
Stochastic Enumeration Methods for

Counting, Rare-Events and

Optimization

Radislav Vaisman

Stochastic Enumeration Method for

Counting, Rare-Events and

Optimization

Research Thesis

In Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy.

Radislav Vaisman

Submitted to the Senate of the Technion - Israel Institute of Technology

Tishrei 5774 Haifa September 2013

This research thesis was done under the supervision of Professor Reuven Y. Ru-

binstein in the Faculty of Industrial Engineering and Management. I would

like to express my deepest gratitude to Prof. Rubinstein for his devoted and

professional guidance and for his financial support.

I also want to thank Professor Ofer Strichman. This thesis would never be

completed without his help and guidance.

The generous financial help of the Technion is gratefully acknowledged.

Thanks to all my family members that were patient and encouraged, pushed and

stood by me during the entire period of my studies.

This thesis is dedicated to Prof. Reuven Y. Rubinstein, the best teacher I had.

i

PUBLICATIONS

Books:

• R. Y. Rubinstein, A. Ridder, and R. Vaisman. Fast Sequential Monte

Carlo Methods for Counting and Optimization. John Wiley & Sons, New

York, 2013. To appear.

Journal Publications:

• P. Glynn, A. Dolgin, R. Y. Rubinstein, and R. Vaisman. How to Generate

Uniform Samples on Discrete Sets Using the Splitting Method. Prob. in

Eng. and Inf. Sciences, vol. 24, 3, pp. 405-422, 2010.

• R. Y. Rubinstein, A. Dolgin, and R. Vaisman. The Splitting Method for

Decision Making. Journal of Statistical Planning and Inference, 2011.

• F. C’erou, A. Guyader, R. Y. Rubinstein, and R. Vaisman. Smoothed

Splitting Method for Counting. Stochastic Models, 2012.

• P. Dupuis, B. Kaynar, A. Ridder, R. Y. Rubinstein, and R. Vaisman.

Counting with Combined Splitting and Capture - Recapture Methods.

Stochastic Models, 2012.

Accepted for Publication:

• I. Gertsbach, R. Y. Rubinstein, Y. Shpungin, and R. Vaisman. Permu-

tational Methods for Performance Analysis of Stochastic Flow Networks.

Prob. in Eng. and Inf. Sciences (accepted at May, 2013)

• I. Gertsbach, E. Newman, and R. Vaisman. Monte Carlo for estimating

exponential convolution. Communications in Statistics - Simulation and

Computation (accepted at August, 2013)

Technical reports:

• R. Y. Rubinstein, Z. Botev, and R. Vaisman. Hanging Edges for Fast

Reliability Estimation. Technical report, Technion 2012.

ii

Submitted for publication:

• I. Gertsbach, Y. Shpungin, and R. Vaisman. New Version of Network

Evolution Monte Carlo With Nodes Subject to Failure.

• R. Vaisman Z. Botev and A. Ridder. Sequential Monte Carlo Method

for counting vertex covers in general graphs. Journal of the American

Statistical Association.

• R. Vaisman O. Strichman and I. Gertsbach. Counting monotone cnf for-

mulas with Spectra method. INFORMS, Journal on Computing.

In Preparation:

• Z. Botev, R. Vaisman and R. Rubinstein. Monte Carlo splitting for Stochas-

tic Flow Networks.

• I. Gertsbakh, Y. Shpungin and R. Vaisman. D-spectrum and Reliability

of Binary System With Ternary Components.

