
International Journal of Performability Engineering Vol. 10, No. 2, March 2014, pp. 163-172.
© RAMS Consultants
Printed in India

__

*Corresponding author’s email: elyager bezeqint.net 163

Network Reliability Monte Carlo With Nodes Subject to
Failure

ILYA GERTSBAKH1, YOSEPH SHPUNGIN2, R. VAISMAN3
1Department of Mathematics, Ben-Gurion University
 P. O. Box 653, Beer-Sheva, 84105, ISRAEL
2Software Engineering Department
 Sami Shamoon College of Engineering, Beer Sheva 84100 ISRAEL
3Faculty of Industrial Engineering and Management
 Technion, Israel Institute of Technology, Haifa, ISRAEL

 (Received on June 04, 2013, revised on November 15, 2013)

Abstract: We extend the network reliability estimation methodology based on evolution
(creation) Monte Carlo into four directions: (i) introducing unreliable nodes; (ii) adjusting
the evolution process with merging to "closure" operation suitable for unreliable nodes;
(iii) in case of numerical instability in computing convolutions, we suggest a special
Monte Carlo algorithm based on importance sampling; (iv) we extend the traditional
network terminal connectivity criterion to criteria describing network disintegration into a
critical number of clusters, or the critical size of the largest component.

Keywords: evolution Monte Carlo, unreliable nodes, closure for nodes, critical number of
clusters, simulating convolutions , numerical instability.

1. Introduction

Abbreviations and Notation:
𝐶𝑀𝐶- crude Monte Carlo;
𝐸𝑀𝐶 -evolution Monte Carlo;
𝑄 - network failure (DOWN) probability;
𝑅𝐸 -relative error;
𝑅𝑇𝑉 -relative time variance;
𝐶𝑃𝑈-central processor unit;
𝑁 - number of simulation runs;

 ~ ()i iExpτ Λ - random variable iτ has exponential distribution with parameter iΛ
The traditional network reliability problem, as it has been stated in the recently published
"Handbook of Monte Carlo Methods" [8] is formulated as follows. Let 𝐺(𝑉,𝐸,𝐾) be an
undirected graph (network) with 𝑉 being the set of 𝑛 nodes (or vertices), 𝐸 being the set
of 𝑚 edges (or links), and 𝐾 ⊆ 𝑉, |𝐾| = 𝑠, being a set of special nodes called terminals.
Associated with each edge 𝑒 ∈ 𝐸 is a Bernoulli random variable 𝑋(𝑒) such that 𝑋(𝑒) = 1
corresponds to the event that the edge is operational (up) and 𝑋(𝑒) = 0 corresponds to the
event that the edge has failed (is down). The edge failures are assumed to be independent
events. Assume that (() 1) ()P X e p e= = .
 Based on this model, the network reliability 𝑅 = 𝑃(𝑈𝑃) and unreliability 𝑄 =
𝑃(𝐷𝑂𝑊𝑁) = 1 − 𝑅 is defined as the probability that a set of terminal nodes 𝐾 � is
connected (not connected) in the sub-graph containing all of the nodes of 𝑉. When 𝑠 =
2, the model describes so-called 𝑠 − 𝑡 terminal connectivity. When 𝑠 = 𝑛, we have all-
node connectivity.
 This model, although very simple, has been employed in a wide number of application

164 Ilya Gertsbakh, Yoseph Shpungin, and R. Vaisman

settings to communication networks, mobile ad hoc and tactical radio networks,
evaluation of transport and road networks, see [1, 3, 4, 7, 9, 10].
 One of the most computationally efficient methods for calculating network reliability
for the above model is based on so-called evolution or creation process first suggested in
[2]. It works as follows. Initially, at 𝑡 = 0 all edges 𝑒 are down. At some random
moment 𝜉(𝑒), edge 𝑒 is "born", independently of other edges, and remains in state up
forever. 𝜉(𝑒) is assumed to be exponentially distributed with parameter 𝜆(𝑒):

𝑃(𝜉(𝑒) ≤ 𝑡) = 1 − 𝑒−𝜆(𝑒)𝑡 , 𝑒 ∈ 𝐸.
 Fix an arbitrary moment 𝑡 = 𝑡0, for example, 𝑡0 = 1. Choose for each 𝑒 its "birth rate"
𝜆(𝑒) so that the following condition holds:

𝑃(𝜉(𝑒) > 𝑡0) = 𝑒−𝜆(𝑒)𝑡0 = 1 − 𝑝(𝑒).
This formula means that at time 𝑡0 the edge 𝑒 has already born (is up) with
probability 𝑝(𝑒). The crucial observation is that the snap-shot of the whole network taken
at 𝑡0 gives the picture of the whole network which coincides in probability with its state
produced as a result of generating the state of each edge with static probability 𝑝(𝑒) of
being up and 1 − 𝑝(𝑒) of being down.
The Monte Carlo procedure for estimating network UP probability 𝑅 is implemented by
generating so-called trajectories which imitate the development in time of the evolution
process. Let us consider an example, see Fig. 1.

