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Abstract

The use of Gamma processes for modeling various degradation phenomena has recently
gained extensive attention. In many cases, the degradation data contain measurement errors and
an intractable likelihood phenomenon comes into sight. Therefore, in order to perform efficient
statistical inference, one must obtain high-quality estimates of the corresponding likelihood.
Our findings indicate that the crude Monte Carlo method, which is the de facto state-of-the-
art method, is not adequate in practice for efficient likelihood estimation. To cope with this
problem, we propose to employ the sequential Monte Carlo approach, which shows promise for
improved reliability compared to the current state of the art. Our approach leads to efficient
variance minimization and opens the way for effective and scalable inference procedures.
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1 Introduction

Many complex systems and products we use in our daily activities are subject to degradation. Degra-
dation affects the product’s lifetime, the availability of services, and the corresponding safety of usage.
A few of the numerous examples of critical systems that undergo degradation over time are nature
(e.g., fish populations [1]), the human body (e.g., humans organs [2]), medicine (e.g., vaccines [3]), and
hardware (e.g., nuclear reactors [4]). Understanding and estimating these degradation processes as
precisely as possible is of great importance, as this can lead to more preservation of nature, improved
prediction of biological processes, and better maintenance of infrastructures.

This work aims to provide an important step forward in understanding and managing general
degradation processes. Specifically, we concentrate on the problem of the analysis of degradation
data. Such data usually contains measurement errors and as a consequence, reliability scientists and
practitioners need to deal with intractable likelihood phenomena when performing statistical infer-
ence. In this paper, the objective is to compare the estimation of intractable likelihood functions
using a particle-based method and a crude Monte Carlo method, assuming a model that incorpo-
rates Gamma-distributed degradation and normally-distributed errors. To evaluate the performance
of these methods, we test them on both synthetic data and real drug shelf-life data. Our find-
ings demonstrate that the particle-based method offers more reliable likelihood estimates compared
to the crude Monte Carlo method. These improved estimates enable more accurate estimation of
degradation development. The insights gained from this study contribute to advancing the field of
degradation modeling and its practical applications.

Reliability management is a rich field of study (see for instance [5]), where system lifetime data
is commonly studied. However, this method can be inefficient and prone to inaccuracies [6]. This is
due to the fact that many systems of interest are extremely reliable (for example, nuclear reactors),
and the time to failure can be prohibitively large, hence observing the degradation process in the
data becomes hard.

In the last three decades, there has been increasing recognition in tackling reliability management
in the context of degradation processes [7]. The analysis of degradation processes offers several
advantages over lifetime data analysis. It provides more informative insights into highly reliable
components with long lifetimes, allowing the assessment of crucial properties like degradation rate
and remaining useful life without waiting for actual failure events. Additionally, the analysis of
degradation data eliminates the need for complex and expensive accelerated life testing experiments.
Moreover, in cases where the available data is censored, degradation analysis becomes crucial for
assessing system reliability [8]. Due to the advantages of degradation data analysis over lifetime data
analysis, our study aims to analyze degradation processes.

Degradation processes have been mainly studied through two different classes of models: general
path models and stochastic models [9]. General path models are simplified models that assume that
systems are tested under a homogeneous environment. Examples of general path models are the mod-
eling of drug shelf-life in [10], which models degradation as a linear regression model, and modeling
structural deficiencies in buildings through general nonlinear mixed-effects models [11]. Stochastic
models, on the other hand, allow for unpredictability in the environmental impact and hence ran-
domness in degradation [9]. Examples of stochastic models are, for instance, Wiener processes used
to model the gyroscopic drift in a gyros used for an inertial navigation system [12], and Gamma
processes used to model corrosion in a nuclear reactor [4].

Stochastic processes, and in particular Gamma processes, were first introduced to the domain of
system reliability in 1975 [13, 14]. Gamma processes were found to be beneficial in recommending
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appropriate maintenance and inspection choices. Consequently, it was shown that these procedures
were suitable for characterising a range of deterioration scenarios [15, 16]. There are many applica-
tions of Gamma processes in reliability literature. For instance, the optimal dike heightening and
the best sand nutrition sizes were determined using Gamma processes, see [17, 18]. While there
are numerous applications of Gamma processes, [19, 20, 21, 22], for some more recent examples, we
refer to remaining useful life prediction [23], wheel wear modeling [24], and space-time-dependent
reliability analysis [25].

Our paper models degradation using a Gamma process, which is particularly suitable for systems
that show degradation through fatigue. The Gamma process is chosen for its intuitive properties,
such as modelling monotone and gradual degradation [26].

Given a model at hand, estimating the parameters of the model is typically done through maximum
likelihood estimation. This method requires the computation of a likelihood function. In practice,
the computation of the likelihood function is intractable; the method of choice is to estimate the
likelihood values numerically. Crude Monte Carlo (CMC) is a common method of estimating such
an intractable likelihood function. Sequential Monte Carlo (SMC), also known as particle filtering,
was proposed as an alternative in [27], where the authors intended to combat the challenges of
non-linearity and non-Gaussian noise in the corresponding model.

In this paper, we compare the performance of CMC to SMC on the likelihood estimation of a
parameter set given the observed data and a Gamma degradation process with noisy data. We show
both theoretically and numerically that SMC outperforms CMC. Theoretical evidence is provided by
establishing the failure of CMC in estimating the likelihood in the asymptotic regime, as proven in
Theorem 1. Numerical evidence is provided through experiments on both synthetic and real data.
The results are of great theoretical and practical importance since today various estimation algorithms
rely on CMC for the corresponding likelihood function estimation. To the best of our knowledge, SMC
and CMC have not explicitly been compared for likelihood estimation. However, SMC has shown
significantly smaller variances for likelihood estimates compared to other methods in for instance [28].
The results in [29] also demonstrates SMC to have multiple advantages, such as variance reduction
and efficiency in long time series. Moreover, SMC and CMC have been explicitly compared for other
subjects, for instance for option pricing in [30], which showed a significant reduction in standard
deviation for SMC compared to CMC.

The remainder of the paper is organized as follows. In Section 2, we give a brief overview of
the degradation problem with measurement errors and the model applied. Section 3 presents the
methods applied in this paper. Specifically, we discuss the limitations of Crude Monte Carlo and
introduce the Sequential Monte Carlo approach as a viable solution to overcome these limitations.
In Section 4, we compare the performance of these algorithms and report our experimental findings.
Section 5 compares the methods for a specific case study. Finally, Section 6 summarizes our findings
and discusses possible directions for future research.

2 Problem Definition

Following Hazra et al. [31], the degradation model under consideration relies on the Gamma pro-
cess. Specifically, we consider a system with C components that are subject to degradation. The
corresponding degradation of each component i ∈ {1, . . . , C} is measured at specific times tj, where
tj ∈ {t1, . . . , tM}. By convention we assume that t0 = 0. Each component represents an independent
realization of a stochastic Gamma process, such as the degradation of C distinct batteries. As exact
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measurements usually require a destruction or dismantling of the system, the observed data contains
measurement errors.

To provide a more comprehensive understanding of the model, we introduce a set of random vari-
ables that capture the various influences within the degradation process. These variables collectively
form the model and shed light on its underlying dynamics. First, we incorporate a term, Zi(tj), to
account for the measurement error specific to each component i and time tj. We set Zi(t0) = 0 for
all i ∈ {1, . . . , C}, since we assume there is no measurement at time 0. Second, each component, rep-
resenting a replication of the system, starts with an initial degradation denoted by Ai. For instance,
when examining a battery, it might already have a degradation of 2 percent, resulting in a maximum
charging capacity of 98 percent of the original battery life. Finally, for each component there is the
degradation that occurs over time, denoted by Xi(tj). For example, a battery deteriorates over time,
the amount it has deteriorated from time zero to time tj equals Xi(tj). We take Xi(t0) = 0 for all
i ∈ {1, . . . , C}. That is, we assume that there is no incremental degradation for new components.
Together, these random variables constitute the complete degradation process:

Yi(tj) = Ai +Xi(tj) + Zi(tj). (1)

Note that, due to the previous assumptions at time 0 and Model Eq. (1), we have that Yi(t0) =
Ai. This framework allows us to holistically investigate the degradation process and its associated
components.

