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Obtaining high-quality solutions to the minimum label span-

ning tree problem is of crucial importance to efficient com-

munication network design, since such solutions can reduce

both the construction cost and the complexity of the ulti-

mate architecture. However, the corresponding optimization

task was shown to be hard even for complete graphs. As a

consequence, no computationally efficient method for solv-

ing this problem exactly in a reasonable time is known to ex-

ist and one has to rely on approximation techniques such as

heuristic and evolutionary algorithms. In this study, we in-

vestigate the performance of a different method called the

Cross-Entropy algorithm which relies on rigorous develop-

ments in the fields of information theory and stochastic sim-

ulation. Our findings indicate that the mathematical sound-

ness of the Cross-Entropy method, makes it very reliable and

robust as compared to its counterparts. In particular, the ob-

tained results suggest that the Cross-Entropy method is not

sensitive to different graph models and that the proposed al-

gorithm can obtain optimal or near-optimal solutions while

using a reasonable computational effort.
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1 | INTRODUCTION

Given a finite undirected graph G = (V ,E , l ) with a vertex setV , an edge set E , and a labeling function l : E → L,

where L = {1, . . . , k } is a finite set of labels, the minimum label(ing) spanning tree (MLST) problem seeks to find a

spanning tree ofG which can be constructed using aminimal number of different labels. TheMLST problem appears in

several important practical applications such as data compression, and communication network design [5, 10, 19, 30].

For example, Figure 1(a) depicts a communication network with optical fiber channels (FIB), telephone lines (PHN),

and microwave links (MIC). In this case, as shown in Figure 1(c), a minimal label spanning tree can be constructed using

only FIB and MIC links.
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FIGURE 1 Panel (a) shows a communication network with optical fiber channels, telephone lines, and microwave

communication links. A regular spanning tree and a minimum label spanning tree of the network in panel (a) are

depicted in panels (b) and (c), respectively. The spanning tree in panel (b) uses three different channel types, namely,

optical fiber channels, telephone lines, and microwave links. On the other hand, the minimum label spanning tree in

panel (c), uses only two different channel types, specifically, optical fiber channels and microwave links.

Chang and Leu proved that the MLST problem belongs to the NP-hard complexity class [7]. The latter has neces-

sitated an introduction of several heuristic and evolutionary methods. While some of these methods were shown to

have rigorous theoretical performance guarantees [3, 7, 17, 19], our study indicates that they might fail in practice.

That is, the convergence time of these algorithms can be prohibitively large. Specifically, we show that the corre-

sponding performance depends on the graph structure under consideration. To resolve this problem, we introduce a

different approach called the Cross-Entropy (CE) method which is both theoretically sound [26], and appears to be

less sensitive to different types of graphs. In particular, our experimental study indicates that CE always manages to

obtain optimal or near-optimal solutions regardless of the network’s characteristics.

This work focuses on the CE method, which to the best of our knowledge, was not applied to the MLST problem

yet. The CE method is motivated by the idea of Kullback-Leibler divergence (relative entropy) minimization [21].

Originally, the method was proposed by Rubinstein [24] in the context of rare-event probability estimation. However,

it was shown that many optimization tasks can be converted into the rare-event estimation problem setting [25, 26].

As a result, it is possible to apply the CE method as an optimization algorithm.

To ensure a fair comparison, we examine four different approaches towards the solution of the MLST problem. In

particular, we consider the following methods: the maximum vertex covering algorithm (MVCA), the (1+1) Evolutionary

Algorithm ((1+1) EA), the Global Simple Evolutionary Multiobjective Optimizer (GSEMO), and the Genetic algorithm (GA)

[3, 7, 17–19, 29]. We choose these methods for the comparison with the CE algorithm, since they were shown to

both have rigorous performance guarantee, and exhibit a good practical performance [19, 30]. Specifically, MVCA has

an Hk =
∑k

i=1 i
−1 approximation factor guarantee [30]. In addition, for the special case of the MLST problem in which

each label appears at most b times, both the (1+1) EA and the GSEMO algorithms have a 2
−1 (b + 1) approximation
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ratio which is achieved in expected polynomial runtime with respect to |V | and k . Moreover, GSEMO was shown to

have a 2 ln |V | + 1 approximation factor guarantee for the general MLST problem [19]. Finally, the GA algorithm was

chosen because it is one of the most popular global evolutionary optimization methods.

It is important to note that the MLST problem attracted a significant amount of research. To name a few, the

following methodologies were applied to the MLST problem. The Ant Colony Optimization method [8], the integer

programming [9, 16], and the mixed integer linear formulation approach of Captivo et. al. [4]. In addition, a range of

powerful metaheuristic algorithms that are mostly based on sophisticated local search procedures, were introduced

by Consoli et. al. [11–14], and Silva et. al. [27]. Among these methods, a very interesting idea of using the so-called

complementary space and the corresponding variable neighborhood search is due toConsoli et. al. [13]. For a comparison

of different algorithms, we refer to Gentili et. al. [6].

The rest of the paper is organized as follows. In Section 2 we give a brief overview of the MVCA, the (1+1) EA,

the GSEMO, and the specifically designed GA method. In Section 3 we explain how the CE method can be used for

obtaining solutions to theMLST problem and provide the necessary mathematical reasoning. In Section 4we compare

the performance of these algorithms and report our experimental findings. In order to ensure the reproducibility of

the obtained results and to allow researchers and network design practitioners to benefit from this research, we also

provide a freely available research software package. Our benchmark study indicates that the CE method compares

favorably with its counterparts and introduces a less sensitive behavior when applied to different types of input graphs.

Finally, in Section 5, we summarize our findings and discuss possible directions for future research.

2 | THEMVCA, THE (1+1) EA, THE GSEMO, AND THE GA ALGORITHMS

In this section we provide a brief overview of the MVCA, the (1+1) EA, the GSEMO, and the GA algorithms [3, 7, 17,

19, 29]. The MVCA method for MLST problems is summarized in Algorithm 1.

Algorithm 1: The MVCA algorithm

Input: A graph G = (V ,E , l ) , whereV is a set of vertices, E is a set of edges, and l : E → L = {1, . . . , k } is a

labeling function.

Output: Minimum label spanning tree of G .