Figure 1: Evolution Process. Edges are born in the sequence: 1→ 2→ 3.

 We have a four node network with five edges. The network is UP if all its nodes are
connected to each other. The initial state without edges at 𝑡 = 0 is denoted as 𝜎0. The
network stays in it during random time 𝜏0 which is exponentially distributed with
parameter Λ0 = ∑ 𝜆𝑖5

𝑖=1 . Suppose the edge 1 is born first. By the properties of exponential
distribution, this happens with probability 𝜆1/Λ0. Then the system goes into its next state
𝜎1. Now in this state the system spends random exponentially distributed time
𝜏1 ∼ 𝐸𝑥𝑝(Λ1 = ∑ 𝜆𝑖5

𝑖=2). Suppose that the next edge born is 2.
 This happens with probability 𝜆2/(𝜆2+. . . +𝜆5). This transfers the system into state 𝜎2.
Now note that at this stage of the evolution process we can add edge 5 (shown by dotted
line) to already born edges and exclude it from the further evolution process because the
existence or nonexistence of this edge does not affect the already formed component of
three nodes 𝑎, 𝑏, 𝑐 created by edges 1 and 2, see closure or merging operation in [2,8].
The system spends in 𝜎2 random time 𝜏2 ∼ 𝐸𝑥𝑝(𝜆3 + 𝜆4). Suppose edge 3 is born first,
which happens with probability 𝜆3/(𝜆3 + 𝜆4). Then the system enters the state 𝜎3 which
is, by definition, the network UP state. Note that the random times 𝜏0, 𝜏1, 𝜏2 are
independent, and the trajectory 𝜔 = {𝜎1 → 𝜎2 → 𝜎3} takes place with probability

d

c b

a

5

 Network Reliability Monte Carlo With Nodes Subject to Failure 165

𝑃(𝜔) =
𝜆1
𝛬0

⋅
𝜆2
𝛬1

⋅
𝜆3
𝛬2

.

 Finally, let us find out the probability 𝑃(𝑈𝑃;𝜔) that the network will be UP given that
the evolution goes along this trajectory:

𝑃(𝑈𝑃;𝜔) = 𝑃(𝜏0 + 𝜏1 + 𝜏2 ≤ 𝑡0;𝜔).
 This probability can be found in a closed form using well-known hypo-exponential
distribution, see [11], page 299 or [3], Appendix B. It is worth to present the
corresponding formula in its general form.
 Let independent random variables 𝜏𝑖 ∼ 𝐸𝑥𝑝(Λ𝑖), 𝑖 = 0,1,2, . . . , 𝑟 − 1. Suppose that

Λ0 > Λ1 > Λ2 > ⋯Λ𝑟−1.
Then

 𝑃(�𝜏𝑖

𝑟−1

𝑖=0

≤ 𝑡0) = 1 −�𝑒−Λ𝑖𝑡0

𝑟−1

𝑖=0

�
𝛬𝑗

𝛬𝑗 − 𝛬𝑖𝑗≠𝑖

. (1)

Now suppose that we have generated 𝑀 trajectories 𝜔1, . . . ,𝜔𝑀 and for each 𝜔𝑖 we have
calculated by (1) the corresponding convolution 𝑃(𝑈𝑃;𝜔𝑖). The unbiased estimate of
network UP probability is found as an average

 𝑃�(𝑈𝑃) =
∑ 𝑃𝑀
𝑖=1 (𝑈𝑃;𝜔𝑖)

𝑀
. (2)

In the next section we show how an analogous process can be implemented for the case of
unreliable nodes.

