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Abstract: We extend the network reliability estimation methodology based on evolution 
(creation) Monte Carlo into four directions: (i) introducing unreliable nodes; (ii) adjusting 
the evolution process with merging to "closure" operation suitable for unreliable nodes; 
(iii) in case of numerical instability in computing convolutions, we suggest a special 
Monte Carlo algorithm based on importance sampling; (iv) we extend the traditional 
network terminal connectivity criterion to criteria describing network disintegration into a 
critical number of clusters, or the critical size of the largest component.  

Keywords: evolution Monte Carlo, unreliable nodes, closure for nodes, critical number of 
clusters, simulating convolutions , numerical instability. 

1.  Introduction 

Abbreviations and Notation:  
𝐶𝑀𝐶- crude Monte Carlo;  
𝐸𝑀𝐶 -evolution Monte Carlo;  
𝑄 - network failure (DOWN) probability;  
𝑅𝐸 -relative error;  
𝑅𝑇𝑉 -relative time variance;  
𝐶𝑃𝑈-central processor unit;  
𝑁 - number of simulation runs;  

              ~ ( )i iExpτ Λ - random variable iτ  has exponential distribution with parameter iΛ  
The traditional network reliability problem, as it has been stated in the recently published 
"Handbook of Monte Carlo Methods" [8] is formulated as follows. Let 𝐺(𝑉,𝐸,𝐾) be an 
undirected graph (network) with 𝑉 being the set of 𝑛 nodes (or vertices), 𝐸 being the set 
of 𝑚 edges (or links), and 𝐾 ⊆ 𝑉, |𝐾| = 𝑠, being a set of special nodes called terminals. 
Associated with each edge 𝑒 ∈ 𝐸 is a Bernoulli random variable 𝑋(𝑒) such that 𝑋(𝑒) = 1 
corresponds to the event that the edge is operational (up) and 𝑋(𝑒) = 0 corresponds to the 
event that the edge has failed (is down). The edge failures are assumed to be independent 
events. Assume that ( ( ) 1) ( )P X e p e= = . 
     Based on this model, the network reliability 𝑅 = 𝑃(𝑈𝑃) and unreliability 𝑄 =
𝑃(𝐷𝑂𝑊𝑁) = 1 − 𝑅  is defined as the probability that a set of terminal nodes 𝐾 � is 
connected (not connected) in the sub-graph containing all of the nodes  of  𝑉. When 𝑠 =
2, the model describes so-called 𝑠 − 𝑡 terminal connectivity. When 𝑠 = 𝑛, we have all-
node connectivity.  
     This model, although very simple, has been employed in a wide number of application 
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settings to communication networks, mobile ad hoc and tactical radio networks, 
evaluation of transport and road networks, see [1, 3, 4, 7, 9, 10].   
     One of the most computationally efficient methods for calculating network reliability 
for the above model is based on so-called evolution or creation process first suggested in 
[2]. It works as follows. Initially, at 𝑡 = 0 all edges 𝑒 are down. At some random 
moment 𝜉(𝑒), edge 𝑒 is "born", independently of other edges, and remains in state up 
forever. 𝜉(𝑒) is assumed to be exponentially distributed with parameter 𝜆(𝑒): 

𝑃(𝜉(𝑒) ≤ 𝑡) = 1 − 𝑒−𝜆(𝑒)𝑡 , 𝑒 ∈ 𝐸. 
     Fix an arbitrary moment 𝑡 = 𝑡0, for example, 𝑡0 = 1. Choose for each 𝑒 its "birth rate" 
𝜆(𝑒) so that the following condition holds:  

𝑃(𝜉(𝑒) > 𝑡0) = 𝑒−𝜆(𝑒)𝑡0 = 1 − 𝑝(𝑒). 
This formula means that at time 𝑡0 the edge 𝑒 has already born (is up) with 
probability 𝑝(𝑒). The crucial observation is that the snap-shot of the whole network taken 
at 𝑡0 gives the picture of the whole network which  coincides in probability with its  state 
produced as a result of generating the state of each edge with static probability 𝑝(𝑒) of 
being up and 1 − 𝑝(𝑒) of being down.  
The Monte Carlo procedure for estimating network UP probability 𝑅 is implemented by 
generating so-called trajectories which imitate the development in time of the evolution 
process. Let us consider an example, see Fig. 1.  