1 A ← ∅ /* a set of labels to be used in the spanning tree construction */

2 Set E ′ ← {e ∈ E | l (e) ∈ A} and G ′ ← (V ,E ′) /* note that E ′ = ∅ */

3 while G ′ is not connected do

4 A′ ← L \ A /* determine the set of unused labels */

5 foreach label ∈ A′ do

/* consider a sub-graph of G with edge labels from the A ∪ {label} set */

6 E ′
label
← E ′ ∪ {e ∈ E | l (e) = label}

7 Set G ′
label
← (V ,E ′

label
) and c label ← the number of connected components in G ′

label

8 end

/* find a label for which the number of connected components is minimized, and add it

to the set A */

9 Set label∗ ← argminlabel {c label : label ∈ A′} and A ← A ∪ {label∗ }

10 end

11 return A spanning tree of G ′ = (V ,E ′) , where E ′ = {e ∈ E | l (e) ∈ A}.
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While MVCA is a relatively simple greedy algorithm which starts with G ′ = (V ,∅) and sequentially adds labels

that minimize the number of connected components in G ′, it was shown to be a very successful method that has

a proven approximation factor
(
Hk =

∑k
i=1 i

−1
)
guarantee [30]. Note that as soon as the graph G ′ = (V ,E ′) where

E ′ = {e ∈ E | l (e) ∈ A} is available (line 11 in Algorithm 1), one can use any minimum spanning tree algorithm (such

as Kruskal’s algorithm [15]), to deliver the desired MLST.

Next, we examine the (1+1) EA algorithm [19]. This method is included in the numerical comparison study, since

it was shown that it compares favorably with other evolutionary algorithms in terms of fitness function distribution

at a given iteration, and with respect to an average optimization time [3]. The (1+1) EA method for MLST problems is

summarized in Algorithm 2.

Algorithm 2: The (1+1) EA algorithm

Input: A graph G = (V ,E , l ) , whereV is a set of vertices, E is a set of edges, and l : E → L = {1, . . . , k } is a

labeling function.

Output: Minimum label spanning tree of G .

1 Initialize a binary vector X = (X1, . . . ,Xk ) uniformly at random.

/* for 1 ≤ i ≤ k , Xi = 1 stands for the fact that label i participates in the spanning tree

construction, and Xi = 0 otherwise */

2 while termination criterion is not fulfilled do

3 Obtain Y from X by flipping each Xi in X with probability 1/k .

4 if S (Y) < S (X) then

/* S : {0, 1}k → Ò is a fitness function defined in (1) */

5 X← Y.

6 end

7 end

8 return A spanning tree of G ′ = (V ,E ′) , where E ′ = {e ∈ E | Xl (e ) = 1}.

In order to complete the description of the (1+1) EA algorithm, we need to specify the termination criterion and

the fitness function in lines 2 and 4 of Algorithm 2, respectively. The termination criterion in line 2 depends on the

user preferences. For example, one can decide on a certain number of iterations of the while loop (lines 2 – 7) or

specify a predefined runtime threshold for the algorithm execution. We define the fitness function S : {0, 1}k → Ò

(see line 4 of Algorithm 2), via

S (X) = (c (X) − 1) × k ln(k ) + |X | for k ≥ 3, (1)

where c (X) is the number of connected components in G ′, (G ′ = (V ,E ′) , E ′ = {e ∈ E | Xl (e ) = 1}), ln(k ) stands

for the natural logarithm of k , and |X | =
∑k

i=1
Xi is the total number of labels used in the spanning tree construction.

Note that for any optimal solution X∗, it holds that c (X∗) = 1. The definition of S (X) in (1) is inspired by the study

of Lai et. al. [19]. In order to obtain an optimal solution to the MLST problem, (1) should be minimized. To see that

an optimal solution is attained, suppose that an optimal MLST solution X ∗ uses m ≤ k labels, that is, |X ∗ | = m ≤ k .

Since c (X∗) = 1, we have that S (X∗) = (1−1) × k ln(k ) + |X∗ | = m . For any non-optimalX, the are two possibilities. If

c (X) = 1, then |X | > m , and thus S (X) = 0 + |X | > m = S (X∗) . Otherwise, provided that c (X) > 1, we also have that

S (X) ≥ (2−1)k ln(k ) > k ≥ m = S (X∗) when k ≥ 3. The above discussion implies that the (c (X) −1) term should be
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multiplied by a number which is greater than k . For example, Lai et. al. [19] use the k 2 multiplier. In this manuscript,

we utilize the k ln(k ) term, which satisfies k ln(k ) > k for k ≥ 3. Finally, note that for k < 3, the corresponding MLST

problem is easy in the sense that it can be solved using an exhaustive search.

We turn our attention to the GSEMO algorithm for multiobjective optimization [19]. GSEMO is a powerful

method whose performance was investigated for various problems such as covering [17], spanning trees [22], and

pseudo-Boolean functions [20]. As mentioned in the introduction section, GSEMO achieves the 2 ln |V |+1 approxima-

tion ratio for the MLST problem in expected polynomial runtime with respect to |V | and k . In addition, it was shown

that the GSEMO algorithm outperforms other local search procedures on several classes of graphs [19]. The GSEMO

method for MLST problems is summarized in Algorithm 3.

Algorithm 3: The GSEMO algorithm

Input: A graph G = (V ,E , l ) , whereV is a set of vertices, E is a set of edges, and l : E → L = {1, . . . , k } is a

labeling function.

Output: Minimum label spanning tree of G .

1 Initialize a binary vector X = (X1, . . . ,Xk ) uniformly at random. /* similar to line 1 in Algorithm 2

*/

2 P ← {X}

3 while termination criterion is not fulfilled do

4 Choose X from P uniformly at random; that is, every X ∈ P is selected with probability 1

|P |
, where |P |

stands for the cardinality of the set P .

5 Obtain Y from X by flipping each Xi in X with probability 1/k .

6 if Y is not dominated by all X ∈ P then

/* the domination concept is defined bellow */

7 Q ← {X ∈ P | Y dominates X}

8 P ← P ∪ {Y} \ Q

9 end

10 end

11 Choose X = (X1, . . . ,Xk ) from P uniformly at random.

12 return A spanning tree of G ′ = (V ,E ′) , where E ′ = {e ∈ E | Xl (e ) = 1}.

Similar to Algorithm 2, the termination criterion in line 3 of Algorithm 3 depends on the user preferences such as

the desired number of iteration or the runtime threshold. The domination of one solution over the other is determined

as follows. Let us suppose that the multiobjective fitness of a solution X is defined via a tuple (c (X), |X |) , where c (X)

is the number of connected components in G ′ = (V ,E ′) , E ′ = {e ∈ E | Xl (e ) = 1}, and |X | =
∑k

i=1
Xi . Then, we say

that X dominates Y if it holds that: c (X) < c (Y) and |X | ≤ |Y |, or c (X) ≤ c (Y) and |X | < |Y |.

Finally, we give a brief overview of the GA algorithm that was specifically designed for the MLST problem [29].

The GA method for MLST problems is summarized in Algorithm 4. The crossover operation in line 5 of Algorithm 4

is performed as follows. Given two feasible solutions X1 and X2, we create a set of all labels that appear in both X1

and X2. Then, the labels are sorted in the decreasing order with respect to the frequency of their appearance in G ,

to create an ordered set of labels. Finally, a new feasible solution X′ is constructed by sequentially choosing labels

from this ordered set (labels with higher frequency are chosen first). Now, we proceed with the mutation operation

of a feasible solution X′ in line 6 of Algorithm 4. First, we choose a label that is not in X′ and add it to the X′. Then,
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Algorithm 4: The GA algorithm

Input: A graph G = (V ,E , l ) , whereV is a set of vertices, E is a set of edges, and l : E → L = {1, . . . , k } is a

labeling function, and the GA population size N .