2. Evolution Process for Networks with Unreliable Nodes

2.1 How it works?

Similarly to Introduction, we are dealing with an undirected graph (network) 𝐺(𝑉,𝐸,𝐾).
𝑉 is the set of 𝑛 nodes (or vertices), 𝐸 is the set of 𝑚 edges (or links), and 𝐾 ⊆ 𝑉, |𝐾| =
𝑠, is the set of special nodes called terminals. Contrary to Introduction, we now assume
that the edges are always up, and the nodes, except the terminal nodes, are subject to
failures and fail independently. Terminal nodes are assumed to be always operational (up).
So, there are 𝑛1 = 𝑛 − 𝑠 nodes subject to failure. Let us denote the nodes 𝛼1,𝛼2, . . . ,𝛼𝑛1.
Node 𝛼𝑖 is down with probability 𝑞𝑖 and up with probability 𝑝𝑖 = 1 − 𝑞𝑖. Node failure
means that all edges incident to this node are erased and the failed node becomes isolated.
If nodes 𝛼𝑖 and 𝛼𝑗 both are up and there exists in 𝐸 an edge 𝑒(𝑖, 𝑗) connecting these nodes,
then edge 𝑒(𝑖, 𝑗) becomes operational (up). If one of two nodes that are connected in 𝐺 by
an edge is down, then the corresponding edge is assumed to be nonexisting (erased).
Networks with unreliable nodes have wide range of applications, especially in models of
network survivability, see e.g., [3, 4, 6].
 Our main tool for investigating network reliability will be evolution (creation) process
similar to the described in Introduction.
 Associate with each node 𝛼𝑖 a random variable 𝜉𝑖 ∼ 𝐸𝑥𝑝(λi), assume that all 𝜉𝑖 are
independent, and define λi for an arbitrary 𝑡0 > 0 in such a way that it satisfies the
following equality:
 P(𝜉𝑖 > 𝑡0) = e−𝜆𝑖𝑡0 = 1 − 𝑝𝑖 . (3)
At 𝑡 = 0 all nodes are down (except the terminal nodes). Put 𝜆𝑖 to be the birth rate of 𝛼𝑖.
After a node is "born", it remains up forever. At 𝑡 = 0, also no edges exist. If in 𝐸 there is
an edge 𝑒(𝑖, 𝑗) connecting nodes 𝛼𝑖 and 𝛼𝑗, and both they are born, then immediately the

166 Ilya Gertsbakh, Yoseph Shpungin, and R. Vaisman

edge 𝑒(𝑖, 𝑗) "comes to life". The principal fact is that the snap-shot of the network taken at
𝑡 = 𝑡0 will show that the network is UP with the probability equal to 𝑃(𝑈𝑃) calculated
for the original static model. Now, as in the Introduction, we construct the trajectories of
the evolution process leading from the initial state (no nodes born and no edges) to the
network 𝑈𝑃 state which guarantees the terminal connectivity.
 Let us consider an example. Figure 2 shows a ladder-type network with terminal nodes
𝑠, 𝑡 (bold). It has 8 nonterminal nodes and 12 edges. Nodes 𝑖 = 1,2, . . . ,8 fail with
probability 𝑞𝑖. Network state at 𝑡 = 0 is 𝜎0, with no nodes and no edges. Nodes which are
not born are shown by empty circles. Suppose node 4 is born the first. This leads to the
network state 𝜎1. The born node is shown by bold circle. Automatically, edge 𝑒(𝑡, 4)
appears, and we see that there are two paths leading from 4 to 𝑡: one is direct 4 → 𝑡 and
the second is 4 → 2 → 1 → 𝑡 which is "parallel" to it. Obviously, nodes 1 and 2 are
nonrelevant since every connection of node 4 to node 𝑡 via nodes 1,2 is blocked by the
direct edge (4, 𝑡). So, nodes 1 and 2 constitute a "closure" and are declared as being up.
We mark them by non bold circles. Suppose, the next birth belongs to node 5, see the state
𝜎2. In a similar way, nodes 7 and 8 belong to closure and are declared as being up. Let the
next birth belongs to node 3. It leads to appearance of edges 𝑒(𝑡, 3) and 𝑒(3,5) and
therefore leads to the network UP state because there exist a path 𝑠 → 5 → 3 → 𝑡.

Figure 2: Nodes are born in the following order: 4→ 5→ 3. Nodes 1, 2 and 7, 8
are added as closure.

 The trajectory of births leading from 𝜎0 to UP is therefore 𝜔 = {4 → 5 → 3}. Let us
compute the probability 𝑃(𝜔) of this trajectory. Following the reasoning provided in
Introduction, we find out that

𝑃(𝜔) =
𝜆4

∑ 𝜆𝑖8
𝑖=1

⋅
𝜆5

∑ 𝜆𝑖𝑖≠1,2,4
⋅

𝜆3
𝜆6 + 𝜆3

.