 
 

Figure 1: Evolution Process. Edges are born in the sequence: 1→ 2→ 3. 

     We have a four node network with five edges. The network is UP if all its nodes are 
connected to each other. The initial state without edges at 𝑡 = 0 is denoted as 𝜎0. The 
network stays in it during random time 𝜏0 which is exponentially distributed with 
parameter Λ0 = ∑ 𝜆𝑖5

𝑖=1 . Suppose the edge 1 is born first. By the properties of exponential 
distribution, this happens with probability 𝜆1/Λ0. Then the system goes into its next state 
𝜎1. Now in this state the system spends random exponentially distributed time  
𝜏1 ∼ 𝐸𝑥𝑝(Λ1 = ∑ 𝜆𝑖5

𝑖=2  ). Suppose that the next edge born is 2.  
     This happens with probability 𝜆2/(𝜆2+. . . +𝜆5). This transfers the system into state 𝜎2. 
Now note that at this stage of the evolution process we can add edge 5 (shown by dotted 
line) to already born edges and exclude  it from the further evolution process because the 
existence or nonexistence of this edge does not affect the already formed component of 
three nodes 𝑎, 𝑏, 𝑐 created by edges 1 and 2, see closure or merging operation  in [2,8]. 
The system spends in 𝜎2 random time 𝜏2 ∼ 𝐸𝑥𝑝(𝜆3 + 𝜆4). Suppose edge 3 is born first, 
which happens with probability 𝜆3/(𝜆3 + 𝜆4). Then the system enters the state 𝜎3 which 
is, by definition, the network UP state. Note that the random times 𝜏0, 𝜏1, 𝜏2 are 
independent, and the trajectory 𝜔 = {𝜎1 → 𝜎2 → 𝜎3} takes place with probability  
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𝑃(𝜔) =
𝜆1
𝛬0

⋅
𝜆2
𝛬1

⋅
𝜆3
𝛬2

. 

     Finally, let us find out the probability 𝑃(𝑈𝑃;𝜔) that the network will be UP given that 
the evolution goes along this trajectory:  

𝑃(𝑈𝑃;𝜔) = 𝑃(𝜏0 + 𝜏1 + 𝜏2 ≤ 𝑡0;𝜔). 
     This probability can be found in a closed form using well-known hypo-exponential 
distribution, see [11], page 299 or [3], Appendix B. It is worth to present the 
corresponding formula in its general form.  
     Let independent random variables 𝜏𝑖 ∼ 𝐸𝑥𝑝(Λ𝑖), 𝑖 = 0,1,2, . . . , 𝑟 − 1. Suppose that  

Λ0 > Λ1 > Λ2 > ⋯Λ𝑟−1. 
Then  

 𝑃(�𝜏𝑖

𝑟−1

𝑖=0

≤ 𝑡0) = 1 −�𝑒−Λ𝑖𝑡0

𝑟−1

𝑖=0

�
𝛬𝑗

𝛬𝑗 − 𝛬𝑖𝑗≠𝑖

. (1) 

Now suppose that we have generated 𝑀 trajectories 𝜔1, . . . ,𝜔𝑀 and for each 𝜔𝑖 we have 
calculated by (1) the corresponding convolution 𝑃(𝑈𝑃;𝜔𝑖). The unbiased estimate of 
network UP probability is found as an average  

 𝑃�(𝑈𝑃) =
∑ 𝑃𝑀
𝑖=1 (𝑈𝑃;𝜔𝑖)

𝑀
. (2) 

In the next section we show how an analogous process can be implemented for the case of 
unreliable nodes.  