Output: Minimum label spanning tree of G .

1 Initialize a population P = (X0, . . . ,XN−1) , where each X ∈ P is a binary vector X = (X1, . . . ,Xk ) .

/* we assume that for all X ∈ P, X is a feasible solution to the MLST problem */

2 t ← 1

3 while termination criterion is not fulfilled do

4 for j = 0, . . . ,N − 1 do

5 X′
j
← crossover(Xj ,X(j+t ) mod N )

6 X′′
j
← mutation(X′

j
)

7 if S (X′′
j
) ≤ S (Xj ) then

/* S : {0, 1}k → Ò is a fitness function defined in (1) */

8 Xj ← X′′
j

9 end

10 end

11 t ← t + 1

12 end

13 Choose X = (X1, . . . ,Xk ) from P such that S (X) is minimal.

14 return A spanning tree of G ′ = (V ,E ′) , where E ′ = {e ∈ E | Xl (e ) = 1}.

the labels of X′ are ordered in decreasing order with respect to the frequency of their appearance in G , to create an

ordered set of labels. The mutation procedure then traverses this ordered set of labels fromX′ (from themost frequent

to the less frequent), and tries to remove labels while keeping the solution X′ feasible. For a detailed implementation

of the crossover and the mutation operations, we refer to Xiong et. al. [29].

3 | THE CROSS-ENTROPY METHOD

The CE method is a sequential procedure which similarly to other evolutionary algorithms, can be used to gradually

change the sampling distribution of a random search such that the optimal solution is more likely to occur during the

corresponding algorithm execution. However, the CEmethod is distinctive in the sense that it is not directlymotivated

by a pure evolutionary reasoning. Instead, it relies on information theory and stochastic simulation [2, 21, 23]. The CE

method is very versatile; it can be used for rare-event estimation, discrete, continuous, and even noisy optimization

[26]. In this manuscript we restrict our attention to the discrete optimization context only. In particular, consider the

optimization problem: minx∈X S (x) , where S : X → Ò is a fitness function, and X∗ ⊆ X is the set of optimal solutions.

A very general framework for discrete optimization is depicted in Figure 2.

The general discrete optimization framework in Figure 2 begins with the initialization step in which a probability

mass function (pmf) g1 (x) for X ∈ X is defined. Designing such pmf is generally easy, since one can select almost any

distribution. A natural choice can be, for example, a uniform distribution on the X set. Next, we set the parameter

γ0 to infinity and initialize the iteration counter t . The following task is to calculate the ρ-th quantile of the fitness

Y = S (X) , where X ∼ gt (x) . We assume that the cumulative distribution function (cdf) of Y is F
(t )
Y
(y ) , where t is
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Initialize

define a probability mass function g1(x) for
X ∈ X , set γ0 ←∞, ǫ > 0, and t← 1

Calculate the ρ-th quantile of the fitness

X ∼ gt(x), Y ← S(X),
(

where Y ∼ F
(t)
Y (y)

)

γt ← min
{

inf
{

y ∈ R ; ρ ≤ F
(t)
Y (y)

}

, γt−1 − ǫ
}

Update the sampling distribution

gt+1(x)←
✶{S(x)≤γt}gt(x)

∑

x∈X ✶{S(x)≤γt}gt(x)

is stop
condition
satisfied?

stop

t ← t + 1

yes

no

FIGURE 2 A general discrete optimization framework.

the current iteration counter. As soon as the ρ-th quantile is available, one can update the sampling distribution. This

updated distribution will be used in the consecutive iteration, provided that the stop condition is not satisfied. Finally,

the procedure terminates when some predefined stopping criterion is met. For example, one might stop if for all

x ∈ X, it holds that 1{S (x)≤γt } = 0.

Note that for each iteration t , the fitness of X ∼ gt (x) satisfies S (X) ≤ γt−1. In addition, since ǫ > 0, this is not

very hard to see that the sequence γ0, γ1, . . . , is strictly decreasing, since γt ≤ γt−1 − ǫ for all t . Moreover, upon the

termination, the procedure will find a solution x ∈ X that is at most ǫ far away from an optimal solution x∗ ∈ X∗ , that

is, for such x, it holds that S (x) ≤ S (x∗) + ǫ. Finally, if the fitness function has a discrete range, namely, if S : X → Î,

than for any ǫ ∈ (0, 1) , the procedure will find an optimal solution that satisfies x∗ ∈ X∗.

In practice, however, there are two major problems with the above methodology. First, for almost all practical

situations X is large and therefore, finding an exact ρ-th quantile is computationally infeasible. The second problem

is the hardness of sampling from gt (x) for all t > 1; note that the normalization constant of gt (x) is generally not

available analytically. While the first issue can be resolved via simulation, that is, by finding a sample fitness quantile γ̂t

from S (X1), . . . , S (XN ) , where Xi ∼ gt (x) for 1 ≤ j ≤ N , the sampling from gt (x) remains hard. We next show how

one can use the CE method to provide a solution to these problems in the context of the MLST task.
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3.1 | Cross-Entropy method for the minimum label spanning tree problem

Under the setting of the MLST problem, we propose to define X = {0, 1}k , x = (x1, . . . , xk ) ∈ X, and to adopt the

(1+1) EA fitness function: S (x) = (c (x) − 1) × k ln(k ) + |x |. As usual, c (x) is the number of connected components

in G ′ = (V ,E ′) , E ′ = {e ∈ E | x l (e ) = 1}, and |x | =
∑k

i=1 xi is the number of different labels used in the spanning tree

construction.

We proceed with the definition of the probability distribution of the random variable X = (X1, . . . ,Xk ) , where

Xi ∈ {0, 1} for i = 1, . . . , k . Since the sampling from the pmf defined in the Update the sampling distribution phase in

Figure 2, namely, from

gt+1 (x) =
1{S (x)≤γt }gt (x)∑

x∈X 1{S (x)≤γt }gt (x)
, (2)

is generally hard, we propose to approximate (2) using a parametric family

f (x;pt+1) =

k∏
i=1

p
xi
t+1,i
(1 − pt+1,i )

1−xi , (3)

where pt+1 = (pt+1,1, . . . , pt+1,k ) , and pt+1 ∈ [0, 1]
k . The parametric family that was defined in (3) is a joint pmf of

k independent Bernoulli random variables. That is, one can sample X = (X1, . . . ,Xk ) component-wise, and indepen-

dently for each Xi for 1 ≤ i ≤ k ; namely, Xi ∼ Ber(pt+1,i ) . It is important to note that the sampling from (3) is easy as

compared to the corresponding sampling from (2). To summarize, in order to approximate the sequence of pmfs {gt }

for all t ∈ Î \ {0} in (2), we wish to obtain the corresponding parameter vectors {pt }, and use (3) instead.