In order to characterize the newly introduced random variables, we assign probability distributions
to them, based on the motivations discussed earlier in this paper. The initial degradation Ai is
an independent and normally-distributed random variable with mean µA and variance σ2

A for all
i ∈ {1, . . . , C}. That is, Ai ∼ N(µA, σ

2
A). The measurement error Zi(tj) is independent of all Ai

and all Zl(tj) for all l ̸= i. Also, Zi(tj) is a normally-distributed random variable with mean 0 and
variance σ2

Z for all i ∈ {1, . . . , C}. That is, Zi(tj) ∼ N(0, σ2
Z). Last, the degradation over time has

Gamma-distributed independent increments. In other words,

Xi(tj)−Xi(tj−1) = ∆Xi(tj),

with ∆Xi(tj) being a random variable independent of all Ai, all Zi(tj), and all ∆Xi(tj) for all l ̸= i.
Moreover, ∆Xi(tj) is Gamma distributed with shape parameter αtηj − αtηj−1 and scale parameter β
for all i ∈ {1, . . . , C}. That is, ∆Xi(tj) ∼ Gamma(αtηj − αtηj−1, β), equivalent to [31]. Since the
increments are Gamma distributed, the degradation over a positive time period is always positive, as
the probability of ∆Xi being smaller than or equal to 0 equals 0. In summary, this paper considers
the following model:

Gamma Degradation Model.

Yi(tj) = Ai +Xi(tj) + Zi(tj),

Ai ∼ N(µA, σ
2
A),

Zi(tj) ∼ N(0, σ2
Z),

∆Xi(tj) ∼ Gamma(αtηj − αtηj−1, β).

(2)

All realized values of random variables will be denoted in lowercase, vectors and matrices will be
represented in boldface. We capture all the parameters of this model by the vector:

θ = (α, η, β, µA, σA, σZ)
⊤.
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For a comprehensive overview of the notation used, please refer to Appendix A for further details.

The chosen shape and scale parameter of the Gamma distribution provide considerable flexibility
within the model, allowing for a wide range of possibilities. Moreover, the setup of this model dictates
that as the time difference increases, so does the shape parameter of the Gamma process. A higher
shape parameter increases the probability of higher degradation rates. Intuitively, it is sensible that
larger time differences lead to more significant degradation.

The selection of the parameters of the Gamma process plays a crucial role in determining the
applicability of the model to different systems. Observe that the relationship between the variance
and the mean is as follows: V ar(∆Xi(tj)) = E[∆Xi(tj)] · β. As a result, this choice of shape and
scale parameters captures well systems where the variance over time remains linear in terms of its
mean. For systems where the variance over the degradation should increase more over time, one
could introduce an appropriate time factor in the scale parameter.

The objective of this paper is to study methods for estimating the parameter vector θ. To perform
parameter inference, it is essential to evaluate the likelihood function L(θ;y), which represents the
likelihood of the observed data given the parameter θ. In the data collection process, degradation
data y = (y1, . . . ,yC), with yi = (yi,t1 , . . . , yi,tM )⊤, is obtained for all components i ∈ {1, . . . , C}.
However, the presence of measurement errors necessitates incorporating not only the probability
density function of the Gamma distribution but also the probability of the measurement error values
in the likelihood function, resulting in its intractability; see Appendix B for details. This intractability
introduces significant variability in the likelihood estimation, thereby complicating the task of finding
the maximum likelihood. Unreliable likelihood estimates, characterized by high variance, can harm
any reasonable optimization procedure. Consequently, it becomes crucial to employ an estimation
method for the likelihood that reduces this variability. In this work, we focus on exploring two
estimators of L(θ;y): CMC and SMC. Both estimators are employed using Npart simulations. We
provide more information on CMC and SMC in Section 3.

3 Monte Carlo Methods

This section briefly describes the two Monte Carlo methods used in this paper: Crude Monte Carlo
and Sequential Monte Carlo. We prove a significant limitation of CMC, which SMC circumvents.
Furthermore, we elaborate on the particular SMC method we employ, known as the Bootstrap particle
filter, and provide its specifics considering our Gamma Degradation Model (2).

3.1 Failure of the Crude Monte Carlo Method

In this section, we provide an explanation of how CMC operates and discuss its limitations when
applied to our specific model. These limitations are further addressed and analyzed in Theorem 1.

CMC estimates an expected value by averaging over numerous runs. Therefore, we express the
likelihood as an expected value. To do so, we begin by determining the likelihood per component,
denoted by L(θ;yi). This likelihood per component corresponds to the probability density func-
tion of the realized observed degradation yi under the parameter set θ, denoted by fθ(yi). This
expression equals the expected value of the multiplication of the probability of the realized true
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degradation during each time period ∆xi,tj , under the distributions of the initial degradation Ai and
the measurement errors Zi. In other words,

fθ(yi) = EAi,Zi

[ M∏
j=1

fθ(∆xi,tj |Ai = ai,Zi = zi)
]
.

Subsequently, the joint likelihood L(θ;y) is obtained by multiplying all the likelihoods per component
L(θ;yi); that is:

L(θ;y) =
C∏
i=1

L(θ;yi) = EAi,Zi

[ C∏
i=1

M∏
j=1

fθ(∆xi,tj |Ai = ai,Zi = zi)

]
.

By performing Npart simulations and sampling Npart times all initial degradations a and errors z,
we can compute the value in the expectation for each simulation, which yields the CMC likelihood
estimator:

L̂(θ;y) = 1

Npart

Npart∑
n=1

C∏
i=1

M∏
j=1

fθ(∆xi,tj |Ai = ai,Zi = zi). (3)

For more details on the theoretical and estimated likelihood derivation, see Appendix B, which
computes the specific likelihoods for Gamma Degradation Model (2) and shows that the estimator
in Eq. (3) is unbiased.

In the remainder of this section, we prove that for Gamma Degradation Model (2) the CMC
method fails to estimate likelihoods accurately in an asymptotic regime. We define a method as
failing if it estimates the likelihood to be exactly zero, as it provides no more information than
confirming that those particular parameters are not the true ones. In other words, we show that
when the number of simulations Npart and the standard deviation of the measurement error σZ ̸= 0
remain fixed, for the number of time measurements M or components C tending towards infinity,
the probability of CMC failing approaches one. Furthermore, it is generally observed that a larger
σZ leads to a quicker convergence of the probability of CMC failing towards one. We show this in
Theorem 1.

In the case of CMC, failure to estimate the likelihood arises from the inherent methodology
employed. CMC relies on sampling an initial degradation and sampling measurement errors. These
sampled values are then used to compute the degradation over time. If, as a result of these samplings,
the degradation increment turns out to be negative, the likelihood is evaluated to zero. The latter is
due to the model assumption that degradation over positive time periods cannot be negative.

Theorem 1. Given Gamma Degradation Model (2), for a fixed number of simulations Npart and a
fixed standard deviation of the measurement error σZ > 0, the probability of CMC failing to estimate
the likelihood converges to 1, i.e. P(L̂(θ;y) = 0) → 1, for:

1. number of time measurements M → ∞.

2. number of components C → ∞,

Proof. To prove this result, we show that the the likelihood estimator L̂(θ;y) goes to zero in proba-
bility for M → ∞ or C → ∞. To do so, we derive L̂(θ;y), which is a sum of terms. We show that
these terms converge to zero in probability for Gamma Degradation Model (2), which implies L̂(θ;y)
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converges to zero in probability. The probability of the terms equalling zero requires knowledge of the
distribution of ∆Xi(tj). We lower bound this probability, and show that the lower bound converges

to 1, which leads to the conclusion that the probability converges to 1 and hence L̂(θ;y) goes to zero
in probability.