2.   Evolution Process for Networks with Unreliable Nodes 

2.1   How it works? 

Similarly to Introduction, we are dealing with an undirected graph (network) 𝐺(𝑉,𝐸,𝐾). 
𝑉 is the set of 𝑛 nodes (or vertices), 𝐸 is the set of 𝑚 edges (or links), and 𝐾 ⊆ 𝑉, |𝐾| =
𝑠, is the set of special nodes called terminals. Contrary to Introduction, we now assume 
that the edges are always up, and the nodes, except the terminal nodes, are subject to 
failures and fail independently. Terminal nodes are assumed to be always operational (up). 
So, there are 𝑛1 = 𝑛 − 𝑠 nodes subject to failure. Let us denote the nodes 𝛼1,𝛼2, . . . ,𝛼𝑛1. 
Node 𝛼𝑖 is down with probability 𝑞𝑖 and up  with probability 𝑝𝑖 = 1 − 𝑞𝑖. Node failure 
means that all edges incident to this node are erased and the failed node becomes isolated. 
If nodes 𝛼𝑖 and 𝛼𝑗 both are up and there exists in 𝐸 an edge 𝑒(𝑖, 𝑗) connecting these nodes, 
then edge 𝑒(𝑖, 𝑗) becomes operational (up). If one of two nodes that are connected in 𝐺 by 
an edge is down, then the corresponding edge is assumed to be nonexisting (erased).  
Networks with unreliable nodes have wide range of applications, especially in models of 
network survivability, see e.g., [3, 4, 6].  
     Our main tool for investigating network reliability will be evolution (creation) process 
similar to the described in Introduction.  
     Associate with each node 𝛼𝑖 a random variable 𝜉𝑖 ∼ 𝐸𝑥𝑝(λi), assume that all 𝜉𝑖  are 
independent, and define λi for an arbitrary 𝑡0 > 0 in such a way that it satisfies the 
following equality:  
 P(𝜉𝑖 > 𝑡0) = e−𝜆𝑖𝑡0 = 1 − 𝑝𝑖 . (3) 
At 𝑡 = 0 all nodes are down (except the terminal nodes). Put 𝜆𝑖 to be the birth rate of 𝛼𝑖. 
After a node is "born", it remains up forever. At 𝑡 = 0, also no edges exist. If in 𝐸 there is 
an edge 𝑒(𝑖, 𝑗) connecting nodes 𝛼𝑖 and 𝛼𝑗, and both they are born, then immediately the 
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edge 𝑒(𝑖, 𝑗) "comes to life". The principal fact is that the snap-shot of the network taken at 
𝑡 = 𝑡0 will show that the network is UP with the probability equal to 𝑃(𝑈𝑃) calculated 
for the original static model. Now, as in the Introduction, we construct the trajectories of 
the evolution process leading from the initial state (no nodes born and no edges) to the 
network 𝑈𝑃 state which guarantees the terminal connectivity.  
     Let us consider an example. Figure 2 shows a ladder-type network with terminal nodes 
𝑠, 𝑡 (bold). It has 8 nonterminal nodes and 12 edges. Nodes 𝑖 = 1,2, . . . ,8 fail with 
probability 𝑞𝑖. Network state at 𝑡 = 0 is 𝜎0, with no nodes and no edges. Nodes which are 
not born are shown by empty circles. Suppose node 4 is born the first. This leads to the 
network state 𝜎1. The born node is shown by bold circle. Automatically, edge 𝑒(𝑡, 4) 
appears, and we see that there are two paths leading from 4 to 𝑡: one is direct 4 → 𝑡 and 
the second is 4 → 2 → 1 → 𝑡 which is "parallel" to it. Obviously, nodes 1 and 2 are 
nonrelevant since every connection of node 4 to node 𝑡 via nodes 1,2 is blocked by the 
direct edge (4, 𝑡). So, nodes 1 and 2 constitute a "closure" and are declared as being up. 
We mark them by non bold circles. Suppose, the next birth belongs to node 5, see the state 
𝜎2. In a similar way, nodes 7 and 8 belong to closure and are declared as being up. Let the 
next birth belongs to node 3. It leads to appearance of edges 𝑒(𝑡, 3) and 𝑒(3,5) and 
therefore leads to the network UP state because there exist a path 𝑠 → 5 → 3 → 𝑡.  