A note regarding the parametric family defined in (3) It is important to realize that given G = (V ,E , l ) , there exists

p
∗
= (p∗

1
, . . . , p∗

k
) , such that for any X ∼ f (x;p∗) , X corresponds to the optimal solution to the MLST problem. The

latter is straight-forward because of the following reasoning. Suppose that x∗ = (x ∗
1
, . . . , x ∗

k
) ∈ X∗ is an optimal

solution. Then, noting that x ∗
i
∈ {0, 1} for 1 ≤ i ≤ k , and setting p

∗
= (x ∗

1
, . . . , x ∗

k
) is sufficient, since in this case,

f (x;p∗) is a degenerate joint pmf in the sense that Ðf (x;p∗ ) (X = x∗) = 1. In other words, a single sample from f (x;p∗)

will result in an optimal solution.

We defined the sequence of pmfs in (3), and highlighted the fact that they are easy to sample from. However, we

still need to discuss the problem of calculating the sample fitness quantile and the procedure of obtaining the desired

sequence of parameters {pt } for all t ∈ Î \ {0}.

| Calculating the sample quantile

The calculationof the sample fitness quantile γ̂t is trivial, provided thatpt is readily available. Specifically, it is sufficient

to sample Xj ∼ f (x;pt ) for 1 ≤ j ≤ N , and sort the {S (Xj ) }
N
j=1

set in the ascending order. Denote such an ordering

by S (1) ≤ · · · ≤ S (N ) . Then, γ̂t ← S ( ⌈N×ρ⌉) is the desired sample fitness (ρ-th) quantile.

| Approximating the sampling pmf

Our final objective is to approximate the (optimal) sampling pmf (2) via f (x;pt+1) , where f (x;pt+1) belongs to the

parametric family defined in (3), that is, to find pt+1. The latter will be accomplished via a minimization of the rel-
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ative entropy (also denoted by Kullback-Leibler divergence) of f (x;pt+1) with respect to gt+1 (x) [21]. The formal

characterization of the relative entropy concept is provided in Definition 3.1.

Relative entropy The relative entropy of a pmf f ( ·) with respect to a pmf g ( ·) is given by:

D(g , f ) = Åg ln

(
g (X)

f (X)

)
=

∑
x

ln

(
g (x)

f (x)

)
g (x) =

∑
x

g (x) ln g (x) −
∑
x

g (x) ln f (x) .

It is convenient to think about the relative entropy as a distance measure between these two pmfs. While the relative

entropy is not a regular distance measure in the sense that D(g , f ) is generally not equal to D(f , g ) , it is possible to

show that D(g , f ) ≥ 0 and that the equality occurs if g = f .

Under our setting, we wish to find pt+1 such that D(gt+1 (x), f (x,pt+1)) is minimized. From Definition 3.1, it

holds that

min
pt+1

D(gt+1 (x), f (x,pt+1) = min
pt+1

©­­­­­­«

∑
x

gt+1 (x) ln gt+1 (x) −
∑
x

gt+1 (x) ln f (x;pt+1)

︸                          ︷︷                          ︸
(∗)

ª®®®®®®
¬

(4)

Note that the optimization problem (4) is with respect to the pt+1 parameter. Thus, the minimization prob-

lem (4) is equivalent to a maximization problem of the second term (∗) with respect to pt+1. Suppose that pt+1 =

(pt+1,1, . . . , pt+1,k ) and that x = (x1, . . . , xk ) . Then, using the definitions of gt+1 (x) and f (x;pt+1) (namely, (2) and (3)),

the corresponding maximization problem (∗) , can be written in the form:

max
pt+1

∑
x

gt+1 (x) ln f (x;pt+1) = max
pt+1

∑
x

1{S (x)≤γt }f (x;pt )∑
x∈X 1{S (x)≤γt }f (x;pt )

× ln

(
k∏
i=1

p
xi
t+1,i
(1 − pt+1,i )

1−xi

)
(5)

= max
pt+1

∑
x

1{S (x)≤γt }f (x;pt ) × ln

(
k∏
i=1

p
xi
t+1,i
(1 − pt+1,i )

1−xi

)

= max
pt+1

Åf (x;pt )1{S (X)≤γt } × ln

(
k∏
i=1

p
Xi
t+1,i
(1 − pt+1,i )

1−Xi

)
,

where the second equality follows from the fact that the denominator
∑
x∈X 1{S (x)≤γt }f (x;pt ) is both constant and

does not depend on the optimizationparameterpt+1. Thus, this denominatordoes not affect the optimizationproblem.

The exact evaluation of the expected value (5) is generally not feasible, however, it can be approximated via sampling

from the f (x;pt ) pmf. In particular, we can work with the so-called stochastic counterpart [26]. Namely, the solution

of (5) can be approximated by:

max
pt+1

1

N

N∑
j=1

1{
S (Xj )≤γt

} ln
(

k∏
i=1

p
Xj ,i

t+1,i
(1 − pt+1,i )

1−Xj ,i

)
, (6)

where Xj = (Xj ,1, . . . ,Xj ,k ) ∼ f (x;pt ) for j = 1, . . . ,N .

The function in (6) is concave and differentiable with respect to pt+1 (see Lemma 1 in the Appendix, therefore,

the optimal parameter p∗
t+1

= (p∗
t+1,1
, . . . , p∗

t+1,k
) which maximizes (6), can be obtained by solving:

1

N

N∑
j=1

1{
S (Xj )≤γt

}
▽ ln

(
k∏
i=1

p
Xj ,i

t+1,i
(1 − pt+1,i )

1−Xj ,i

)
= 0,
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where the gradient is with respect to pt+1. Specifically, from Lemma 2 in the Appendix, it holds that

p∗t+1,i =

∑N
j=1

1{
S (Xj )≤γt

}Xj ,i

∑N
j=1

1{
S (Xj )≤γt

} [ 1 ≤ i ≤ k .

The above discussion combined with the general discrete optimization framework from Figure 2, results in the CE

method for the MLST problem which is summarized in Algorithm 5.

Algorithm 5: The CE algorithm

Input: A graph G = (V ,E , l ) , whereV is a set of vertices, E is a set of edges, and l : E → L = {1, . . . , k } is a

labeling function, a sample size N ∈ Î, a smoothing parameter α ∈ (0, 1) , and a rarity parameter

ρ ∈ (0, 1) .

Output: Minimum label spanning tree of G .

