 36 months.

V. CONCLUSION

In this work, we introduced a computationally efficient
method which is suitable for the GP inference task. The
proposed approach avoids the rare-event problem that emerges
from the naive Monte Carlo estimation of the intractable like-
lihood function. Our experimental evaluation is comparable
to, and sometimes improves upon, the previously published
results. The work we propose is significant for several rea-
sons. Firstly, it advances the domain of inference under the
intractable likelihood function setting, and therefore, its ben-
efits may extend beyond the study of degradation processes.

Additionally, the proposed alternative Monte Carlo estimator
can be applied to other likelihood-based Markov Chain Monte
Carlo algorithms.

However, our study is subject to a few limitations. The
primary limitation is that practitioners will need to identify rea-
sonable input parameters for the Cross Entropy algorithm, such
as sample sizes, smoothing, and rarity parameters, depending
on the problem at hand. These parameters will ultimately
determine the quality of inference and computational time
required. Additionally, our study presents a single-threaded
implementation of the proposed methods. A parallel imple-
mentation will allow to handle larger real-world datasets.
Lastly, while our results with synthetic data demonstrated
high-quality inference outcomes, the algorithm was unable
to recover the standard deviation of the initial degradation
in the second case study. Nevertheless, the important set of
degradation parameters needed for the unobserved degradation
approximation appeared to be estimated in an accurate fashion.

As for the future research, we believe that the following
directions are of interest.

While in this paper we concentrated solely on the alternative
Monte Carlo estimator, it is of interest to cast the problem
into the state-space model setting (Feynman-Kac formalism).
This can potentially allow to minimize the Monte Carlo
algorithm variance and introduce a considerable computational
improvement to any inference method that will eventually
apply such an estimator. In addition, it will be of interest to
design an Expectation-Maximization algorithm and compare
its performance with the proposed Cross-Entropy method.

The proposed Monte Carlo method that was used as an
estimator for the intractable likelihood function avoids the
rare-event trap in contrast to its counterpart, and in this paper,
we used the Cross Entropy method for the corresponding
intractable likelihood optimization. However, our Monte Carlo
approach opens the way to reliable estimation with likelihood-
based Markov Chain Monte Carlo methods. It is thus of
interest to explore the performance of likelihood based Markov
Chain Monte Carlo and other global optimization methods and
compare these to the proposed Cross Entropy approach.

We showed several computational experiments that involve
specific gamma distribution shape parameters. Thus, the ro-
bustness of the proposed algorithmic method under additional
important gamma distribution shape parameters setting must
be considered.

TABLE III Case study 2 CIs based on B = 100 bootstrap rounds. The total execution time is 2201.7 seconds.

parameter name θ∗ θ̂MLE 95% CIN 95% CIpiv 95% CIper

α 2.0 3.3128 (2.0161, 4.6095) (2.3500, 4.9758) (1.6499, 4.2756)

η 2.5 2.5586 (2.0748, 3.0425) (1.8960, 2.8855) (2.2318, 3.2212)

β 0.01 0.0055 (0.0022, 0.0087) (0.001, 0.0079) (0.0031, 0.0099)

µA 0.5 0.5377 (0.4510, 0.6244) (0.4407, 0.6010) (0.4744, 0.6347)

σA 0.1 0.03499 (0.0267, 0.0433) (0.0337, 0.0488) (0.0212, 0.0363)

σZ 0.1 0.1270 (0.1060, 0.1480) (0.1150, 0.1557) (0.0984, 0.1390)
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TABLE IV Case study 3 CIs based on B = 100 bootstrap rounds. The execution time is 3614.9 seconds.

parameter name θ̂MLE 95% CIN 95% CIpiv 95% CIper

α 4.3689 (2.3074, 6.4305) (2.4413, 6.1994) (2.5385, 6.2966)

η 1.0753 (0.9097, 1.2408) (0.9081, 1.2141) (0.9364, 1.2424)

β 0.0414 (0.0150, 0.0679) (0.0066, 0.0572) (0.0256, 0.0763)

µA -4.5703 (-5.5549, -3.5857) (-5.539, -3.7124) (-5.4282, -3.6017)

σA 0.1918 (0.1093, 0.2742) (0.0736, 0.2414) (0.1422, 0.3099)

σZ 1.3191 (0.9933, 1.6450) (0.9990, 1.6148) (1.0236, 1.6394)
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(b) B = 1000 bootstrap rounds

Fig. 6: The left (a) and the right (b) panel show the average degradation and CIs for the drug potency data obtained using
B = 100 and B = 1000 bootstrap rounds, respectively. The degradation threshold is set to be 10%.

In this paper, we worked under the assumption of the mea-
surement error normality. It is therefore important to consider
the development of additional Monte Carlo estimators that
both avoids the rare event trap and can handle non Gaussian
measurement errors.

The proposed approach also has implications for many
areas of the human and social sciences. Social scientists
are interested in explaining and predicting many phenomena
that can degrade over time (e.g., social cohesion, mental
health, economic contraction/decline). In social science, the
observable data that track degradation processes are often
particularly noisy as it relies upon a proxy, or several proxies,
that track a fundamentally unobservable variable (i.e., a latent
variable). As mentioned in the introductory section, one im-
portant example of this is age-related cognitive decline. Age-
related cognitive decline is explained by a complex interaction
of many factors, but due to this complexity it may be impos-
sible to ever specify a theoretically informed model. There
are, however, several psychological tests that can track this
phenomenon indirectly that could be used to build a model
to help explain and predict the rate of cognitive decline. In
summary, this approach has utility in many areas of the human
and social sciences when there is an extremely complex and

opaque data-generating mechanism.
Although we currently offer a single-threaded implemen-

tation of the inference algorithms, it would be highly ben-
eficial to create a parallel software implementation that can
operate on multiple CPUs or a GPU. Such software will
allow practitioners to handle large real-life degradation data
instances. Specifically, both Algorithms 2 and 3 may benefit
from modifications that leverage tensor data structures. In
particular, tensors may enhance Algorithm 2 with improved
data storage for the observed data and the intermediate vari-
ables and results generated during the estimation process. In
addition, utilizing tensor-based operations allows for parallel
sampling which can generate multiple samples simultaneously.
This results in a more efficient process for generating and
processing large volumes of samples, potentially improving
estimation accuracy in certain situations. As for Algorithm 3,
rather than using individual variables to store parameters, they
can be represented as tensor objects which are efficient for
storing and manipulating multidimensional parameter arrays.
Again, tensors capacity to facilitate vectorized operations (i.e.
their ability to perform operation on entire arrays or vectors
at once) is helpful to parallelize the sampling step of the
algorithm where random samples are generated based on the
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current parameter estimates. Therefore, this adjustment would
help avoid the need for explicit loops and, again, improve
computational efficiency.
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