To this end, recalling that the true degradation over time ∆Xi(tj) is Gamma distributed, Eq. (3)
reduces to:

L̂(θ;y) = 1

Npart

Npart∑
n=1

C∏
i=1

M∏
j=1

(∆xn
i,tj

)(αt
η
j−αtηj−1−1) exp(

−∆xn
i,tj

β
)1{∆xn

i,tj
≥ 0}

Γ(αtηj − αtηj−1)β
αtηj−αtηj−1

. (4)

The indicator function in the right-hand side of Eq. (4) causes the failure, i.e. the likelihood estimator
L̂(θ;y) to be zero in certain cases. Namely, if for all n ∈ {1, . . . , Npart} there exists an indicator

function 1{∆xn
i,tj

≥ 0} that is zero, then the estimated likelihood value L̂(θ;y) is zero. Hence, we
investigate the probability of there existing a component i ∈ {1, . . . , C} and a time measurement
j ∈ {1, . . . ,M} such that 1{∆Xi(tj) ≥ 0} equals zero. This probability, which is the probability of
a single term in the sum of Eq. (4) equalling zero, is written as follows:

P(∃i,j s.t. ∆Xi(tj) ≤ 0) = P(∃i,j s.t. ∆Xi(tj) ≤ 0) = 1− P(∀i,j s.t. ∆Xi(tj) ≥ 0),

= 1−
C∏
i=1

P(∀j ∆Xi(tj) ≥ 0).
(5)

To assess the probability in Eq. (5), it is crucial to determine the distribution of ∆Xi(tj). We
have observed the data Yi(tj) for i ∈ {1, . . . , C} and j ∈ {1, . . . ,M}. At time zero (j = 0), the values
are as follows: Yi(t0) = Ai, Xi(t0) = 0, and Zi(t0) = 0. Consequently, we can discern two cases for
the distribution of ∆Xn

i (tj):

• j = 1: ∆Xi(t1) = ∆Yi(t1)−∆Zi,t1 = yi,t1 − Ai − Zi(t1) ∼ N (yi,t1 − µA, σ
2
A + σ2

Z),

• j ≥ 2: ∆Xi(tj) = ∆yi,tj −∆Zi,tj ∼ N (∆yi,tj , 2σ
2
Z).

Using this knowledge on the distribution of ∆Xi(tj), we can derive an upper bound of the prob-
ability P(∀j ∆Xi(tj) ≥ 0), and hence a lower bound of the probability in Eq. (5). To do so, we
define:

|∆Y | = |maxi,j{∆Yi(tj)}|.

Using this maximum, the upper bound is derived as follows:

P(∀j ∆Xi(tj) ≥ 0)
∗
≤ P

( M
2⋂

j
2
=1

∆Xi(tj) ≥ 0
)
=

M
2∏

j
2
=1

P(∆Xi(tj) ≥ 0) =

M
2∏

j
2
=1

Φ

(
∆Yi(tj)√

2σZ

)
≤ Φ

(
|∆Y |√
2σZ

)M
2

.

In the above derivation, we upper bound the probability by considering only half of the events
inside the probability, i.e. {∆Xi(tj) ≥ 0} for all measurements j. This step is taken to remove the
dependence between the events inside the probability. Namely, degradation increments ∆Xi(tj) and
∆Xi(tk) are independent if k < j − 1 or k > j + 1. Thus, at ∗, we specifically focus on cases where
the degradation increments are two time periods apart, ensuring their independence.
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The previous upper bound leads to a lower bound of the probability in Eq. (5):

P(∃i,j s.t. ∆Xi(tj) ≤ 0) = 1−
C∏
i=1

P(∀j ∆Xi(tj) ≥ 0) ≥ 1−
C∏
i=1

Φ

(
|∆Y |√
2σZ

)M
2

,

= 1− Φ

(
|∆Y |√
2σZ

)C·M
2

.

(6)

One can easily see that the last expression in Eq. (6) converges to 1 for σZ ̸= 0 fixed and either the
number of components C → ∞ or the number of time measurements M → ∞. As the lower bound
converges to 1, P(∃i,j s.t. ∆Xi(tj) ≤ 0) = P(∃i,j s.t. 1{∆Xi(tj) ≥ 0} = 0) converges to 1 as well.

Therefore, the probability that the estimator equals 0, i.e. P(L̂(θ;y) = 0), converges to 1 for Npart

fixed.

Note also that one can induce CMC to fail, by letting σZ → ∞, as then

P(∃i,j s.t. ∆Xi(tj) ≤ 0)
σZ→∞−−−−→ 1−

(
1

2

)C·M
2

.

Which approaches 1 for the data set reasonably big.

In order to avoid the failure in likelihood estimation, we propose using a different Monte Carlo
algorithm, namely Sequential Monte Carlo. The SMC method is discussed in Section 3.2.

3.2 Sequential Monte Carlo

While CMC may fail due to the possibility of estimating negative true degradation over time ∆x,
SMC is designed to prevent such breaches of model assumptions and subsequent failures. In CMC,
each simulation involves sampling measurement errors z and computing the true degradation over
time ∆x using these errors. In contrast, SMC samples the true degradation over time ∆x, ensuring
that this value is positive by construction and cannot violate the model assumptions. SMC samples
∆x through the use of a proposal kernel Mtj . The algorithm resamples between all runs Npart the
occurred degradation until that time step through the use of weights wtj ,n, computed by the use of a
weight function Gtj . Due to SMC’s resilience to the described failure, next to its improved accuracy,
we employ SMC in this paper as a superior alternative to CMC.

It is important to note that SMC can be computationally costly if resampling between simula-
tions is performed at every time step. To address this, adaptive resampling was developed, where
resampling is done only when the Effective Sample Size (ESS) drops below a threshold; see Chopin
et al. [32] for details. The ESS, based on sample weights, reflects the quality of the particle set. In
this paper, we employ a common threshold of Npart

2
, ensuring resampling occurs when the number of

effective samples decreases significantly.

For more detailed information on SMC and the ESS, please refer to [32, Ch. 10] and [32, Sect.
8.6] respectively. We have customized their generic SMC algorithm including adaptive resampling to
suit our specific setup. The pseudocode for our customized algorithm can be found in Appendix C.
The choice of distributions of the proposal kernel Mtj and the weight function Gtj depends on the
specific particle filter in SMC being applied.
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In this paper we apply the Bootstrap particle filter, which is a particle filter that is quite commonly
used in Sequential Monte Carlo. For Gamma Degradation Model (2), the choice of the proposal kernel
Mtj and weight function Gtj in this filter is as follows:

Mt0(∆di,t0) = N(µA, σ
2
A),

Gt0(Dn(t0)) = 1,

Mtj(Di,k(n)(tj−1),∆di,tj) = Gamma(αtηj − αtηj−1, Di,k(n)(tj−1), β),

Gtj(Dk(n)(tj−1),Dn(tj)) =
C∏
i=1

1

σZ

√
2π

exp
(
−

(yi,tj −Di,n(tj))
2

2σ2
Z

)
.

The algorithm for the Bootstrap filter of [32] tailored to our Gamma Degradation Model (2), can be
found in Appendix D.

The goal of the paper is to estimate the likelihood. To achieve this using Bootstrap, we use the
output weights wtj ,n of the algorithm for all times tj ∈ {t1, . . . , tM} and runs n ∈ {1, . . . , Npart}. The
estimator of the likelihood is given by:

L̂(θ;y) =
M∏
j=1

L̂tj(θ;y),

which is the product of the estimated likelihood values for each time step. The estimation of the
likelihood values for each time step is as follows:

L̂tj(θ;y) =


1

Npart

Npart∑
n=1

wtj ,n if resampling occurred at time tj,∑Npart

n=1 wtj ,n∑Npart

n=1 wtj−1,n

otherwise.

For further details, please refer to [32].

The application of the Bootstrap filter eliminates the possibility of failure. In the remainder of
the paper, we apply CMC and the Bootstrap filter to both synthetic data as well as real data; see
Section 4 for the results. Our findings demonstrate that the Bootstrap filter provides a more accurate
estimation of the likelihood. As such, the Bootstrap filter emerges as a more reliable method compared
to CMC.