iii

Contents

Abstract . 1

List of Acronyms . 3

1 Introduction 4

1.0.1 Randomized algorithms for counting 9

1.0.2 The Evolution model . 13

2 The Splitting Method for Decision Making 17

2.1 Introduction: The Splitting Method 19

2.2 Decision Making . 23

2.3 Counting with the Capture-Recapture Method 24

2.3.1 Application of the Classic Capture Recapture 24

2.3.2 Application of the On-line Capture Recapture 26

2.4 Numerical Results . 26

2.4.1 Counting . 27

2.4.2 Decision Making . 29

2.5 Concluding Remarks . 31

2.6 Appendix: Splitting Algorithms 32

2.6.1 Basic Splitting Algorithm 32

2.6.2 Enhanced Splitting Algorithm for Counting 34

2.6.3 Direct Splitting Algorithm 36

3 How to Generate Uniform Samples on Discrete Sets Using the

Splitting Method 38

3.1 Introduction: The Splitting Method 40

3.2 The Gibbs Sampler . 45

3.3 Uniformity Results . 50

3.3.1 MCMC without Splitting 51

3.3.2 Uniformity of the Splitting Method 53

iv

3.4 Conclusion and Further Research 54

3.5 Appendix: Splitting Algorithms 55

3.5.1 Basic Splitting Algorithm 55

3.5.2 Enhanced Splitting Algorithm for Counting 57

4 On the Use of Smoothing to Improve the Performance of the

Splitting Method 60

4.1 Introduction: The Splitting Method 62

4.2 Presentation of the SAT problem 63

4.3 Smoothed Splitting Method . 65

4.3.1 The SSM Algorithm with fixed nested subsets 66

4.3.2 The SSM Algorithm with adaptive nested subsets 67

4.3.3 Gibbs Sampler . 69

4.4 Statistical Analysis of i.i.d. SSM 70

4.4.1 Statistical Analysis of i.i.d. SSM 70

4.4.2 Remarks and comments 75

4.5 Numerical Results . 77

4.5.1 Smoothed Splitting Algorithm 77

4.5.2 Splitting Algorithm . 80

5 Counting with Combined Splitting and Capture-Recapture Meth-

ods 83

5.1 Introduction . 85

5.2 Splitting Algorithms for Counting 87

5.2.1 The Basic Adaptive Splitting Algorithm 89

5.3 Combining Splitting and Capture–Recapture 92

5.3.1 The Classic Capture–Recapture in the Literature 92

5.3.2 Splitting algorithm combined with Capture–Recapture . . 93

5.3.3 Extended Capture–Recapture Method for SAT 95

5.4 Numerical Results . 97

5.4.1 The 3-Satisfiability Problem (3-SAT) 97

5.4.2 Random graphs with prescribed degrees 103

5.4.3 Binary Contingency Tables 107

5.5 Concluding Remarks . 110

6 Permutational Methods for Performance Analysis of Stochastic

Flow Networks 111

6.1 Introduction . 113

v

6.2 Max Flow with Equal Failure Probabilities 114

6.2.1 D-spectrum and its Properties 114

6.2.2 Estimation of D-spectrum and P(DOWN ; q) 117

6.2.3 Numerical Results . 119

6.3 Max Flow with Non-Equal Edge Failure Probabilities 123

6.3.1 Transformation of the Static Flow Model into a Dynamic 123

6.3.2 Permutational Algorithm for Estimating P(DOWN ;q) . 124

6.3.3 Numerical Results . 126

6.4 Extension to Random Capacities 128