 The sojourn time in 𝜎0 is 𝜏0 ∼ 𝐸𝑥𝑝(∑ 𝜆𝑖8
𝑖=1). Sojourn time in 𝜎1 is

~ 1,2,41 (),i iExpτ λ≠∑ and in state 𝜎2 the system stays random time 𝜏2 ∼ 𝐸𝑥𝑝(𝜆6 + 𝜆3).
Thus the snapshot of the network taken at time 𝑡0 sees the network as being UP with
probability 𝑃(𝜏0 + 𝜏1 + 𝜏2 ≤ 𝑡0;𝜔).#
 In general, suppose that on certain stage of the evolution process (after carrying closure
operations) we arrived at state 𝜎∗. Denote by Λ∗ the sum of birth rates of all nodes which
are not born yet on this stage. Denote the set of all these ”active" nodes by 𝐴∗. So,
Λ∗ = ∑ 𝜆𝑖𝛼𝑖∈𝐴∗ . The next node 𝛼𝑗 will born with probability

𝜌∗ =
𝜆𝑗
𝛬∗

.

 After this birth takes place, we arrive (after carrying out the closure, if possible, and

t

s

2

1

0σ 1σ 2σ 3σ G

3
4 5
6 7

8

 Network Reliability Monte Carlo With Nodes Subject to Failure 167

adding edges between already born nodes) at the state 𝜎∗∗ which is the direct successor of
state 𝜎∗. In general, we will simulate a trajectory 𝜔 of states which starts from trivial state
𝜎0 and ends in some state 𝜎𝑥 ≡ 𝑈𝑃:

𝜔 = {𝜎0 → 𝜎1 → 𝜎2 → ⋯ → 𝜎𝑥 ≡ 𝑈𝑃}.
Let 𝜏𝑖 ∼ 𝐸𝑥𝑝(Λ𝑖) be the sojourn time in state 𝜎𝑖, 𝑖 = 0,1, … , 𝑥 − 1.
Denote

𝑅(𝜔) = 𝑃(𝑈𝑃;𝜔) = 𝑃(�𝜏𝑖

𝑥−1

𝑖=0

≤ 𝑡0).

2.2 The Simulation Algorithm

Now we are able to describe the simulation algorithm which implements the above
described procedure.

 Algorithm 1.

1. Put 𝑅�: = 0
2. Generate trajectory 𝜔 leading from the trivial state 𝜎0 to UP state of the network.

Use for its generation the above described transition probability from state 𝜎∗ to
its successor 𝜎 ∗∗. After a transition takes place, locate non relevant nodes and
declare them as being up. Add edges between the up nodes if such edges are
present in the set 𝐸.

3. Using (1), calculate 𝑅(𝜔) and put 𝑅�: = 𝑅� + 𝑅(𝜔) .
4. Repeat 2 and 3 𝑀 times.
5. Put 𝑅�(𝑈𝑃): = 𝑅�

𝑀
.

Obviously, 𝑅�(𝑈𝑃) is an unbiased estimate of network UP probability 𝑅 = 𝑃(𝑈𝑃).
An important remark: node 𝛼𝑖 birth probability is defined as 𝜆(𝛼𝑖) = − log [𝑞(𝛼𝑖)]

𝑡0
, or

𝑞(𝛼𝑖) = 𝑒−𝜆(𝛼𝑖)𝑡0. Therefore the transition probabilities in the evolution process from
state to state do not depend on 𝑡0. If we increase 𝑡0, we will correspondingly decrease the
node failure probabilities, but this will not affect the probabilities of generating the 𝜔
trajectories. Therefore, the rare event phenomenon will not take place for this algorithm.

2.3 More about Closure

Let us describe in more formal way the node closure operation. Suppose that after some
nodes were born, we have network state 𝜎. Denote by 𝑆𝑟 the set of nodes which are
already born. Let us call them "red" nodes. For simplicity we will assume that the terminal
nodes also are "red". Denote the remaining set of nodes 𝑆𝑤 = 𝑉 ∖ 𝑆𝑟 and call the nodes in
this set "white" nodes. Let the edges between white nodes also be called white; let the
edges between red edges be called red, and let the edges between nodes of different color
be called “green”. Consider a particular stage of the birth process, say 𝜎2 on Fig. 2. Edges
𝑒(1,2) and 𝑒(7,8) are white, edges 𝑒(4, 𝑡) and 𝑒(𝑠, 5) are red, and edges
𝑒(2,4), (1, 𝑡), 𝑒(𝑠, 8), 𝑒(5,7) are green. The set of red nodes connected by red edges
consists of several components. So, for 𝜎2 there are two such red components: {4, 𝑡} and
{𝑠, 5}. The nodes in these components are connected by red edges only. Similarly, the set
of white nodes also consists of several components, namely {1,2} and {7,8}.
 The general rule for carrying out the closure is the following:
Let 𝐺𝑤 be a white component which is connected by green edges to only one red