 
 
 
 
 
 
 
 
 

Figure 2: Nodes are born in the following order: 4→ 5→ 3. Nodes 1, 2 and 7, 8 
are added as closure. 

     The trajectory of births leading from 𝜎0 to UP is therefore 𝜔 = {4 → 5 → 3}. Let us 
compute the probability 𝑃(𝜔) of this trajectory. Following the reasoning provided in 
Introduction, we find out that  

𝑃(𝜔) =
𝜆4

∑ 𝜆𝑖8
𝑖=1

⋅
𝜆5

∑ 𝜆𝑖𝑖≠1,2,4
⋅

𝜆3
𝜆6 + 𝜆3

. 

     The sojourn time in 𝜎0 is 𝜏0 ∼ 𝐸𝑥𝑝(∑ 𝜆𝑖8
𝑖=1 ). Sojourn time in 𝜎1 is 

~ 1,2,41 ( ),i iExpτ λ≠∑  and in state 𝜎2 the system stays random time 𝜏2 ∼ 𝐸𝑥𝑝(𝜆6 + 𝜆3). 
Thus the snapshot of the network taken at time 𝑡0 sees the network as being UP with 
probability 𝑃(𝜏0 + 𝜏1 + 𝜏2 ≤ 𝑡0;𝜔).#  
     In general, suppose that on certain stage of the evolution process (after carrying closure 
operations) we arrived at state 𝜎∗. Denote by Λ∗ the sum of birth rates of all nodes which 
are not born yet on this stage. Denote the set of all these ”active" nodes by 𝐴∗. So, 
Λ∗ = ∑ 𝜆𝑖𝛼𝑖∈𝐴∗ . The next node 𝛼𝑗 will born with probability  

𝜌∗ =
𝜆𝑗
𝛬∗

. 
 
     After this birth takes place, we arrive (after carrying out the closure, if possible, and 
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adding edges between already born nodes) at the state 𝜎∗∗ which is the direct successor of 
state 𝜎∗. In general, we will simulate a trajectory 𝜔 of states which starts from trivial state 
𝜎0 and ends in some state 𝜎𝑥 ≡ 𝑈𝑃:  

𝜔 = {𝜎0 → 𝜎1 → 𝜎2 → ⋯ → 𝜎𝑥 ≡ 𝑈𝑃}. 
Let 𝜏𝑖 ∼ 𝐸𝑥𝑝(Λ𝑖) be the sojourn time in state 𝜎𝑖, 𝑖 = 0,1, … , 𝑥 − 1.  
Denote  

𝑅(𝜔) = 𝑃(𝑈𝑃;𝜔) = 𝑃(�𝜏𝑖

𝑥−1

𝑖=0

≤ 𝑡0). 

2.2   The Simulation Algorithm 

Now we are able to describe the simulation algorithm which implements the above 
described procedure. 

 Algorithm 1.  

1.    Put 𝑅�: = 0  
2.   Generate trajectory 𝜔 leading from the trivial state 𝜎0 to UP state of the network. 

Use for its generation the above described transition probability from state 𝜎∗ to 
its successor 𝜎 ∗∗. After a transition takes place, locate non relevant nodes and 
declare them as being up. Add edges between the up nodes if such edges are 
present in the set 𝐸.  

3.    Using (1), calculate 𝑅(𝜔) and put 𝑅�: = 𝑅� + 𝑅(𝜔) .  
4.    Repeat 2 and 3 𝑀 times.  
5.    Put 𝑅�(𝑈𝑃): = 𝑅�

𝑀
.  

Obviously, 𝑅�(𝑈𝑃) is an unbiased estimate of network UP  probability 𝑅 = 𝑃(𝑈𝑃).  
An important remark: node 𝛼𝑖 birth probability is defined as 𝜆(𝛼𝑖) = − log [𝑞(𝛼𝑖)]

𝑡0
, or 

𝑞(𝛼𝑖) = 𝑒−𝜆(𝛼𝑖)𝑡0. Therefore the transition probabilities in the evolution process from 
state to state do not depend on 𝑡0. If we increase 𝑡0, we will correspondingly decrease the 
node failure probabilities, but this will not affect the probabilities of generating the 𝜔 
trajectories. Therefore, the rare event phenomenon will not take place for this algorithm.  