1 Set t ← 1 and pt ← (p1, . . . , pk ) , such that pi = 0.5 for 1 ≤ i ≤ k .

2 while termination criterion is not fulfilled do

3 Sample Xj ∼ f (x;pt ) , and calculate S (Xj ) for 1 ≤ j ≤ N .

4 Let S (1) ≤ · · · ≤ S (N ) be the elements of the {S (Xj ) }
N
j=1

set sorted in an ascending order.

5 γ̂t ← S ( ⌈N×ρ⌉) /* Find the ρ-quantile of the sample fitness */

/* Find pt+1 */

6 for i = 1, . . . , k do

7

p̃t+1,i ←

∑N
j=1

1{S (Xj )≤γ̂t }
Xj ,i∑N

j=1
1{S (Xj )≤γ̂t }

/* note that Xj ,i is the i-th component of Xj */

8 end

9 p̃t+1 ← (p̃t+1,1, . . . , p̃t+1,k )

/* smoothing */

10 pt+1 ← (1 − α) pt + α p̃t+1

11 t ← t + 1

12 end

13 X = (X1, . . . ,Xk ) ∼ f (x;pt )

14 return A spanning tree of G ′ = (V ,E ′) , where E ′ =
{
e ∈ E | Xl (e ) = 1

}
.

Similar to other evolutionary methods discussed in this manuscript, the termination criteria in line 2 of Algorithm

5 depends on the user preferences such as the desired number of iteration or the runtime threshold. In addition, it is

also possible to store the obtained sample fitness quantiles {γ̂t } for t > 0 during the algorithm execution, and declare

the algorithm’s termination if the sample quantile sequence stops decreasing for several consecutive iterations.

Finally, we discuss the smoothing step in line 10 of Algorithm 5. Recall that the optimization problem (5) cannot

be generally solved analytically. Consequently, we instead work with the stochastic counterpart (6). The stochastic

counterpart approach, however, may result in a possibility of obtaining some that unfavorable sample set at a specific
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iteration t . Such sample set can affect the update of pt+1 and cause the random search procedure to focus on a sub-

optimal region of the search space. The latter is especially true if the sample size N is sufficiently small. This, in turn,

may result in the algorithm termination in this sub-optimal region of the search space. In order to avoid the above

problem, we use the so called smoothing idea [26]. The latter allows to control the speed of convergence of the CE

algorithm in the sense that smoothing causes a slower updating of the probability distribution parameters in (3).

4 | EXPERIMENTAL RESULTS

In this section, we focus on the performance comparison of the MVCA, the (1+1) EA, the GSEMO, the GA, and the

CE algorithms, when applied to different graph models. Specifically, we consider the following four case studies.

1. In the first test-case, we examine a binary tree graphof height 10. For a tree, the optimal solution should contain all

graph labels, since every edge must be present in the corresponding spanning tree. Consequently, the availability

of the optimal solution allows to benchmark the performance of all algorithms.

2. The second test-case consists of a very specific graph model for which we know the optimal solution, and hence

the model is also used to benchmark the accuracy of all algorithms under consideration. It is worth noting that

this network type was specifically designed to illustrate the worst case behavior of the MVCA algorithm [30].

3. The third test-case incorporates two-dimensional grid graphs of various sizes. The largest example is a 32 × 32

2D-grid model with 1024 vertices. The 32 × 32 grid is considered with a view to resemble a real-world average

sized communication network.

4. Finally, for the forth test-case, we consider a well-knownWatts-Strogatz (WS) small-world random graph model.

We choose theWSmodel, since it was shown to provide explanation to the “small-world” phenomena in a variety

of connected structures such as power grids, protein networks, and social networks [1].

Our study shows the following. For the first and the second test-cases, the (1+1) EA, the GSEMO, the GA, and the

CE algorithms always manage to find an optimal solution. As expected, for the second test-case, MVCA introduces

an inferior performance since the model was specifically designed to demonstrate its worst-case behavior. For both

the first and the second case studies, the GSEMO algorithm experienced difficulties to converge. Specifically, for the

binary tree, the GSEMO failed to converge when the number of labels increased. For the second case study, the

GSEMO algorithmmanaged to find solutions to smaller instances (with 19 and 97 vertices), but failed to converge in a

reasonable time for larger graphs (with 601 and 4321 vertices). For the third test-case, the performance of theMVCA,

the (1+1) EA, and the GA algorithms, was inferior as compared to the GSEMO and the CE methods. In addition, the

CE method outperformed the GSEMO algorithm when a larger number of labels was introduced. Similarly, in the

forth test-case, both the GSEMO and the CE methods outperformed the MVCA, the (1+1) EA, and the GA algorithms.

However, for one graph instance, GSEMOmanaged to find a better solution than the (sub-optimal) solution obtained

by the CE algorithm. Overall, our experimental study supports the conjecture that the CE algorithm is less sensitive

to different graph types. The details are provided bellow.

| Experimental setup

We implemented all algorithms in C++ packages called Mvca, EA, GSEMO, GA, and MlstCE. These packages are freely

available on the author’s website. The software was compiled using GNU g++ with full optimization for speed (using
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the -O3 flag). All timing measures were instrumented directly into the code and all algorithms except of the MVCA

method, are forced to reach a predefined time limit before termination. All reported times are in seconds. The tests

were executed on Intel Core(TM) i7-6920HQ CPU 2.90GHz processor with 32GB of RAM running 64 bit Ubuntu

18.04 LTS. We did not implement parallelization for any algorithm, so all the software is single-threaded. However,

due to the nature of the CE algorithm, parallelization would be relatively easy to implement.

With a view to ensure reproducibility of the reported results, unless stated otherwise, we use a fixed seed of 12345

when executing all algorithms. The MVCA, the (1+1) EA, and the GSEMO methods does not need any parameter

tuning and the only criterion under consideration is the runtime threshold. The GA algorithm requires the population

size to be chosen in advance; we follow the recommendation of Xiong et. al. [29], and set the population size N to be

equal to 30. The CE algorithm requires three parameters: ρ, α , and N . For the rest of this section the rarity parameter

ρ is fixed to be 0.1 and the smoothing parameter α is set to be 0.7. Unless stated otherwise, the default sample size

N is N = 10 × k , where k is the total number of labels.

4.1 | Test-case 1: the binary tree

In order to benchmark the performance of all algorithms, we consider a binary tree of height 10, namely, the corre-

sponding graph has 1024 vertices and 1023 edges. Next, we created 10 MLST problem instances using this tree as

follows. For j ∈ {10, 20, . . . , 100}, define Tj to be a binary tree of height 10, where the corresponding edge labels were

assigned uniformly at random from the {1, . . . , j } set. For convenience, we force every label from the {1, . . . , j } set

to be selected at least once. Since all edges are required to be present in the optimal solution, we conclude that the

number of necessary labels in Tj is j . All algorithms (except of MVCA), were forced to comply with runtime thresholds

of 5 seconds. Each algorithm was executed ten times and for each run, we used the 12345+i , i = 0, . . . , 9 seed. The re-

sults are summarized in Table 1. One can observe from the table that the GSEMO algorithm experienced convergence

problems, when the number of used labels increased.