168 Ilya Gertsbakh, Yoseph Shpungin, and R. Vaisman

component 𝐺𝑟 . Then all nodes of 𝐺𝑤 can be declared red and joined to 𝐺𝑟 .
For example, 𝐺𝑤 = {1,2} can be declared red and joined to 𝐺𝑟 = {4, 𝑡}.
 The implementation of the closure for unreliable nodes is algorithmically considerably
more involved than for unreliable edges because it amounts to search for all white
components on each stage of the evolution process. The CPU time spent on this search
may exceed the gain obtained by reducing the length of the simulated trajectories. In the
next section we will show an example comparing the simulation algorithms with and
without closure.

2.4 Fighting Numerical Instability for Long Convolutions

Our numerical experience of simulating relatively large networks (e.g. having more than
40-50 nodes) reveals that the use of (1) may show a numerical instability resulting in
getting absurd results, like negative probability or probability exceeding 1. The reason is
that for long trajectories, the Λ𝑖 values may become very large, as a result of which the
terms in (1) may become very large, especially when some Λ’s happen to be close to each
other. The terms in (1) have alternating signs and the computer calculations according to
(1) may become extremely unstable. We met this phenomenon already in preparing
numerical examples for our paper [2]. Also some Monte Carlo researchers have reported
to us about the same instability in private communications. To avoid it, we suggested in
[5] an alternative to (1) based on importance Monte Carlo sampling procedure. Detailed
description and the corresponding proofs can be found also in [3], Chapter 7.
Here is a short description of the corresponding algorithm. Suppose we want to estimate

𝑃(𝜏1 + 𝜏2+. . . +𝜏𝑚 ≤ 𝑇),
where 𝜏𝑖 are independent nonnegative random variables (r.v.’s) with density 𝑓𝑖(𝑡) and
cumulative distribution function 𝐹𝑖(𝑡).

Algorithm 2

1. Simulate r.v. 𝑋1 with the density 𝑓1(𝑡)/𝐹1(𝑇). (This r.v. has support [0,𝑇]). Let
𝑋1 = 𝑥1.

 Simulate r.v. 𝑋2 with density 𝑓2(𝑡)/(𝐹2(𝑇 − 𝑥1)). (This r.v. has support [0,𝑇 −
𝑥1]). Let 𝑋2 = 𝑥2. Continue recursively and generate r.v. 𝑋𝑘 having density
𝑓𝑘(𝑡)/(𝐹𝑘(𝑇 − 𝑥1 − 𝑥2 − ⋯− 𝑥𝑘−1)).

2. After r.v.’s 𝑋1,𝑋2, …𝑋𝑚−1 have been generated, calculate
𝐵𝑚(𝑇) = 𝐹1(𝑇) ⋅ 𝐹1(𝑇 − 𝑥1) ⋅ 𝐹3(𝑇 − 𝑥1 − 𝑥2) ⋅ … ⋅ 𝐹𝑚(𝑇 − 𝑥1 − 𝑥2 −⋯𝑥𝑚−1).

3. Repeat steps 1, 2 𝐾 times and calculate 1 .
()

ˆ ()

k i
m

i
B T

B T
K

=
∑

=

It was proved in [3,5] that 𝐵�(𝑇) is an unbiased estimate of 𝑃(𝜏1 + 𝜏2+. . . +𝜏𝑚 ≤ 𝑇).
The best number of replications 𝐾 must be found experimentally. Small values of 𝐾 have
smaller CPU time but have greater relative error. We demonstrate the choice of 𝐾 in our
example 4 in the next section.