2.3   More about Closure 

Let us describe in more formal way the node closure operation. Suppose that after some 
nodes were born, we have  network state 𝜎. Denote by 𝑆𝑟  the set of nodes which are 
already born. Let us call them "red" nodes. For simplicity we will assume that the terminal 
nodes also are "red". Denote the remaining set of nodes 𝑆𝑤 = 𝑉 ∖ 𝑆𝑟  and call the nodes in 
this set "white" nodes. Let the edges between white nodes also be called white; let the 
edges between red edges be called red, and let the edges between nodes of different color 
be called “green”. Consider a particular stage of the birth process, say 𝜎2 on Fig. 2. Edges 
𝑒(1,2) and 𝑒(7,8) are white, edges 𝑒(4, 𝑡) and 𝑒(𝑠, 5) are red, and edges 
𝑒(2,4), (1, 𝑡), 𝑒(𝑠, 8), 𝑒(5,7) are green. The set of red nodes connected by red edges 
consists of several components. So, for 𝜎2 there are two such red components: {4, 𝑡} and 
{𝑠, 5}. The nodes in these components are connected by red edges only. Similarly, the set 
of white nodes also consists of several components, namely {1,2} and {7,8}.  
     The general rule for carrying out the closure is the following:  
Let 𝐺𝑤 be a white component which is connected by green edges to only one red 
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component 𝐺𝑟 . Then all nodes of 𝐺𝑤 can be declared red and joined to 𝐺𝑟 .  
For example, 𝐺𝑤 = {1,2} can be declared red and joined to 𝐺𝑟 = {4, 𝑡}.  
     The implementation of the closure for unreliable nodes is algorithmically considerably 
more involved than for unreliable edges because it amounts to search for all white 
components on each stage of the evolution process. The CPU time spent on this search 
may exceed the gain obtained by reducing the length of the simulated trajectories. In the 
next section we will show an example comparing the simulation algorithms with and 
without closure.  

2.4   Fighting Numerical Instability for Long Convolutions 

Our numerical experience of simulating relatively large networks (e.g. having more than 
40-50 nodes) reveals that the use of (1) may show a numerical instability  resulting in 
getting absurd results, like negative probability or probability exceeding 1. The reason is 
that for long trajectories, the Λ𝑖 values may become very large, as a result of which the 
terms in (1) may become very large, especially when some Λ’s happen to be close to each 
other. The terms in (1) have alternating signs and the computer calculations according to 
(1) may become extremely unstable. We met this phenomenon already in preparing 
numerical examples for our paper [2]. Also some Monte Carlo researchers have reported 
to us about the same instability in private communications. To avoid it, we suggested in 
[5] an alternative to (1) based on importance Monte Carlo sampling procedure. Detailed 
description and the corresponding proofs can be found also in [3], Chapter 7.  
Here is a short description of the corresponding algorithm. Suppose we want to estimate  

𝑃(𝜏1 + 𝜏2+. . . +𝜏𝑚 ≤ 𝑇), 
where 𝜏𝑖 are independent nonnegative random variables (r.v.’s) with density 𝑓𝑖(𝑡) and 
cumulative distribution function 𝐹𝑖(𝑡).  

Algorithm 2  

1.  Simulate r.v. 𝑋1 with the density 𝑓1(𝑡)/𝐹1(𝑇). (This r.v. has support [0,𝑇]). Let 
𝑋1 = 𝑥1.  

      Simulate r.v. 𝑋2 with density 𝑓2(𝑡)/(𝐹2(𝑇 − 𝑥1)). (This r.v. has support [0,𝑇 −
𝑥1]). Let 𝑋2 = 𝑥2. Continue recursively and generate r.v. 𝑋𝑘 having density 
𝑓𝑘(𝑡)/(𝐹𝑘(𝑇 − 𝑥1 − 𝑥2 − ⋯− 𝑥𝑘−1)).  