TABLE 1 Average performance among ten runs of the MVCA, the (1+1) EA, the GSEMO, the GA, and the CE

algorithms when applied to binary trees with various number of labels. The time-limit for all algorithms (except of

the MVCA) is set to be 5 seconds. For the T60 case (*), GSEMO found the correct solution in 4 out of 10 runs. For

T70, T80, T90, and T100, GSEMO failed to converge.

instance MVCA time (sec) (1+1) EA GSEMO GA CE

T10 10 5.15 × 10−3 10 10 10 10

T20 20 1.56 × 10−2 20 20 20 20

T30 30 2.75 × 10−2 30 30 30 30

T40 40 4.98 × 10−2 40 40 40 40

T50 50 7.95 × 10−2 50 50 50 50

T60 60 8.78 × 10−2 60 60∗ 60 60

T70 70 1.20 × 10−1 70 - 70 70

T80 80 1.65 × 10−1 80 – 80 80

T90 90 2.23 × 10−1 90 – 90 90

T100 100 2.71 × 10−1 100 – 100 100
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In order to examine the GSEMO convergence behavior when the allowed execution time grows, we increased

the time limit threshold from 5 to 50 seconds. As a result, for the T60 instance, GSEMO always managed to converge

to the optimal solution. However, for the T70 and the T80 graphs, GSEMO converged in one out of 10 runs and in two

out of 10 runs, repetitively. Finally, GSEMO did not reach an optimal solution for the T90 tree at all.

4.2 | Test-case 2: the specifically designed network

For the additional benchmarking purpose, we consider a very structured graph family from [30]. While this network

type was specifically designed to illustrate the worst case behavior of the MVCA algorithm, it was shown that the

MVCA method achieves an approximation ratio of
∑b

i=1
1

i
. The corresponding graph construction is governed by a

parameter b ∈ Î and is defined as follows. Let Hb = (V ,E ) and let |V | = b · b! + 1, whereV is divided into b! groups

such that

V1 = {1, 2, . . . , b + 1},

V2 = {b + 1, b + 2, . . . , 2b + 1},

.

.

.

Vi = {(i − 1)b + 1, (i − 1)b + 2, . . . , i b + 1},

.

.

.

Vb ! = {(b! − 1)b + 1, (b! − 1)b + 2, . . . , b! · b + 1}.

The Hb graph labeling is constructed as follows. First, each edge between consecutive nodes inVi , namely, the

edges ( (i − 1)b +1, (i − 1)b + 2)), ( (i − 1)b + 2, (i − 1)b +3)), . . . , (i b, i b + 1) , are labeled with label i for i = 1, . . . , b!.

Such assignment yields b! different labels and corresponds to the optimal solution to the MLST problem of the Hb

graph. Finally, for k = 2, . . . , b , we consider the



(
(i − 1)b + 1︸         ︷︷         ︸

∈V

, (i − 1)b + 1 + k︸               ︷︷               ︸
∈V

) 


b !

i=1

edge set. These edges are labeled sequentially using unique labels such that each k edges receive a different label.

For example, Figure 3 depicts the H2 graph.

1 2 3

4 5

3

3
2

2

1 1

FIGURE 3 The H2 graph with five vertices {1, 2, 3, 4, 5} and three labels {1, 2, 3}.
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TheVi sets for i ∈ {1, 2} are: V1 = {1, 2, 3} andV2 = {3, 4, 5}. The edges (1, 2), (2, 3) and (3, 4), (4, 5) are labeled

with labels 1 and 2, respectively. Finally, edges (1, 3) and (4, 5) are labeled with label 3. In this test case, we consider

four instances with b = 3, 4, 5 and b = 6. All algorithms (except of MVCA), were forced to comply with runtime

thresholds of 0.1, 0.5, 60, and 2000 seconds for b = 3, 4, 5 and b = 6, respectively. Each algorithm was executed ten

times. For each run, we used the 12345+i , i = 0, . . . , 9 seed. The results are summarized in Table 2.

TABLE 2 Average performance among ten runs of the MVCA, the (1+1) EA, the GSEMO, the GA, and the CE

algorithms when applied to Hb networks for b ∈ {3, 4, 5, 6}. The time-limit for all algorithms (except of the MVCA) is

set to be 0.1, 0.5, 60, and 2000 seconds for b = 3, 4, 5 and b = 6, respectively. The optimal column stands for the

optimal solution; for an Hb network, the optimal solution can be constructed using b! labels.

b optimal MVCA time (sec) (1+1) EA GSEMO GA CE

3 6 6.6 1.62 × 10−4 6 6 6 6

4 24 25.5 3.99 × 10−3 24 28.5 24 24

5 120 124.8 6.26 × 10−1 120 – 120 120

6 720 738.3 2.25 × 102 720 – 720 720

As expected, MVCA introduces an inferior performance since these graphs were specifically constructed for this

purpose. The (1+1) EA, the GA, and the CE algorithms always managed to find the optimal solution. However, we

experienced convergence problems with the GSEMOmethod for b = 5 and b = 6. Specifically, in all runs, the GSEMO

algorithm could not find a solution (a set of labels), that corresponds to a single connected component for both the

H5 and the H6 instances. We tried to increase the runtime threshold for H5 from 60 seconds to 600 seconds, but

the GSEMO algorithm was still unsuccessful in all ten runs. For the H6 instance, we failed to see the convergence of

the GSEMO algorithm in a reasonable time, too.

4.3 | Test-case 3: the 2D-grid

For the third test-case, we consider a 32× 32 2D-grid with |V | = 1024 vertices and |E | = 1984 edges. In particular, we

examine five 32 × 32 2D-grid instances where each instance has a different number of labels. These grids are being

constructed as follows. First, we define a label density d . Then, for each grid instance, we set the number of possible

labels k to be ⌊ |V | × d ⌋, where d ∈ {0.1, 0.2, 0.3, 0.4, 0.5} and ⌊ ·⌋ is the ceiling function. In order to finalize the

construction, labels are assigned to grid’s edges uniformly at random. Each algorithm (except of the MVCA method),

was given a 120 seconds runtime threshold. Table 3 summarizes the obtained results.

TABLE 3 Performance of the MVCA, the (1+1) EA, the GSEMO, the GA, and the CE algorithms when applied to

32 × 32 2D-grids with different label densities. The time-limit for all algorithms (except of the MVCA) is set to be 120

seconds.

label density d MVCA time (sec) (1+1) EA GSEMO GA CE

0.1 63 0.136 64 59 61 59

0.2 109 0.501 116 103 117 106

0.3 146 0.951 166 146 161 144

0.4 186 1.497 210 184 237 177

0.5 219 2.234 260 229 257 216
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Table 3 is instructive in the sense that for this particular network architecture, (1+1) EA and the GA algorithms

introduce the worse performance (note that these algorithms managed to find optimal solutions for all test cases in

Section 4.1 and Section 4.2). As always, MVCA achieves good (sub-optimal) results. The GSEMO algorithm is almost

always better than MVCA (with the exception of the d = 0.5 case). However, when we consider the 0.1, 0.3, 0.4, and

the 0.5 densities, CE delivers superior results. For the 0.2 density, however, GSEMO outperforms the CE algorithm.