2.5 Modification of Network UP- Definition

In studying models dealing with network survivability subject to random attack on its
nodes, the researchers are interested in evaluating the network ability to retain its
functionality when a certain part of nodes becomes damaged (i.e., becomes down). Very
often the network stops functioning if it disintegrates into too many isolated components.
Of particular interest is the following criterion. Suppose that the network has 𝑠 special

 Network Reliability Monte Carlo With Nodes Subject to Failure 169

nodes representing important facilities (hospitals, storages, communication centers, etc).
Let us call them vital nodes (VN’s). Assume that the VN’s do not fail. The network, by
definition, is functional (UP) if and only if in the process of node failures it falls apart into
no more than 𝑟 so-called clusters, 𝑟 ≤ 𝑠. A cluster is a (connected) component containing
at least one VN. So, for example, the network represents a railroad system with 𝑠 = 5
VN’s. Initially, all VN’s constitute one cluster. The network remains operational if and
only if it has less than four clusters, i.e. has one, two or three clusters. (Here 𝑟 = 3).
 An important feature is that the above described evolution process built on network
nodes may be used for calculating network UP probability also for this modified criterion.
We simply simulate the node birth trajectory and end it if the number of clusters becomes
less or equal 𝑟. An example of using this criterion will be given in the next section.

3. Simulation Examples

Before we present the simulation results, let us make the following principal comment.
Suppose we determine all 𝜆(𝑒) values for some fixed 𝑡0 = 1. What will happen if we take
the snap-shot of the system at another instant, say 𝑡1 = 0.9? This is equivalent to
multiplying all lambda values by the factor 𝑡0/𝑡1 = 1/0.9 = 1.11. This operation will not
change the probabilistic mechanism of creating the trajectories of the evolution process
because the transitions probabilities depend on the ratios of the lambda values. Therefore,
introducing another 𝑡0 can be made by carrying out only one extra arithmetic operation -
computing the convolution by (1) for different 𝑡0 value. This will demand a negligible
amount of extra CPU time. Therefore, when we compare the efficiency of CMC and EMC
we will take into account that the EMC allows to compute network reliability for several
sets of node unreliability values 𝑞1, . . . , 𝑞𝑚 using the same CPU time. We make an
agreement that the relevant CPU time presented below is given for five different sets of 𝑞
values. In literature, it is suggested to measure the efficiency of Monte Carlo procedure by
RTV which equals the CPU time times the squared relative error. The factor of 0.2 will be
introduced in all RTV values presented below. We will present the following

Example 1: Terminal Connectivity

We consider a 9x9 rectangular grid with five terminals located in the center and in the
corners, see Fig. 3. Table 1 compares the simulation results of CMC and EMC, for two
sets of node failure values. The first set is 𝑞1 = 0.001, 𝑞2 = 0.01 and the second set is
𝑞1 = 0.001, 𝑞2 = 0.001, where 𝑞1 corresponds to odd and 𝑞2 to even node, respectively.
(Node is odd if sum of its coordinates is odd and even, otherwise. For example, the central
node is even, two closest neighbors of a corner are odd). There are in total 76 nodes
subject to failure.
 The first two rows of the Table 1 compare the CMC and EMC for all-terminal
connectivity. The last two rows compare the CMC and EMC for the 𝑠 − 𝑡 connectivity
when 𝑠 and 𝑡 are located on the opposite ends of the diagonal. The EMC was
implemented without applying the closure.
 Let us make an important observation related to the lower half of Table 1 (𝑞 = 0.001
for all nodes), in rows three and four. Network fails if one of two terminals gets isolated.
This happens if two neighboring nodes fail, the probability of which is 𝑞2 = 10−6. There
are two such min cuts, and therefore the probability of the main event leading to the loss
of 𝑠 − 𝑡 connectivity is about 2 ⋅ 10−6. This is in excellent agreement with the results
presented in the last two lines of the table. The above reasoning shows that the Burtin-

170 Ilya Gertsbakh, Yoseph Shpungin, and R. Vaisman

Pittel approximation (see [3], p.70,73) is very accurate.

Figure 3: 9x9 Grid with Five Terminals (bold)

Table 1: The Simulation Results for Terminal Connectivity Criterion
Method 𝑄 𝑅𝐸 𝑅𝑇𝑉 𝐶𝑃𝑈 𝑁 𝑞1, 𝑞2
CMC 1.88 ⋅ 10−5 0.24 1.14 19.9 1,000,000 0.001;0.01
EMC 1.97 ⋅ 10−5 0.086 0.17 ⋅ 0.2

= 𝟎.𝟎𝟑𝟒
22.0 100,000 0.001;0.01

CMC 2.01 ⋅ 10−6 0.23 9.4 175 1,000,000 0.001;0.001
EMC 2.04 ⋅ 10−6 0.086 0.036 ⋅ 0.2

= 𝟎.𝟎𝟎𝟕𝟐
187 1,000,000 0.001;0.001

Example 2: Network Disintegration into Several Clusters

Here we consider network survivability with respect to the number of clusters. The data
presented in Table 2 are for the 9x9 grid with 5 terminals shown on Fig. 3. The first two
rows present data when the network is UP if it has 1 or 2 clusters. The next two rows
present similar data when the network is UP if it has 1,2 or 3 clusters; the last two rows
present data for UP defined as having 1,2,3 or 4 clusters. We will denote the above UP
states as UP(1,2), UP(1,2,3) and UP(1,2,3,4). DOWN state in the last case means
disintegration into 5 clusters, i.e. complete isolation of all terminals. 1 ()Q P UP= − . As
in the previous example, we use EMC without closure.