4 Experiments

This section presents experimental results that focus on comparing the estimated likelihood values
of the Bootstrap filter to Crude Monte Carlo. The experiments are conducted on synthetic data,
following a similar approach as [31]. Specifically, we use the parameter set θ = (α, η, β, µA, σA, σZ)

⊤ =
(2, 2.5, 0.01, 0.5, 0.01, 0.01), consider time periods {2, 4, 6} and set the number of components C = 10.
Moreover, we examine three different numbers of unknown parameters: one unknown parameter, two
unknown parameters and six unknown parameters. We apply the same prior distributions as in [31]
to the unknown parameters in our research.

In these experiments, we compare the variance of the estimators of the two methods. The results
reveal that CMC estimates exhibit a significantly higher relative variance than Bootstrap. Therefore,
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the estimator of CMC demonstrates lower reliability in contrast to the estimator of Bootstrap. The
relative errors associated with CMC are in fact so substantial, that the mean likelihood values for all
different parameter settings, within 95% certainty, could as well be estimated to be zero, which results
in not estimating higher likelihoods towards true parameter values. Bootstrap, on the other hand,
demonstrates increasing likelihoods towards the true parameter setting, accompanied by distinct
confidence intervals for parameter settings that are sufficiently apart from each other. These findings
imply that when using Bootstrap, maximum likelihood estimation using different parameter settings
is more likely to approach the true parameter setting. Consequently, the Bootstrap filter is considered
a more reliable method for likelihood estimation given Gamma Degradation Model (2).

To assess the variance of the estimated likelihood value in the Bootstrap algorithm, we need
a parameter denoted by Nsim, which represents the number of times the likelihood is estimated.
Consequently, both the CMC and the Bootstrap filter methods are executed Nsim times, and the
mean and variance of the estimates across these Nsim simulations are analyzed. All results are
obtained with the number of particles Npart = 10000 and the number of times the likelihood is
estimated Nsim = 1000. For the first experiment involving one unknown parameter, we conduct a
thorough analysis of the results. However, for the experiments with two and six unknown parameters,
we provide a more concise summary since the interpretation aligns closely with the results obtained
for one unknown parameter.

4.1 One Unknown Parameter

The first considered case is that of leaving only one parameter unknown, which is α. Equivalent to
[31], we adopt the prior distribution U [0, 10] for α.

We begin by analyzing the mean estimated likelihood value along with the corresponding 95%
confidence interval (CI), which is computed by assuming a normal distribution for the estimates.
These results are illustrated in Figure 1(a) and Figure 1(b). Figure 1(a) shows all estimates for
different parameter settings, ranging from the true parameter values to settings that deviate signif-
icantly from the true values. To generate the parameter values range, a drift ratio rc is randomly
added or subtracted from the true parameter value, with the drift direction reversed if the resulting
value exceeds the bounds of the prior distribution. Specifically, for α with a prior distribution U [w, y]
and a true value of αtrue, we generate values for α as follows:

α = αtrue + rc · (y − w) · random{−1, 1} ·
[
− 1{value outside prior distribution bounds}

]
,

where random{−1, 1} is a random integer of the set {1,−1}. Figure 1(b) provides a zoomed-in view
of the y-axis, allowing for better visualization of the CMC values in proximity to the true parameter
setting.

Upon examining Figure 1(a), we observe that for the Bootstrap filter a substantial difference in
likelihood estimates between parameter values deviating less than a ratio of 0.02 from the true values
and values with larger deviations. In fact, the mean estimate deviates approximately 21 times its
95% half-width from zero, which is about the same distance from the mean likelihood estimates of
parameters with a deviation ratio of 0.05 or more to the true parameter setting. Hence, maximum
likelihood estimation (MLE) will, most likely, result in a parameter estimate with a deviation ratio
of less than 0.02 from the true parameter.

Figure 1(b) demonstrates the uncertainty in the CMC method due to its the high relative variance
and hence relatively large CIs. The 95% CIs are overlapping for all different parameter values,
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implying that parameter values with a high deviation are more likely to have the highest estimated
likelihood when using CMC compared to Bootstrap. This suggests that MLE is less likely to approach
the true parameter setting, indicating the lower reliability of CMC.

The significant reliability disparity between CMC and the Bootstrap filter stems from the high
relative errors (REs) observed for CMC; See Kroese et al. [33] for details on the relative error.
Table 1 provides a summary of the REs, excluding parameter values with a change above 0.050, as
their likelihood estimates are too small to assess the RE accurately or they are affected by machine
error in the RE assessment. While CMC displays extremely large REs, the Bootstrap filter exhibits
significantly smaller REs. This stark contrast shows that the Bootstrap filter provides more accurate
likelihood estimation and hence MLE of the parameters. Therefore, the Bootstrap filter clearly
outperforms CMC in this case.

PPPPPPPPPMethod
rc 0.000 0.001 0.010 0.020

CMC 0.9708 0.9476 0.9894 0.8921
Bootstrap 0.0240 0.0254 0.0314 0.0431

Table 1: The RE for both estimation methods over the different parameter inputs for one unknown.

We also assess the sensitivity of the likelihood function around the true parameter value for both
methods, as this is crucial for MLE. Table 2 presents the relative change in mean likelihood estimates
compared to the estimate for the true parameter. Thus, the true parameters correspond to a value
of 100%. If, for instance, a random parameter change of 0.001 results in a mean likelihood estimate
twice the size of the one of the true parameters, the relative value is 200%. This analysis assesses
the sensitivity of the likelihood estimate to variations in parameter values.

In the table, ’Random’ indicates the random change as displayed in Figure 1. ’Positive’ indicates
all changes are positive and vice versa. The lower bound of the CI for the value of rc indicates the
lowest value in the 95% likelihood CI for that parameter divided by the highest value in the 95%
likelihood interval of the true parameter. The upper bound is the highest value within the 95%
interval for that parameter divided by the lowest value in the interval of the true parameter. This
leads to an approximately 90% CI.

CMC demonstrates high elasticity with small random parameter changes, with an increase in
mean likelihood for nearby non-true parameters. In Bootstrap, the likelihood shows less elasticity
for small random parameter changes, while for larger parameter changes the estimates decrease more
rapidly. The Bootstrap filter results are more favorable for MLE. However, the CMC results are very
uncertain, due to their large relative variance.

While many likelihoods of parameters for higher rc being zero percent of the original likelihood, in
Table 3 we observe the likelihoods are still descending in size. In other words, for parameter settings
closer to the true one, the likelihoods are generally larger.

PPPPPPPPPMethod
rc 0.000 0.001 0.010 0.020 0.050 0.100 0.500

CMC 4.9 7.9 7.0 4.8 −3.5 · 10 −2.4 · 102 −3.0 · 103
Bootstrap 1.6 · 10 1.6 · 10 1.6 · 10 1.3 · 10 −7.0 −2.4 · 102 −7.7 · 103

Table 3: The log transformed likelihood estimate for one unknown parameter.
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(a) Including the mean estimated likelihood value and CI for different parameter settings of the one unknown.

(b) Including the mean estimated likelihood value and CI for different parameter settings of the one unknown with a
zoomed in y-axis.

Figure 1: Likelihood Comparison for 1 Unknown Parameter.
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PPPPPPPPPMethod
rc 0.000 0.001 0.010 0.020 0.050 0.100 0.500

CMC
Random 100.0% 2158.4%

[0; Inf]
830.9%
[0; Inf]

92.4%
[0; Inf]

0.0%
[0; Inf]

0.0%
[0; Inf]

0.0%
[0;Inf]

Positive 100.0% 3418.7%
[0; Inf]

830.9%
[0; Inf]

92.4%
[0; Inf]

0.0%
[0; Inf]

0.0%
[0; Inf]

0.0%
[0; Inf]

Negative 100.0% 2158.4%
[0; Inf]

1.7%
[0; Inf]

29.3%
[0; Inf]

0.0%
[0; Inf]

0.0%
[0; Inf]

Bootstrap
Random 100.0% 90.0%

[81.6; 99.1]
94.6%
[84.8; 105.4]

8.9%
[7.8; 10.2]

0.0%
[0.0; 0.0]

0.0%
[0.0; 0.0]

0.0%
[0.0; 0.0]

Positive 100.0% 109.0%
[99.7; 119.2]

91.2%
[82.5; 100.7]

9.5%
[8.3; 10.8]

0.0%
[0.0; 0.0]

0.0%
[0.0; 0.0]

0.0%
[0.0; 0.0]

Negative 100.0% 90.0%
[81.6; 99.1]

10.2%
[9.3; 11.3]

0.1%
[0.1; 0.1]

0.0%
[0.0; 0.0]

0.0%
[0.0; 0.0]

Table 2: Relative change in likelihood over a certain change in parameter values for one unknown
parameter.