2.  After r.v.’s  𝑋1,𝑋2, …𝑋𝑚−1 have been generated, calculate  
𝐵𝑚(𝑇) = 𝐹1(𝑇) ⋅ 𝐹1(𝑇 − 𝑥1) ⋅ 𝐹3(𝑇 − 𝑥1 − 𝑥2) ⋅ … ⋅ 𝐹𝑚(𝑇 − 𝑥1 − 𝑥2 −⋯𝑥𝑚−1). 

3.   Repeat steps 1, 2 𝐾 times and calculate 1 .
( )

ˆ ( )

k i
m

i
B T

B T
K

=
∑

=  

It was proved in [3,5] that 𝐵�(𝑇) is an unbiased estimate of 𝑃(𝜏1 + 𝜏2+. . . +𝜏𝑚 ≤ 𝑇).  
The best number of replications 𝐾 must be found experimentally. Small values of 𝐾 have 
smaller CPU time but have greater relative error. We demonstrate the choice of 𝐾 in our 
example 4 in the next section.  

2.5    Modification of Network UP- Definition  

In studying models dealing with network survivability subject to random attack on its 
nodes, the researchers are interested in evaluating the network ability to retain its 
functionality when a certain part of nodes becomes damaged (i.e., becomes down). Very 
often the network stops functioning if it disintegrates into too many isolated components. 
Of particular interest is the following criterion. Suppose that the network has 𝑠 special 
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nodes representing important facilities (hospitals, storages, communication centers, etc). 
Let us call them vital nodes (VN’s). Assume that the VN’s do not fail. The network, by 
definition, is functional (UP) if and only if in the process of node failures it falls apart into 
no more than 𝑟 so-called clusters, 𝑟 ≤ 𝑠. A cluster is a (connected) component containing 
at least one VN. So, for example, the network represents a railroad system with 𝑠 = 5 
VN’s. Initially, all VN’s constitute one cluster. The network remains operational if and 
only if it has less than four clusters, i.e. has one, two or three clusters. (Here 𝑟 = 3).  
     An important feature is that the above described evolution process built on network 
nodes may be used for calculating network UP probability also for this modified criterion. 
We simply simulate the node birth trajectory and end it if the number of clusters becomes 
less or equal 𝑟. An example of using this criterion will be given in the next section.  

3.    Simulation Examples 

Before we present the simulation results, let us make the following principal comment. 
Suppose we determine all 𝜆(𝑒) values for some fixed 𝑡0 = 1. What will happen if we take 
the snap-shot of the system at another instant, say 𝑡1 = 0.9? This is equivalent to 
multiplying all lambda values by the factor 𝑡0/𝑡1 = 1/0.9 = 1.11. This operation will not 
change the probabilistic mechanism of creating the trajectories of the evolution process 
because the transitions probabilities depend on the ratios of the lambda values. Therefore, 
introducing another 𝑡0 can be made by carrying out only one extra arithmetic operation - 
computing the convolution by (1) for different 𝑡0 value. This will demand a negligible 
amount of extra CPU time. Therefore, when we compare the efficiency of CMC and EMC 
we  will take into account that the EMC allows to compute network reliability for several 
sets of node unreliability values 𝑞1, . . . , 𝑞𝑚 using the same CPU time. We make an 
agreement that the relevant CPU time presented below is given for five different sets of 𝑞 
values. In literature, it is suggested to measure the efficiency of Monte Carlo procedure by 
RTV which equals the CPU time times the squared relative error. The factor of 0.2 will be 
introduced in all RTV values presented below. We will present the following   