Table 2: The Simulation Results for Disintegration into Several Clusters
Method 𝑄 𝑅𝐸 𝑅𝑇𝑉 𝐶𝑃𝑈 𝑁 𝑞1, 𝑞2
CMC 3.08 ⋅ 10−4 0.081 0.063 97 500,000 0.05/0.1
EMC 3.04 ⋅ 10−4 0.035 0.15 ⋅ 0.2 = 𝟎.𝟎𝟑 121 500,000 0.05/0.1
CMC 1.46 ⋅ 10−6 0.38 14.5 98 5,000,000 0.05/0.1
EMC 1.25 ⋅ 10−6 0.19 4.07 ⋅ 0.2 = 𝟎.𝟖𝟏 103 500,000 0.05/0.1
CMC —– —– —– —– —– —–
EMC 1.67 ⋅ 10−9 0.38 13.8 ⋅ 0.2 = 𝟐.𝟖 90 500,000 0.05/0.1

Remark 1. The network is highly reliable with respect to disintegration into 5 clusters, see
the last row. For this case, CMC was not used since it would demand 𝑁 = 1010
experiments and CPU time of several hours#.

Example 3: Monte Carlo with Closure Operation for Nodes.

We carried out the experimentation on a random Erdos-Renyi graph with 30 nodes and 48
edges, for 𝑠 − 𝑡 terminal connectivity, see Fig. 4.

 Network Reliability Monte Carlo With Nodes Subject to Failure 171

Figure 4: Replica of a Random Graph with 30 Nodes and 48 Edges

 We compared three methods: the CMC, the EMC and the EMC with closure operation.
It was found experimentally that the closure starts working after approximately one third
of the nodes (i.e. about 16 nodes) are already born. Table 3 presents the simulation results.
What follows from this table is that the use of closure for unreliable nodes gives a small
gain in RE (because the trajectories become shorter) but demands considerably more CPU
time. In total, there is no gain in RTV. As we noticed before, the closure for unreliable
edges needs only finding out the edges whose both ends belong to the already existing
component. As to the nodes, the search for non-relevant nodes needs searching for
connected groups of nodes which can be united with one of the already existing
component. As to the nodes, the search for non-relevant nodes needs searching for
connected groups of nodes which can be united with one of the already existing
components of born nodes. Our conclusion is that from practical point of view, there is no
need to complicate the EMC algorithm with the closure operation.

Table 3: The Simulation Results for Erdos-Renyi Graph
Method 𝑄 𝑅𝐸 𝑅𝑇𝑉 𝐶𝑃𝑈 𝑁 𝑞
CMC 2.2 ⋅ 10−6 0.314 3.25 32.1 5,000,000 0.1
EMC 2.03 ⋅ 10−6 0.047 0.35 ⋅ 0.2 = 𝟎.𝟎𝟕 15.8 500,000 0.1

EMC & closure 2.01 ⋅ 10−6 0.029 0.040 ⋅ 0.2 = 𝟎.𝟎𝟖 46.6 500,000 0.1

Example 4: Loss of Stability and Simulating Convolutions.

Loss of stability usually takes places when the trajectories are long. To present an
example of high reliable graph, we simulated 𝑠 − 𝑡 connectivity in a random graph with
100 nodes and 1000 edges. The reliability criterion was the 𝑠 − 𝑡 connectivity between
two randomly chosen terminal nodes. The odd/even nodes have low reliability, 𝑞 = 0.5
and 𝑞 = 0.6. High reliability is achieved because the graph is quite dense. The average
length of a trajectory is about 7 nodes. Table 4 presents the simulation results for CMC
and various 𝐾. It follows that the best results for RTV are obtained for 𝐾 = 20.