The inferior performance of CE as compared to GSEMO for the 0.2 density case (note that CE and GSEMO

achieve the fitness of 106 and 103, respectively), requires a careful discussion. It turns out that CE performance can

be improved by increasing the sample size N . The reason for this suggestion is straight-forward. Recall that the CE

algorithm estimates the optimal sampling distribution via the stochastic counterpart. Clearly, increasing the sample

size N will improve the estimation, since we obtain a better approximation of the expected value (5) (in (6)), as N

grows. Next, the CE algorithm is executed on the 0.2 density grid instance (with k = ⌊1024 × 0.2⌋ = 204), using the

sample size N = 20 × k = 20 × 204 = 4080 (instead of the default N = 10 × 204 = 2040 sample size). We still impose

the 120 seconds runtime threshold and use the 12345 seed. The CE algorithm manages to discover the best known

solution that uses 102 labels; note that this is an improvement over the GSEMO algorithm solution that uses 103

labels. Figure 4 depicts the dynamic of the CE algorithm for the 0.2 density grid.

1 10 60

102

800

18× 103

CE iteration (t)

fi
tn
es
s

γ̂

best

FIGURE 4 CE dynamics of the sample quantile γ̂ and the best observed fitness as a function of the CE algorithm

iteration for the 0.2 density grid with N = 4080 sample size.

In order to check how the quality of solutions changes as the size of the problem varies, we generated additional

2D grid instances, namely, 5 × 5, 10 × 10, 15 × 15, 20 × 20, 25 × 25, and 30 × 30 grids, each having the number of

possible labels k to be equal to ⌊ |V | × d ⌋, where d ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. We set the time limit to all algorithms

(except of the MVCA) to be 0.5, 2, 10, 20, 45, and 90 seconds, for 5 × 5, 10 × 10, 15 × 15, 20 × 20, 25 × 25, and

30 × 30 grids, respectively. As for the Test-cases 1 and 2, for each run of every algorithm, we used the 12345 +i ,

i = 0, . . . , 9 seed. The results are summarized in the Table 4. Table 4 is instructive in the sense that the GSEMO has

the best performance. Specifically, GSEMO finds the best solution in 22 cases out of 30 as compared to 17 cases out

of 30 found by CE. Nevertheless, the results obtained by CE are very close to the one achieved by GSEMO, and, CE

outperforms GSEMO when the number of labels in the problem increases. We also note that the GSEMO failed to

converge for some instances in test case 1 and 2; that is, CE appears to be more robust than the GSEMO algorithm.

The remaining algorithms, namely, the MVCA, the (1+1) EA, and the GA, found best solutions in 4, 5, and 10 out of

30 instances, respectively.
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TABLE 4 Performance of the MVCA, the (1+1) EA, the GSEMO, the GA, and the CE algorithms when applied to

2D-grids with different label densities. The times for all algorithms (except of the MVCA) to be 0.5, 2, 10, 20, 45, and

90 seconds for 5 × 5, 10 × 10, 15 × 15, 20 × 20, 25 × 25, and 30 × 30 grids, respectively.

Grid size d MVCA time (sec) (1+1) EA GSEMO GA CE

5 × 5 0.1 2 1.51 × 10−4 2 2 2 2

0.2 4 1.62 × 10−4 4 4 4 4

0.3 5 1.84 × 10−4 5 5 5 5

0.4 5.4 2.04 × 10−4 5 5 5 5.1

0.5 6 2.20 × 10−4 6 6 6 6

10 × 10 0.1 7 5.67 × 10−4 6.1 6 6 6

0.2 11 9.96 × 10−4 11.6 11 11 11

0.3 15.4 1.67 × 10−3 15.5 15 15.6 15

0.4 19 2.44 × 10−3 19.8 18 18 18.1

0.5 22.4 3.20 × 10−3 25.1 21 23.4 21.7

15 × 15 0.1 13.6 2.62 × 10−3 13.2 13 13 13

0.2 23.2 6.45 × 10−3 24.7 23 23 23.3

0.3 33.1 1.25 × 10−2 35.5 31.5 34.9 32.5

0.4 41.7 1.94 × 10−2 47.2 39.8 49.2 40

0.5 50.9 2.83 × 10−2 56.9 49.8 59 49.8

20 × 20 0.1 24.8 1.04 × 10−2 25.7 24 25 25

0.2 41.1 3.01 × 10−2 45.1 39.4 43.2 40.6

0.3 61.7 6.46 × 10−2 65.5 59.7 62.4 58.7

0.4 71.6 1.01 × 10−1 81.9 69.5 69.5 69.4

0.5 83.2 1.46 × 10−1 98.2 82.4 101.4 81.7

25 × 25 0.1 38.2 3.45 × 10−2 39.2 36.2 36.5 37.5

0.2 65.1 1.12 × 10−1 70.6 62.8 67.5 63.7

0.3 89.6 2.30 × 10−1 100.9 87.9 94.7 88

0.4 118.5 3.94 × 10−1 133.7 116.4 130.1 114.4

0.5 130.1 5.54 × 10−1 157.2 133.6 159.4 129.8

30 × 30 0.1 54.9 9.96 × 10−2 56.6 51 53.8 52.9

0.2 94.6 3.30 × 10−1 102.5 90.6 103.5 91.9

0.3 129.6 6.98 × 10−1 147.7 128.4 155.4 127.9

0.4 164.5 1.18 189.7 164.9 183.9 161.3

0.5 192.4 1.73 226.6 198.1 235.1 186.2
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4.4 | Test-case 4: the Watts-Strogatz small-world random graph

Motivated by the fact that many real-world networks can be modeled via random graphs, we test the algorithmic

performance on the well-known WS small-world random graph model [28]. The WS model is characterized by the

number of vertices |V |, the number of nearest neighbors connected to each node 0 ≤ η ≤ |V |, and the edge rewiring

probability β ∈ [0, 1]. We generated three graphs using |V | = 100, η = 10, and β = 0.5. For each edge, a label was

assigned uniformly at random from the {1, . . . , 100} set. Each algorithm (except of the MVCA method), was given a

20 seconds runtime threshold. Table 5 summarizes the obtained results.