Example 1: Terminal Connectivity  

We consider a 9x9 rectangular grid with five terminals located in the center and in the 
corners, see Fig. 3. Table 1 compares the simulation results of CMC and EMC, for two 
sets of node failure values. The first set is 𝑞1 = 0.001, 𝑞2 = 0.01 and the second set is 
𝑞1 = 0.001, 𝑞2 = 0.001, where 𝑞1 corresponds to odd and 𝑞2 to even node, respectively. 
(Node is odd if sum of its coordinates is odd and even, otherwise. For example, the central 
node is even, two closest neighbors of a corner are odd). There are in total 76 nodes 
subject to failure.  
     The first two rows of the Table 1 compare the CMC and EMC for all-terminal 
connectivity. The last two rows compare the CMC and EMC for the 𝑠 − 𝑡 connectivity 
when 𝑠 and 𝑡 are located on the opposite ends of the diagonal. The EMC was 
implemented without applying the closure.  
     Let us make an important observation related to the lower half of Table 1 (𝑞 = 0.001 
for all nodes), in rows three and four. Network fails if one of two terminals gets isolated. 
This happens if two neighboring nodes fail, the probability of which is 𝑞2 = 10−6. There 
are two such min cuts, and therefore the probability of the main event leading to the loss 
of 𝑠 − 𝑡 connectivity is about 2 ⋅ 10−6. This is in excellent agreement with the results 
presented in the last two lines of the table. The above reasoning shows that the Burtin-
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Pittel approximation (see [3], p.70,73)  is very accurate.   

 

Figure 3: 9x9 Grid with Five Terminals (bold) 

Table 1: The Simulation Results for Terminal Connectivity Criterion 
Method 𝑄 𝑅𝐸 𝑅𝑇𝑉 𝐶𝑃𝑈 𝑁 𝑞1, 𝑞2 
CMC 1.88 ⋅ 10−5 0.24 1.14 19.9 1,000,000 0.001;0.01 
EMC 1.97 ⋅ 10−5 0.086 0.17 ⋅ 0.2

= 𝟎.𝟎𝟑𝟒 
22.0 100,000 0.001;0.01 

CMC 2.01 ⋅ 10−6 0.23 9.4 175 1,000,000 0.001;0.001 
EMC 2.04 ⋅ 10−6 0.086 0.036 ⋅ 0.2

= 𝟎.𝟎𝟎𝟕𝟐 
187 1,000,000 0.001;0.001 

Example 2: Network Disintegration into Several Clusters  

Here we consider network survivability with respect to the number of clusters. The data 
presented in Table 2 are for the 9x9 grid with 5 terminals shown on Fig. 3. The first two 
rows present data when the network is UP if it has 1 or 2 clusters. The next two rows 
present similar data when the network is UP if it has 1,2 or 3 clusters; the last two rows 
present data for UP defined as having 1,2,3 or 4 clusters.  We will denote the above UP 
states as UP(1,2), UP(1,2,3) and UP(1,2,3,4). DOWN state in the last case means 
disintegration into 5 clusters, i.e. complete isolation of all terminals. 1 ( )Q P UP= − . As 
in the previous example, we use EMC without closure.  

Table 2: The Simulation Results for Disintegration into Several Clusters 
Method  𝑄 𝑅𝐸 𝑅𝑇𝑉 𝐶𝑃𝑈 𝑁 𝑞1, 𝑞2  
CMC  3.08 ⋅ 10−4 0.081  0.063  97  500,000  0.05/0.1   
EMC  3.04 ⋅ 10−4 0.035  0.15 ⋅ 0.2 = 𝟎.𝟎𝟑  121  500,000  0.05/0.1   
CMC  1.46 ⋅ 10−6 0.38  14.5  98  5,000,000  0.05/0.1   
EMC  1.25 ⋅ 10−6 0.19  4.07 ⋅ 0.2 = 𝟎.𝟖𝟏  103  500,000  0.05/0.1   
CMC  —– —–  —– —– —–  —– 
EMC  1.67 ⋅ 10−9 0.38  13.8 ⋅ 0.2 = 𝟐.𝟖  90  500,000  0.05/0.1   

 
Remark 1. The network is highly reliable with respect to disintegration into 5 clusters, see 
the last row. For this case, CMC was not used since it would demand 𝑁 = 1010 
experiments and CPU time of  several hours#.  

Example 3: Monte Carlo with Closure Operation for Nodes.  