6.4.1 Numerical Results . 128

6.5 Concluding Remarks and Further Research 132

7 Stochastic Enumeration Method for Counting, Rare-Events and

Optimization 134

7.1 Introduction . 136

7.2 The OSLA Method . 139

7.3 Extension of OSLA: nSLA Method 141

7.4 Extension of OSLA: SE-OSLA Method for SAW’s 145

7.4.1 SE-OSLA Algorithm for SAW’s 146

7.5 SE Method . 151

7.5.1 SE Algorithm . 152

7.6 Backward Method . 160

7.7 Applications of SE . 163

7.7.1 Counting the Number of Trajectories in a Network 163

7.7.2 Counting the Number of Perfect Matching (Permanent) in

a Graph . 168

7.7.3 Counting SAT’s . 171

7.8 Choosing a Good Number N (e) of Elites 172

7.9 Numerical Results . 173

7.9.1 Counting SAW’s . 173

7.9.2 Counting the Number of Trajectories in a Network 175

7.9.3 Counting the Number of Perfect Matchings (Permanent)

in a Graph . 178

7.9.4 Counting SAT’s . 180

7.10 Concluding Remarks and Further Research 184

7.11 Appendices . 185

7.11.1 SIS Method . 185

vi

7.11.2 DPLL Algorithm from Wikipedia 187

7.11.3 Random Graphs Generation 187

8 Conclusion and Further Research 189

A Additional topics 192

A.1 Efficiency of Estimators . 192

A.1.1 Complexity . 193

A.1.2 Complexity of Randomized Algorithms 194

A.2 Complexity of Splitting Method under Simplifying Assumptions . 196

vii

List of Tables

2.1 Comparison of the performance of the product estimator |̂X ∗| with
its counterpart ̂|X ∗

cap| for SAT (75× 305) model. 27

2.2 Comparison of the performance of the product estimator |̂X ∗| and
its counterpart ̂|X ∗

cap| for SAT (75× 325) model. 28

2.3 Dynamics of of one of the runs of the enhanced Algorithm for the

random 3-SAT with matrix A = (75× 305). 28

2.4 Performance of the decision making Algorithm 2.6.3 with global

mt policy for the random 3-SAT with the clause matrix A =

(250× 1065), N = 10, 000, ρ = 0.5 and b = 10 30

2.5 Performance of the global mt policy Algorithm 2.6.3 for the ran-

dom 3 − 4-SAT with the instance matrix A = (122 × 663), N =

50, 000, ρ = 0.95 and b = 10 . 31

3.1 Performance of splitting Algorithm 3.5.1 for SAT problem with

instance matrix A = (20× 80). 52

3.2 Dynamics of Algorithm 3.5.1 for SAT 20× 80 model. 52

4.1 Performance of smoothed Algorithm 4.3.2 for SAT 20× 80 model. 78

4.2 Performance of the smoothed Algorithm 4.3.2 for SAT 75 × 325

model. 79

4.3 Performance of Enhanced Cloner Algorithm [83] for SAT 20× 80

model. 80

4.4 Performance of the Enhanced Cloner Algorithm [83] for SAT 75×
325 model. 81

5.1 Performance of splitting algorithm for the 3-SAT (122 × 515)

model with N = 25, 000 and ρ = 0.1. 99

5.2 Dynamics of a run of the splitting algorithm for the 3-SAT (122×
515) model using N = 25, 000 and ρ = 0.1. 100

viii

5.3 Performance of the regular CAP-RECAP for the extended (122×
520) model with N = 1, 000 (up to iteration 28), N = 100, 000