To summarize and assess the performance of each technique, we check for distinct CIs and de-
scending values over the range of parameter values, through the log-transformed values and RE.
Distinct CIs result in a much more reliable MLE. Through an educated guess we take a RE of 0.8
for CMC and 0.05 for Bootstrap. Denoting the likelihood estimate as l, the CI bounds are computed
as follows:

Bound = log(l) + log(1± 1.96 ·RE).

The value inside the lower bound becomes negative we simply regard it as 0, as the likelihood cannot
go beneath zero.

The CIs for CMC are all overlapping, while for the Bootstrap filter for rc > 0.01 none of the CIs
overlap. Thus, considering the log mean estimates, within the 95% CI, the mean likelihood for the
Bootstrap filter is increasing towards the true parameter value for rc ≥ 0.02, which is not the case
for CMC. To conclude, the Bootstrap filter is more reliable than CMC.

4.2 Two Unknown Parameters

The second case considered is that of leaving two parameters unknown, which are η and µA. Again
equivalent to [31], we adopt the prior distributions U [0, 5] for η and U [0, 1] for µA.

The results highlight again the superior reliability of the Bootstrap filter compared to CMC in
maximum likelihood estimation. Table 6 presents the relative change in mean likelihood estimates
compared to the estimate for the true parameters. The table set-up is similar to that of Table 2.

The Bootstrap filter exhibits significantly smaller REs and increasing likelihood estimates towards
the true parameter values, as shown in Figure 2, Table 4, and Table 5. Therefore, there are distinct
95% CIs of the Bootstrap filter for parameter values with ratio of change rc < 0.010 and rc > 0.020. In
fact, assuming a 0.04 RE, none of the CIs overlap and they are increasing towards the true parameter
values from rc > 0.001, which further demonstrate its reliability. On the other hand, CMC shows
overlapping CIs due to its higher RE. Therefore, the Bootstrap filter is significantly more reliable for
MLE.
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Figure 2: Likelihood comparison, including the mean estimated likelihood value and CI for different
parameter settings of the two unknowns.

PPPPPPPPPMethod
rc 0.000 0.001 0.010

CMC 0.9982 0.7752 0.9974
Bootstrap 0.0229 0.0228 0.0367

Table 4: The RE for both estimation methods over the different parameter inputs for two unknowns.

PPPPPPPPPMethod
rc 0.000 0.001 0.010 0.020 0.050 0.100 0.500

CMC 1.5 · 10 1.1 · 10 6.9 −9.3 −1.7 · 102 −4.0 · 102 −1.0 · 104∗
Bootstrap 1.6 · 10 1.6 · 10 1.4 · 10 4.0 −1.8 · 102 −4.3 · 102 −1.2 · 107

Table 5: The log transformed likelihood estimate for two unknown parameters.
∗ This is the lower bound for CMC, considered zero.
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PPPPPPPPPMethod
rc 0.000 0.001 0.010 0.020 0.050 0.100 0.500

CMC
Random 100.0% 1.3%

[0; Inf]
0.0%
[0; Inf]

0.0%
[0; Inf]

0.0%
[0; Inf]

0.0%
[0; Inf]

0.0%
[0; Inf]

Positive 100.0% 1.3%
[0; Inf]

0.0%
[0; Inf]

0.0%
[0; Inf]

0.0%
[0; Inf]

0.0%
[0; Inf]

0.0%
[0; Inf]

Negative 100.0% 0.3%
[0; Inf]

0.0%
[0; Inf]

0.0%
[0; Inf]

0.0%
[0; Inf]

0.0%
[0; Inf]

0.0%
[0; Inf]

Bootstrap
Random 100.0% 121.7%

[111.2; 133.1]
25.7%
[22.8; 28.8]

0.0%
[0; 0]

0.0%
[0; 0]

0.0%
[0; 0]

0.0%
[0; 0]

Positive 100.0% 121.7%
[111.2; 133.1]

13.3%
[11.5; 15.2]

0.0%
[0.0; 0.0]

0.0%
[0.0; 0.0]

0.0%
[0.0; 0.0]

0.0%
[0.0; 0.0]

Negative 100.0% 77.2%
[70.2; 84.9]

0.2%
[0.2; 0.2]

0.0%
[0.0; 0.0]

0.0%
[0.0; 0.0]

0.0%
[0.0; 0.0]

Table 6: Relative change in likelihood over a certain change in parameter values for two unknown
parameters.

PPPPPPPPPMethod
rc 0.000 0.001

CMC 0.7581 0.9577
Bootstrap 0.0234 0.0386

Table 7: The RE for both estimation methods over the different parameter inputs for six unknowns.

4.3 Six Unknown Parameters

Last, we consider the case with all six parameters left unknown. Equivalent to [31], the prior distri-
butions for the parameters are U [0, 5] for α and η, and U [0, 1] for µA, β, σA and σZ .

The results reinforce the superior reliability of the Bootstrap filter over CMC in maximum like-
lihood estimation. The Bootstrap filter exhibits significantly lower REs, as evidenced in Table 7.
Table 9 presents the relative change in mean likelihood estimates compared to the estimate for the
true parameters. The table set-up is similar to that of Table 2.

In Table 8, it is apparent that the mean likelihood estimates for the Bootstrap filter increase
towards the true parameter values, indicating accurate estimation. The small REs further ensure
that likelihoods are estimated in the correct order, favoring parameters close to the true values.
Conversely, the large REs for CMC introduce uncertainty in the estimation order, as even high ratios
of change rc may yield high likelihood estimates. While the Bootstrap filter remains superior, it is
important to note that both methods are sensitive to small ratio changes in parameter values, as
shown in Table 9. This sensitivity complicates MLE for both the Bootstrap filter and CMC.

PPPPPPPPPMethod
rc 0.000 0.001 0.010 0.020 0.050 0.100 0.500

CMC 4.2 5.3 −3.6 · 102 −4.7 · 102 −4.1 · 102 −6.1 · 103 −1.0 · 104∗
Bootstrap 1.6 · 10 1.4 · 10 −1.3 · 103 −1.6 · 103 −2.0 · 103 −1.2 · 105 −4.4 · 109

Table 8: The log transformed likelihood estimate for six unknown parameters.
∗ This is the lower bound for CMC, considered zero.
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(a) Including the mean estimated likelihood value and CI for different parameter settings of the six unknowns.

(b) Including the mean estimated likelihood value and CI for different parameter settings of the six unknowns with a
zoomed in y-axis.

Figure 3: Likelihood Comparison for 6 Unknown Parameters.
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PPPPPPPPPMethod
rc 0.000 0.001 0.010 0.020 0.050 0.100 0.500

CMC
Random 100.0% 291.9%

[0; Inf]
0.0%
[0; Inf]

0.0%
[0; Inf]

0.0%
[0; Inf]

0.0%
[0; Inf]

0.0%
[0; Inf]

Positive 100.0% 18.7%
[0; Inf]

0.0%
[0; Inf]

0.0%
[0; Inf]

0.0%
[0; Inf]

0.0%
[0; Inf]

0.0%
[0; Inf]

Negative∗ 100.0% 0.0%
[0; Inf]

0.0%
[0; Inf]

0.0%
[0; Inf]

0.0%
[0; Inf]

Bootstrap
Random 100.0% 14.4%

[12.7; 16.2]
0.0%
[0.0; 0.0]

0.0%
[0.0; 0.0]

0.0%
[0.0; 0.0]

0.0%
[0.0; 0.0]

0.0%
[0.0; 0.0]

Positive 100.0% 3.9%
[3.4; 4.5]

0.0%
[0.0; 0.0]

0.0%
[0.0; 0.0]

0.0%
[0.0; 0.0]

0.0%
[0.0; 0.0]

0.0%
[0.0; 0.0]

Negative∗ 100.0% 0.0%
[0.0; 0.0]

0.0%
[0.0; 0.0]

0.0%
[0.0; 0.0]

0.0%
[0.0; 0.0]

Table 9: Relative change in likelihood over a certain change in parameter values for six unknown
parameters.
∗ With β kept constant after 0.001 negative change.