TABLE 5 Performance of the MVCA, the (1+1) EA, the GSEMO, and the CE algorithms when applied to three

realizations of the WS graph model. The time-limit for all algorithms (except of the MVCA) is set to be 20 seconds.

instance MVCA time (sec) (1+1) EA GSEMO GA CE

Graph 1 13 5.00 × 10−3 16 13 13 13

Graph 2 16 6.00 × 10−3 20 15 17 15

Graph 3 17 6.00 × 10−3 18 15 16 16

Table 5 shows that the GSEMO outperforms its counterparts. The CE algorithm performance is similar, but for

Graph 3, CE achieves the fitness of 16 as compared to the fitness of 15 obtained by the GSEMO algorithm. Applying

the idea from Section 4.3, we next try to improve the CE results for the Graph 3 instance by increasing the sample

size N . For N = 10
7 , the CE algorithmmanages to obtain the best known fitness of 15 (unfortunately, for N < 10

7, CE

failed to discover this solution). However, the required computation time is about 13700 seconds. Figure 5 depicts

the corresponding dynamics. The CE algorithm runtime with N = 10
7 sample size is prohibitively large, especially, if

the algorithm is used for network design. The latter is due to the fact that for network design problems, we expect

the algorithm to run fast for any given network configuration.
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N = 103

N = 105

N = 107

FIGURE 5 CE dynamics of the best observed fitness as a function of the CE algorithm iteration for Graph 3 WS

instance with different sample sizes. The execution times for N = 10
3
, 10

5 and 10
7 are 1.15, 113, and 13616 seconds,

respectively.

To ensure a fair comparison, we ran the (1+1) EA, the GA, and the GSEMOmethods for 16000 seconds on all WS

instances. The (1+1) EA algorithm managed to improve the fitness obtained for Graph 1 from 16 to 15. however, no

other improvements to the results from Table 5 were observed.
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5 | CONCLUSION

In this manuscript we showed that the Cross-Entropy method can by successfully applied to the problem of finding a

minimum label spanning tree. In particular, we showed that the Cross Entropy framework is suitable for both finding an

approximation to quantiles of the corresponding fitness function via simulation, and for sampling from a parametric

family of distributions with a view to approximating the true probability mass function of interest. A resolution of

these problems opens a way for the application of the Cross Entropy method to the problem of finding minimum

label spanning trees. We outlined the corresponding mathematical foundation and our experimental study indicates

that the practical performance is comparable with or better than its counterparts. In addition, we developed freely

available software packages that implement all methods discussed in this paper. As for the future work, the following

directions are of crucial importance. First, following our findings in Section 4.4, it is of great interest to provide a

rigorous characterization of graphs that impose a challenge to the Cross-Entropy method in the sense of the required

sample size. Moreover, for such graphs, one needs to establish bounds on the number of iterations needed for the

algorithm to complete. As noted in Section 4.4, the sample size of 107 is prohibitively large. Therefore, having in

mind that the Cross-Entropy method might necessitate a large sample size to achieve an optimal solution, it will be

of interest to develop a version of the algorithm that uses a more efficient memory management scheme. In other

words, both researchers and practitioners will definitely benefit from an existence of an on-line version of the method.

It is also important to compare the performance of other methods such as the ant colony optimization, the integer

programming, local search heuristic, and the intelligent optimization method of Consoli et. al., on different types of

networks. Finally, from a practical point of view, a development of a software package that runs on multiple CPUs or

a GPU will be useful, since the latter will open a way for an efficient treatment of large networks.
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A | CROSS-ENTROPY UPDATE

Lemma 1 Let p = (p1, . . . , pk ) , such that p ∈ [0, 1]
k and let xj = (x j ,1, . . . , x j ,k ) ∈ {0, 1}

k for 1 ≤ j ≤ N . Suppose that

S : {0, 1}k → Ò, γ ∈ Ò, and N ∈ Î. Then, the function

1

N

N∑
j=1

1{
S (xj )≤γ

} ln
(

k∏
i=1

p
xj ,i

i
(1 − pi )

1−xj ,i

)
(7)

is concave and differentiable with respect to p.

Proof The functions ln(pi ) and ln(1 − pi ) are concave for 1 ≤ i ≤ k . To see this, note that:

d 2

dp2
i

ln(pi ) = −
1

p2
i

,
d 2

dp2
i

ln(1 − pi ) = −
1

(1 − pi )
2
,

for 1 ≤ i ≤ k . In addition, 1{
S (xj )≤γ

} is non-negative and does not depend on p for 1 ≤ j ≤ N . Finally, (1 − x j ,i ) and
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x j ,i are non-negative, that is,

1

N

N∑
j=1

1{
S (xj )≤γ

} ln
(

k∏
i=1

p
xj ,i

i
(1 − pi )

1−xj ,i

)

=
1

N

N∑
j=1

1{
S (xj )≤γ

}
(

k∑
i=1

x j ,i ln pi + (1 − x j ,i ) ln(1 − pi )

)
,

is a non-negative weighted sum of concave functions ( ln(pi ) and ln(1 − pi ) ) . Therefore, (7) is concave and differen-

tiable with respect to p.

Lemma 2 Let p = (p1, . . . , pk ) , such that p ∈ [0, 1]
k and let xj = (x j ,1, . . . , x j ,k ) ∈ {0, 1}

k for 1 ≤ j ≤ N . Suppose that

S : {0, 1}k → Ò, γ ∈ Ò, and N ∈ Î. Then, the function

w (p1, . . . , pk ) =
1

N

N∑
j=1

1{
S (xj )≤γ

} ln
(

k∏
i=1

p
xj ,i

i
(1 − pi )

1−xj ,i

)

is maximized for

p∗i =

∑N
j=1

1{
S (xj )≤γ

}x j ,i
∑N

j=1
1{

S (xj )≤γ
} [ 1 ≤ i ≤ k .

Proof From Lemma 1,w is concave and differentiable with respect to p1, . . . , pk . Thus, it is sufficient to solve

▽w =
1

N

N∑
j=1

1{
S (xj )≤γ

}
▽ ln

(
k∏
i=1

p
xi
i
(1 − pi )

1−xi

)
= 0.

It is not very hard to see that for all 1 ≤ i ≤ k , it holds that:

∂

∂pi
w =

1

N

N∑
j=1

1{
S (xj )≤γ

} (
x j ,i

pi
−
(1 − x j ,i )

1 − pi

)
= 0 ⇒

N∑
j=1

1{
S (xj )≤γ

} (
x j ,i (1 − pi ) − pi (1 − x j ,i )

pi (1 − pi )

)
= 0

⇒

N∑
j=1

1{
S (xj )≤γ

} (
x j ,i − pi

pi (1 − pi )

)
= 0 ⇒

N∑
j=1

1{
S (xj )≤γ

}x j ,i −
N∑
j=1

1{
S (xj )≤γ

}pi = 0

⇒ p∗i =

∑N
j=1

1{
S (xj )≤γ

}x j ,i
∑N

j=1 1
{
S (xj )≤γ

} .
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