Table 4: The Simulation Results for Highly Reliable Random Graph
Method 𝑄 𝑅𝐸 𝑅𝑇𝑉 𝐶𝑃𝑈 𝑁 𝑞1; 𝑞2 𝐾
CMC 2.4 ⋅ 10−6 0.74 24.6 45.0 1,000,000 0.5;0.6 —–

Sim. conv. 2.82 ⋅ 10−6 0.254 5.08 ⋅ 0.2 = 𝟏.𝟎𝟐 78.8 1,000,000 0.5;0.6 10
Sim. conv. 2.83 ⋅ 10−6 0.221 4.07 ⋅ 0.2 = 𝟎.𝟖𝟏 82.9 1,000,000 0.5;0.6 20
Sim. conv. 2.57 ⋅ 10−6 0.208 4.62 ⋅ 0.2 = 𝟎.𝟗𝟐 105.3 1,000,000 0.5;0.6 40

172 Ilya Gertsbakh, Yoseph Shpungin, and R. Vaisman

4. Conclusions

The Evolution Monte Carlo (EMC) as presented in the paper is a good and reliable
working tool for the reliability investigation of networks with independently failing nodes
and considerably superior to CMC in case of highly reliable networks (say with failure
probability 𝑄 < 10−5). From practical point of view, there is no need to incorporate into
the standard EMC algorithm the analogue of closure operation. This operation gives little
savings on the length of the evolution trajectories but at the same time considerably
increases the CPU time for the search of all non-relevant nodes.
 The general framework of the EMC algorithm allows to include new extensions of the
traditional network reliability definition as K-terminal reliability. Examples of these
extensions are disintegration of the network into a critical number of clusters or network
failure when its maximal component contains less than minL nodes. However, in certain
situations, use of convolution formula (1) may display loss of numerical stability which
leads, in turn, to obtaining absurd results, like having negative probabilities. If this
phenomenon takes place, it is advisable to use the Algorithm 2 described in Section 2.4.

References

[1] Cook, J. L. and J. I. Ramirez-Marquez. Two-Terminal Reliability Analysis for a Mobile Ad Hoc
Wireless Network. Reliability Engineering & System Safety, 2007; 92(6); 572-581.

[2] Elperin, T., I. B. Gertsbakh, and M. Lomonosov. Estimation of Network Reliability using Graph
Evolution Models. IEEE Transactions on Reliability, 1991; 40(5); 572–581.

[3] Gertsbakh, I., and Y. Shpungin. Models of Network Reliability: Analysis, Combinatorics and
Monte Carlo. CRC Press, 2009.

[4] Gertsbakh, I., and Y. Shpungin. Network Reliability and Resilience, Springer Briefs in Electrical
and Computer Engineering, Springer, 2011.

[5] Gertsbakh, I., and Y. Shpungin. Product-Type Estimator of Convolutions. In Semi Markov
Models and Applications, J. Janssen and N. Limnios Eds). Kluwer Academic Publishers, 1999;
201-206.

[6] Gertsbakh,I., and Y. Shpungin. Stochastic Models of Network Survivability. Quality Technology
and Quantitative Management, 2012; 9(1); 45-58.

[7] Gunnec, D., and F. S. Salman. Assessing for the Reliability and Expected Performance of
Network under Disaster Risk. OR Spectrum, 2011; 33(3), 499-523.

 [8] Kroese, D., T. Taimre, and Z. I. Botev. Handbook of Monte Carlo Methods, Wiley, New York,
2011; 567–574.

 [9] Marseguerra, M., E. Zio, L. Podofillini, and D. W. Coit. Optimal Design of Reliable Network
Systems in Presence of Uncertainty. IEEE Transactions on Reliability, 2005; 54(2); 243-253.

[10] Murray, L., H. Cancela, and G. Rubino. A Splitting Algorithm for Network Reliability
Estimation. IEE Transactions, 2012; 45; 177-189.

[11] Ross, Sheldon M. Introduction to Probability Models, 9th Edition, Academic Press, 2007.

Short biographies of Ilya Gertsbakh and Yoseph Shpungin are published on page 378
of IJPE, Vol. 8, No. 4, July 2012 in their paper on Signatures and D-spectra and their Use
in Reliability Theory.

Radislav Vaisman is a post-doctoral research fellow in the University of Queensland,
Brisbane, Australia. He received his Ph.D. in Information Systems Engineering and
Operational Research from Technion, Israel. He is a coauthor of one book and has several
publications in international scientific journals. His field of research includes rare event
simulation, randomized algorithms and network reliability.

	1. Introduction
	2. Evolution Process for Networks with Unreliable Nodes
	2.1 How it works?
	2.2 The Simulation Algorithm
	2.3 More about Closure
	2.4 Fighting Numerical Instability for Long Convolutions
	2.5 Modification of Network UP- Definition

	3. Simulation Examples
	4. Conclusions