Overall, the experiments conducted in this section have provided compelling evidence that the
Bootstrap filter outperforms CMC in terms of reliable and accurate likelihood estimation, assuming
that Gamma Degradation Model (2) effectively models degradation. The poor performance of CMC
might explain the efficiency issues of the likelihood-based method in [31], where CMC is employed for
the likelihood computation. In addition to our experiments, we present a case study in the following
section in which the performance of the two Monte Carlo methods is compared using real-life data.

5 Case Study

Shelved drugs are susceptible to degradation, resulting in a decline in their effectiveness over time
due to chemical processes. In this section, we conduct a case study using real drug shelf-life data
from Chow and Shao [10]. The data includes measurements of drug potency in percentage of claimed
potency at different time periods (after 0, 1, 2, and 3 years) for 24 drug batches. The study assumes
a linear degradation model and performs WLS. Our paper however, assumes the data to be better
represented by a Gamma-distributed degradation model. Given Gamma Degradation Model (2), we
compare the performance of CMC with the Bootstrap filter in estimating likelihood values of param-
eter inputs, aiming to find the most reliable method in estimating this drug shelf-life degradation.
The detailed data set can be found in the Appendix, Table 11.

Our findings clearly demonstrate that the Bootstrap filter outperforms CMC in terms of reliability,
offering lower relative variance and more accurate estimates. However, both methods require an
extensive number of simulations, leading to a high relative error and overlapping confidence intervals
in the results. Additionally, the likelihoods obtained from both approaches are remarkably small,
likely due to the sensitivity of the likelihood estimates. This section serves to highlight that, despite
both methods performing poorly for this case study, the Bootstrap filter still outperforms CMC.

To apply our specific CMC and the Bootstrap filter algorithm to the drug degradation data, a
transformation is performed to align the data with the Gamma Degradation Model (2). The data
set from [10] namely represents the drug potency of batch i at time tj, rather than the observed
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degradation of the drug as required by our model. Therefore, we define the observed degradation to
be:

yi,tj = 105− drug potency of batch i at time tj, (7)

where time 0 is omitted based on the model assumptions, and we assume the initial potency to be
105 percent of the claimed potency. It is important to note that this last assumption merely affects
the mean of the initial degradation µA by a constant.

Our study employs similar prior distributions to [31], with the exception of σZ , for which we
make an adjustment based on indications in [10] that this parameter may have a larger value than
the upper bound used in [31]. Altering the prior distributions for the other parameters does not
significantly improve the results. Therefore, we integrate the following prior distributions: U [0, 50]
for α, U [0, 5] for η and µA, U [0, 1] for β and σA, and U [0, 5] for σZ .

In Section 4.3, the likelihood estimate shows a rapid decline even for small deviations rc, indicating
that many parameter settings for the real-life data may yield a numerically zero estimated likelihood.
To address this, extensive testing across a wide range of parameter settings is necessary to obtain
non-zero likelihood estimates for numerical MLE.

To illustrate the challenge, let us consider the scenario where we want all parameters to be within
a 0.01 ratio of change. This results in a mean likelihood of order 10−157 for CMC and even smaller
for the Bootstrap filter in the six unknowns case for synthetic data. The probability of drawing such
a parameter setting in one draw is estimated to be 6.4 · 10−11 using uniform draws. Consequently,
the simulation requires an enormous amount of draws, say for instance Nθ = 1011, to be likely to
approach the true values, which is computationally infeasible.

To mitigate this issue, we explore a total ofNθ = 18000 different parameter settings in our analysis.
Additionally, we employ Npart = 10000 particles and perform Nsim = 100 simulations to ensure the
accuracy of our analysis.

Table 10 shows the RE for both estimation methods over the different parameter inputs for
the ten highest likelihoods and the overall mean of all REs excluding 0 and NaN values. Values
correspond to the x highest likelihood or the mean. The results of CMC are visualized in Figure 4.
These results display remarkably low mean likelihood estimates compared to those in Section 4.3.
While this could suggest a potential mismatch between the model and real data, a more plausible
explanation is the inadequate approximation of the true parameter values due to the limited number
of explored parameter settings Nθ. It is important to note that low likelihood values themselves are
not necessarily problematic if the mathematical software can handle them and if the estimates still
provide the correct indication towards the true parameter values. However, the 95% CIs in Figure 4
predominantly overlap, indicating inaccurate results and suggesting that the estimates may not be
increasing towards the true parameter values. These wide CIs are caused by the high RE observed
in Table 10, with a mean of 0.8473, rendering the method unreliable for MLE.

The results of Bootstrap, depicted in Figure 5, exhibit similarly small likelihood estimates as
CMC, likely due to the limited parameter search. Additionally, the figure displays overlapping 95%
CIs, indicating unreliability. By examining the REs of the Bootstrap filter in Table 10, we observe
substantially higher values compared to the synthetic data study, with a mean RE of 0.3220. This
could be partly caused to to the smaller number of simulations Nsim. Since a reasonable RE should
be below 0.10, this higher RE renders the method in this case unreliable. Nevertheless, the Bootstrap
filter exhibits a significantly smaller RE compared to CMC, establishing the Bootstrap filter as the
more reliable and accurate method for MLE.
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Figure 4: The 10 highest likelihood values of 18000 different parameter settings of CMC for the real
data set, including the line indicating y = 0.

Figure 5: The 10 highest likelihood values of 18000 different parameter settings of the Bootstrap
filter for the real data set, including the line indicating y = 0.
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PPPPPPPPPMethod
x

1 2 3 4 5 6 7 8 9 10 mean

CMC 0.9575 0.4554 0.7063 0.9612 0.9962 1.0000 0.9744 0.6981 0.1408 0.6556 0.8473
Bootstrap 0.9177 0.3367 0.4040 0.9740 0.7304 0.5741 0.4412 0.1462 0.3872 0.4092 0.3220

Table 10: Relative errors for CMC and Bootstrap methods.

6 Conclusions

This paper demonstrates the superiority of the Bootstrap filter over CMC in several aspects. First,
in the analytical study we proved that for Gamma Degradation Model (2), Crude Monte Carlo fails
to estimate the likelihood for a too large data set. This is attributed to CMC’s inherent structure,
which allows for a violation of the model assumptions, specifically the estimation of negative degra-
dation over time. In contrast, SMC, and hence Bootstrap, avoids failure by not allowing such model
violations.

Second, our experiments using synthetic data demonstrate that the Bootstrap filter is significantly
more reliable than CMC. The Bootstrap filter provides accurate likelihood estimates without over-
lapping confidence intervals for reasonably distant parameters. This is attributed to the significantly
lower relative errors of the Bootstrap filter compared to CMC. The likelihood estimates of the Boot-
strap filter are predominantly increasing towards the true parameter values and have substantial
differences for different parameter inputs. This further reduces the chances of overlapping confidence
intervals for Bootstrap, increasing its probability of correctly indicating the true direction of the
parameters. Overall, the Bootstrap filter outperforms CMC in likelihood estimation given Gamma
Degradation Model (2), and is due to its low relative error is in general a well-performing method
for accurately estimating likelihoods.

Third, in our case study, we find that the Bootstrap filter exhibits a significantly lower relative error
compared to CMC, making it a more reliable method for maximum likelihood estimation despite the
unfavorable high relative error in both methods. The relative error of the Bootstrap filter is generally
almost 3 times smaller than that of CMC.