We carried out the experimentation on a random Erdos-Renyi graph with 30 nodes and 48 
edges, for 𝑠 − 𝑡 terminal connectivity, see Fig. 4.  
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Figure 4: Replica of a Random Graph with 30 Nodes and 48 Edges 

     We compared three methods: the CMC, the EMC and the EMC with closure operation. 
It was found experimentally  that the closure starts working after approximately one third 
of the nodes (i.e. about 16 nodes) are already born. Table 3 presents the simulation results.  
What follows from this table is that the use of closure for unreliable nodes gives a small 
gain in RE (because the trajectories become shorter) but demands considerably more CPU 
time. In total, there is no gain in RTV. As we noticed before, the closure for unreliable 
edges needs only finding out the edges whose both ends belong to the already existing 
component. As to the nodes, the search for non-relevant nodes needs searching for 
connected groups of nodes which can be united with one of the already existing 
component. As to the nodes, the search for non-relevant nodes needs searching for 
connected groups of nodes which can be united with one of the already existing 
components of born nodes. Our conclusion is that from practical point of view, there is no 
need to complicate the EMC algorithm with the closure operation.  

Table 3: The Simulation Results for Erdos-Renyi Graph 
Method  𝑄  𝑅𝐸  𝑅𝑇𝑉  𝐶𝑃𝑈 𝑁 𝑞  
CMC  2.2 ⋅ 10−6  0.314  3.25  32.1  5,000,000  0.1   
EMC  2.03 ⋅ 10−6 0.047  0.35 ⋅ 0.2 = 𝟎.𝟎𝟕  15.8  500,000  0.1   

EMC & closure  2.01 ⋅ 10−6 0.029  0.040 ⋅ 0.2 = 𝟎.𝟎𝟖  46.6  500,000  0.1   

Example 4: Loss of Stability and Simulating Convolutions.  

Loss of stability usually takes places when the trajectories are long. To present an 
example of high reliable graph, we simulated 𝑠 − 𝑡 connectivity in a random graph with 
100 nodes and 1000 edges. The reliability criterion was the 𝑠 − 𝑡 connectivity between 
two randomly chosen terminal nodes. The odd/even nodes have low reliability, 𝑞 = 0.5 
and 𝑞 = 0.6.  High reliability is achieved because the graph is quite dense. The average 
length of a trajectory is about   7  nodes. Table 4 presents the simulation results for CMC 
and various 𝐾. It follows that the best results for RTV are obtained for 𝐾 = 20.  

Table 4: The Simulation Results for Highly Reliable Random Graph 
Method  𝑄  𝑅𝐸  𝑅𝑇𝑉  𝐶𝑃𝑈 𝑁 𝑞1; 𝑞2 𝐾  
CMC  2.4 ⋅ 10−6  0.74  24.6  45.0  1,000,000  0.5;0.6 —–   

Sim. conv. 2.82 ⋅ 10−6 0.254  5.08 ⋅ 0.2 = 𝟏.𝟎𝟐  78.8  1,000,000  0.5;0.6 10   
Sim. conv. 2.83 ⋅ 10−6 0.221  4.07 ⋅ 0.2 = 𝟎.𝟖𝟏  82.9  1,000,000  0.5;0.6 20   
Sim. conv. 2.57 ⋅ 10−6 0.208  4.62 ⋅ 0.2 = 𝟎.𝟗𝟐  105.3  1,000,000  0.5;0.6 40   
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4.    Conclusions 

The Evolution Monte Carlo (EMC) as presented in the paper is a good and reliable 
working tool for the reliability investigation of networks with independently failing nodes 
and considerably superior to CMC in case of highly reliable networks (say with failure 
probability 𝑄 <  10−5). From practical point of view, there is no need to incorporate into 
the standard EMC algorithm the analogue of closure operation.  This operation gives little 
savings on the length of the evolution trajectories but at the same time considerably 
increases the CPU time for the search of all non-relevant nodes.  
     The general framework of the EMC algorithm allows to include new extensions of the 
traditional network reliability definition as K-terminal reliability. Examples of these 
extensions are disintegration of the network into a critical number of clusters or network 
failure when its maximal component contains less than minL  nodes. However, in certain 
situations, use of convolution formula (1) may display loss of numerical stability which 
leads, in turn, to obtaining absurd results, like having negative probabilities. If this 
phenomenon takes place, it is advisable to use the Algorithm 2 described in Section 2.4.  
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