The difference in relative error between our case study and our experiments using synthetic data
may have various explanations. One possibility is that the model does not fit accurately, potentially
due to the presence of a hidden stochastic component in the true model. Conducting a composite
hypothesis test on a normally- plus Gamma-distributed random variable, along with access to more
data, could shed light on the presence of such hidden stochasticity. Additionally, the larger relative
errors could be attributed to machine errors arising from dealing with very small values. Increasing
the number of simulations Nsim could potentially reduce the relative error, as it was ten times smaller
in the real data study compared to the synthetic data study for computational efficiency.

In our case study, approaching the true parameter values requires an enormous number of param-
eter settings Nθ. To improve the parameter search, we recommend combining the Bootstrap particle
filter with an optimization method. This approach, utilizing a policy for parameter selection and a
stopping criteria, can converge more efficiently to the true parameter values compared to the random
sampling approach used in this case study. Genetic algorithms are suitable optimization methods for
complex likelihoods, such as the one considered here. Applying maximum likelihood estimation using
particle filtering and a genetic algorithm is expected to provide a more accurate and reliable estima-
tion of the parameters. For further details on genetic algorithms in maximum likelihood estimation,
refer to [34].
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Another, more general, improvement to our method is applying the auxiliary particle filter instead
of the Bootstrap particle filter. As discussed in Section 1, the auxiliary particle filter has shown to
provide more accurate likelihood estimates.

Additionally, it would be interesting to explore the performance of Markov Chain Monte Carlo
(MCMC). While SMC might be more robust and flexible for complex likelihood functions, MCMC
has the potential to improve computational efficiency and enhance the estimation of the degradation
system’s state.
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Appendices

A Notation

The observed degradation of component i is

Yi(t) = Ai +Xi(t) + Zi(t),

measured at times 0 ≤ t1 ≤ t2 ≤ . . . ≤ tM .

Below we present a list of definitions. All realizations of random variables are represented by a
lowercase letter. All boldfaced characters are vectors.

1. C ∈ N – the number of identical components.

2. M ∈ N – the number of measurements performed.

3. Yi(t) ∈ R – the observed degradation measurement of the ith component at time t.

4. Ai ∈ R – the initial degradation of the ith component.

5. Xi(t) ∈ R+ – the true degradation of the ith component at time t (without the initial degra-
dation Ai).

6. Zi(t) ∈ R – the time-invariant measurement error for the ith component at time t.

7. Di(t) = Ai +Xi(t) ∈ R – the total true degradation until now.

8. yi,t, ai, xi,t, zi,t, di,t – the realized values of the above mentioned random variables.

9. Yi = (Yi(t1), . . . , Yi(tM))⊤ – the observed degradation data for the ith component as a column
vector.

10. Y = (Y1, . . . ,YC) – the observed degradation data with measurement errors as a matrix, with
column i the observed degradation for component i for time periods t ∈ {t1, . . . , tM}.

11. ∆Zi(tj) = Zi(tj) − Zi(tj−1) – the measurement error increments of the ith component for
1 ≤ j ≤ M .

12. ∆Xi(tj) = Xi(tj) − Xi(tj−1) – the true degradation increments of the ith component for 1 ≤
j ≤ M .

13. ∆Yi(tj) = Yi(tj)− Yi(tj−1) – the observed increments of the ith component for 1 ≤ j ≤ M .

14. ∆Yi = (∆Yi(t1), . . . ,∆Yi(tM))⊤ – the observed increments of the ith component.

15. ∆Y = (∆Y1, . . . ,∆YC)
⊤ – the observed increments.

16. a(t) = αtη – the time-dependent shape function (corresponds to the Gamma PDF shape pa-
rameter).

17. β > 0 – the scale parameter of the Gamma PDF.
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18. X ∼ N(µ, σ) – univariate Gaussian fN(x;µ, σ) =
1√
2πσ2

exp
(
− (x−µ)2

2σ2

)
, x ∈ R.

19. X ∼ Gamma(α, β) – fG(x;α, β) =
β−α

Γ(α)
xα−1e−

x
β1{x≥0}, where 1 is the indicator function.

20. θ = (α, η, β, µA, σA, σZ)
⊤ – the set of process parameters.

21. fθ(yi) – the pdf of the realized observed data, given parameters θ for the model.

22. L(θ;y) – the likelihood function

L(θ;y) =
C∏
i=1

L(θ;yi).

23. Lt(θ;y) – the likelihood for time t.

The following definitions are introduced for numerical estimation through (Sequential) Monte Carlo
simulation.

24. N ∈ N – the number of runs performed.

25. wt = {wt,h}Npart

h=1 – the weights for all Npart runs at time t.

26. Wt = {Wt,h}Npart

h=1 – the normalized weights for all Npart runs at time t.

27. ESSt(wt) – the effective sample size at time t (given the weights).

28. Mt0(∆di,t0) – the importance sampling function at time 0.

29. Mtj(Di,h(tj),∆di,tj) – the importance sampling function at time t for run h.

30. Gt0(Dh(t0)) – the observation probability function at time 0 for run h.

31. Gtj(Dk(h)(tj−1),Dh(tj)) – the observation probability function at time t for run h.

B Likelihood Derivations

Lemma 1. Given Gamma Degradation Model (2), the component likelihood equals:

fθ(yi) = EAi,Zi

[ tM∏
tj=t1

∆x
(αtηj−αtηj−1−1)

i,l exp(
−∆xi,l

β
)1{∆xi,l ≥ 0}

Γ(αtηj − αtηj−1)β
αtηj−αtηj−1

]
.
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Proof. Note that ∆yi,tj = ∆xi,tj +∆zi,tj . The component likelihood derivation is then as follows:

fθ(yi) = fθ(yi,t1 , . . . , yi,tM ),

=

∫
Rn

∫
R
fθ(yi,t1 , . . . , yi,tM |Ai = ai, zi = zi)f(ai)f(zi)daidzi,

=

∫
Rn

∫
R
fθ(yi,t1 − yi,t0 , . . . , yi,tM − yi,tM−1

|Ai = ai, zi = zi)f(ai)f(zi)daidzi,

=

∫
Rn

∫
R
fθ(∆xi,t1 +∆zi,t1 , . . . ,∆xi,tM +∆zi,tM |Ai = ai, zi = zi)f(ai)f(zi)daidzi,

=

∫
Rn

∫
R
fθ(∆xi,t1 , . . . ,∆xi,tM |Ai = ai, zi = zi)f(ai)f(zi)daidzi,

=

∫
Rn

∫
R

tM∏
tj=t1

fθ(∆xi,l|Ai = ai, zi = zi)f(ai)f(zi)daidzi,

=

∫
Rn

∫
R

tM∏
tj=t1

∆x
(αtηj−αtηj−1−1)

i,l exp(
−∆xi,l

β
)1{∆xi,l ≥ 0}

Γ(αtηj − αtηj−1)β
αtηj−αtηj−1

f(ai)f(zi)daidzi,

= EAi,Zi

[ tM∏
tj=t1

∆x
(αtηj−αtηj−1−1)

i,l exp(
−∆xi,l

β
)1{∆xi,l ≥ 0}

Γ(αtηj − αtηj−1)β
αtηj−αtηj−1

]
.

We have substituted the specific Gamma probability density function in the derivation above, thus
that applies specifically to our model.

Lemma 2. Given Gamma Degradation Model (2), the joint likelihood equals:

L(θ;y) = EAi,Zi

[ C∏
i=1

tM∏
tj=t1

∆x
(αtηj−αtηj−1−1)

i,tj
exp(

−∆xi,tj

β
)1{∆xi,tj ≥ 0}

Γ(αtηj − αtηj−1)β
αtηj−αtηj−1

]
.

Proof. Given the component likelihood in Lemma 1, the joint likelihood can be derived as follows:

L(θ;y) =
m∏
i=1

L(θ;yi) =
C∏
i=1

fθ(yi)

=
C∏
i=1

EAi,Zi

[ tM∏
tj=t1

∆x
(αtηj−αtηj−1−1)

i,tj
exp(

−∆xi,tj

β
)1{∆xi,tj ≥ 0}

Γ(αtηj − αtηj−1)β
αtηj−αtηj−1

]
,

(∗)
= EAi,Zi

[ C∏
i=1

tM∏
tj=t1

∆x
(αtηj−αtηj−1−1)

i,tj
exp(

−∆xi,tj

β
)1{∆xi,tj ≥ 0}

Γ(αtηj − αtηj−1)β
αtηj−αtηj−1

]
.

The equality (∗) holds because of the independence of the terms inside the expectation. Again, the
probability density function of the Gamma is specific to our model, for other distributions of the true
degradation other pdf’s can be substituted.

Remark 1.1. The theoretical joint likelihood of 2 yields the following CMC estimator:

L̂(θ;y) = 1

Npart

Npart∑
n=1

C∏
i=1

tM∏
tj=t1

(∆xj
i,tj

)(αt
η
j−αtηj−1−1) exp(

−∆xj
i,tj

β
)1{∆xj

i,tj
≥ 0}

Γ(αtηj − αtηj−1)β
αtηj−αtηj−1

.
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Lemma 3. The likelihood estimator

L̂(θ;y) = 1

Npart

Npart∑
n=1

C∏
i=1

tM∏
tj=t1

(∆xj
i,tj

)(αt
η
j−αtηj−1−1) exp(

−∆xj
i,tj

β
)1{∆xj

i,tj
≥ 0}

Γ(αtηj − αtηj−1)β
αtηj−αtηj−1

is an unbiased estimator.

Proof. In the following derivation we show that this estimator is an unbiased estimator:

E
[
L̂(θ;y)

]
= E

[ 1

Npart

Npart∑
n=1

C∏
i=1

tM∏
tj=t1

(∆xn
i,tj

)(αt
η
j−αtηj−1−1) exp(

−∆xn
i,tj

β
)1{∆xn

i,tj
≥ 0}

Γ(αtηj − αtηj−1)β
αtηj−αtηj−1

]

=
1

Npart

Npart∑
n=1

E
[ C∏

i=1

tM∏
tj=t1

(∆xn
i,tj

)(αt
η
j−αtηj−1−1) exp(

−∆xn
i,tj

β
)1{∆xn

i,tj
≥ 0}

Γ(αtηj − αtηj−1)β
αtηj−αtηj−1

]
(∗)
=

1

Npart

Npart∑
n=1

C∏
i=1

tM∏
tj=t1

E
[(∆xn

i,tj
)(αt

η
j−αtηj−1−1) exp(

−∆xn
i,tj

β
)1{∆xn

i,tj
≥ 0}

Γ(αtηj − αtηj−1)β
αtηj−αtηj−1

]

=
1

Npart

Npart∑
n=1

C∏
i=1

tM∏
tj=t1

fθ(yi,tj)

=
1

Npart

Npart∑
n=1

C∏
i=1

fθ(yi)

=
1

Npart

Npart∑
n=1

m∏
i=1

L(θ;yi)

=
1

Npart

Npart∑
n=1

L(θ;y)

= L(θ;y)

where (*) is due to independence of the terms inside the expectation.

C SMC algorithm

The main idea behind SMC is to compute weights wtj ,n for all xtj ,n + an, where n ∈ {1, . . . , Npart},
for all time steps tj, j ∈ {1, . . . ,M}, based on the likelihood of the values ztj ,n = ytj − xtj ,n − an. In
the next time step, an index resampling takes place, where index n becomes k(n) according to the
weights wtj . Subsequently, the new values xi,tj+1,n+ai,n are computed as xi,tj ,k(n)+ai,k(n)+∆xi,tj+1,n,
where ∆xi,tj+1,n is a number drawn from the Gamma distribution described in Gamma Degradation
Model (2). Consequently, the algorithm progresses with values that are more likely [32].
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Remark 1.2 (Vector notation in algorithms). To simplify the notation in Algorithm 1 and Algo-
rithm 2, we sometimes use a vectorizerd operation. For example, on line 8 in Algorithm 1,

Wt0 =
wt0∑Npart

h=1 wt0,h

indicates that the operation is performed for each element of the vectors Wtj and wt0,n. Specifically,
in this case, it holds that

Wt0,n =
wt0,n∑Npart

h=1 wt0,h

for n = 1, . . . , N.

The same vectorization logic applies to Algorithm 1 on lines 12, 14, 15, 24 and Algorithm 2 on lines
12, 14, 15, 17, and 25.

Algorithm 1: Sequential Monte Carlo, Generic

1 for all runs n do
2 for all components i do
3 Draw C from a distribution Mt0(∆di,t0)
4 Initialize Di,n(t0) = m

5 end
6 Initialize wt0,n = Gt0(Dn(t0))

7 end
8 Initialize Wt0 =

wt0∑Npart
h=1 wt0,h

9 for all time periods tj do
10 if ESStj−1(Wtj−1) =

1∑Npart
n=1 (Wtj−1,n)2

< N/2 = ESSmin then

11 Draw a vector k with Npart elements drawn from {1, . . . , Npart} where number n has
probability Wtj−1,n of being drawn

12 ŵtj−1 = 1

13 else
14 k = [1, . . . , Npart]
15 ŵtj−1 = wtj−1

16 end
17 for all runs n do
18 for all components i do
19 Draw C from distribution Mtj(Di,k(n)(tj−1),∆di,tj)
20 Di,n(tj) = m

21 end
22 wtj ,n = ŵtj−1,nGtj(Dk(n)(tj−1),Dn(tj))

23 end

24 Wtj =
wtj∑Npart

n=1 wtj ,n

25 end

D Bootstrap algorithm

With these choices of Mtj and Gtj , the algorithm for Bootstrap is defined, which can be observed in
Algorithm 2. Bootstrap is intuitively quite easy to understand, which might also be a reason why
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it is a commonly used filter. Intuitively namely, the particles are a Markov Chain {Dn(tj)} where
if resampling occurs, one draws a chain from all runs n ∈ {1, . . . , Npart} based on their probabilities
of being given the observed degradation data. Subsequently, one continues with this drawn chain in
run n and extends it with a new value Dn(tj+1) by drawing an increase in degradation from Dn(tj)
from the Gamma distribution. Hence, one keeps continuing with the most likely chains {Dn(tj)}
given the observed degradation data (y1, . . . ,yC).

Algorithm 2: Bootstrap Filter

1 for all runs n do
2 for all components i do
3 Draw C from N(µA, σ

2
A)

4 Initialize Di,n(t0) = m

5 end
6 Initialize wt0,n = 1
7 Initialize Wt0,n = 1

Npart

8 end
9 for all time periods tj do

10 if ESStj−1(Wtj−1) =
1∑Npart

n=1 (Wtj−1,n)2
< N/2 = ESSmin then

11 Draw a vector k with Npart elements drawn from {1, . . . , Npart} where number n has
probability Wtj−1,n of being drawn

12 ŵtj−1 = 1

13 else
14 k = [1, . . . , Npart]
15 ŵtj−1 = wtj−1

16 end
17 wtj = ŵtj−1

18 for all runs n do
19 for all components i do
20 Draw ∆x from Gamma(αtηj − αtj − 1η, β)

21 Di,n(tj) = ∆x+Di,k(n)(tj−1)

22 wtj ,n = wtj ,n
1

σZ

√
2π

exp
(
− (yi,tj−Di,n(tj))

2

2σ2
Z

)
23 end

24 end

25 Wtj =
wtj∑Npart

n=1 wtj ,n

26 end
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E Real Degradation Data

Batch 0 years 1 year 2 years 3 years

1 105 104 101 98
2 106 102 99 96
3 103 101 98 95
4 105 101 99 95
5 104 102 100 96
6 102 100 100 97
7 104 103 101 97
8 105 104 101 100
9 103 101 99 99
10 103 102 97 96
11 101 98 93 91
12 105 102 100 98
13 105 104 99 95
14 104 103 97 94
15 105 103 98 96
16 103 101 99 96
17 104 102 101 98
18 106 104 102 97
19 105 103 100 99
20 103 101 99 95
21 101 101 94 90
22 102 100 99 96
23 103 101 99 94
24 105 104 100 97

Table 11: Drug Potency Degradation Data, percentage of claimed potency.
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