(from iteration 29), N = 70, 000 (for the two capture-recapture

draws), and ρ = 0.1. 101

5.4 Performance of splitting algorithm for the 3-SAT (122 × 520)

model with N = 100, 000 and ρ = 0.1. 102

5.5 Performance of the extended CAP-RECAP estimator |̂X ∗|ecap for

the (122×515) with N = 1, 000 (up to iteration 31), N = 100, 000

(from iteration 31 and the two capture-rcapture draws), c∗ = 0.05,

and ρ = 0.1. 103

5.6 Performance of the splitting algorithm for a small problem using

N = 50, 000 and ρ = 0.5. 106

5.7 Typical dynamics of the splitting algorithm for a small problem

using N = 50, 000 and ρ = 0.5 (recall Notation 5.4.1 at the be-

ginning of Section 5.4). 106

5.8 Performance of the splitting algorithm for a large problem using

N = 100, 000 and ρ = 0.5. 107

5.9 Performance of the splitting algorithm for Model 1 using N =

50, 000 and ρ = 0.5. 108

5.10 Typical dynamics of the splitting algorithm for Model 1 using

N = 50, 000 and ρ = 0.5. 109

5.11 Performance of the splitting algorithm for Model 2 using N =

200, 000 and ρ = 0.5. 109

6.1 Edge capacities for the dodecahedron graph 119

6.2 D-spectrum estimator F̂ (x) for the dodecahedron graph with Φ = 14120

6.3 P̂(DOWN ; q) and RE for different values of q for the dodecahe-

dron graph . 120

6.4 The estimator F̂ (x) of the D-spectrum for the Erdos-Renyi graph

with Φ = 27 . 122

6.5 P̂(DOWN ; q) and RE for different values of q for the Erdos-Renyi

graph . 122

6.6 P̂(DOWN ; q) and RE for different values of q for the dodecahe-

dron graph . 127

6.7 P̂(DOWN ; q) and RE for different values of q for the Edrdos-

Renyi graph . 127

ix

6.8 P̂(DOWN ; q) and RE for different values of q for the dodecahe-

dron graph . 127

6.9 P̂(DOWN ; q) and RE for different values of q for the Edrdos-

Renyi graph . 127

6.10 M(e) and |Ma−M(e)| as function of ε for the dodecahedron graph

with ρ = 0.05 . 129

6.11 M(e) and |Ma−M(e)| as function of ε for the Erdos-Renyi graph

with ρ = 0.05 . 130

6.12 P̂(DOWN ; q) and RE for different values of q for the dodecahe-

dron graph with ε = 0.5 . 130

6.13 P̂(DOWN ; q) and RE for different values of q for the Erdos-Renyi

graph with ε = 0.5 . 130

6.14 P̂(DOWN ; q) and RE for different values of q for the dodecahe-

dron graph with ε = 3 and Φ = 13.099 131

6.15 P̂(DOWN ; q) and RE for different values of q for the Erdos-Renyi

graph with ε = 3 and Φ = 26, 645 131

6.16 P̂(DOWN ; q) and RE for different values of q for the dodecahe-

dron graph with ε = 6 and Φ = 10.168 131

6.17 P̂(DOWN ; q) and RE for different values of q for the Erdos-Renyi

graph with ε = 6 and Φ = 23.231 132

7.1 The length of the SAW’s Rki, k = 1, . . . , 20; i = 1, . . . , 6 for

N (e)=1, 2, 5, 15, 25, 35 . 151

7.2 The efficiencies of the SE Algorithm 7.5.1 for the 2-SAT model

with |X ∗| = 100 . 159

7.3 Performance of SE-OSLA Algorithm 7.4.1 for SAW with n = 500 174

7.4 Performance of of the SE-OSLA Algorithm 7.4.1 for SAW for n =

1, 000 . 174

7.5 Dynamics of a run of the SE-OSLA Algorithm 7.4.1 for n = 500 . 175

7.6 Performance of SE Algorithm 7.4.1 for the Model 1 graph with

N
(e)
t = 50 and M = 400. 176

7.7 Performance of SE Algorithm 7.4.1 for the Model 2 with N
(e)
t =

100 and M = 500. 176

7.8 Performance of SE Algorithm 7.5.1 for the Erdos-Renyi random

graph (n = 200) with N
(e)
t = 1 and M = 30, 000. 177

7.9 Performance of SE Algorithm 7.4.1 for K25 with N
(e)
t = 50 and

M = 100. 177

x

7.10 Performance of the SE Algorithm 7.5.1 for the Model 1 with

N
(e)
t = 50 and M = 10. 178

7.11 Performance of SE Algorithm 7.5.1 for the for Model 2 with

N
(e)
t = 100 and M = 100. 179

7.12 Performance of SE Algorithm 7.5.1 for the Erdos-Renyi graph

using N
(e)
t = 1 and M = 20, 000. 179

7.13 Performance of SE Algorithm 7.5.1 for the 3-SAT 75× 325 model. 180

7.14 Performance of SE Algorithm 7.5.1 for the 3-SAT 75× 270 model. 181

7.15 Performance of SE Algorithm 7.5.1 for SAT 300×1080 model with

N
(e)
t = 300, M = 300 and r = 1. 181

7.16 The relative errors as function of r. 182

7.17 Comparison of the efficiencies of SE, SampleSearch and stan-

dard splitting . 184

xi

List of Figures

1.1 The black nodes form an independent set since they are not ad-

jacent to each other. 11

1.2 A Hamiltonian graph. The bold edges form a Hamiltonian cycle. 12

1.3 A bipartite graph. The bold edges form a perfect matching. . . . 13

1.4 Evolution process. Edges are born in the sequence: 1→ 2→ 3 . 15

2.1 Dynamics of Algorithm 2.6.1 . 34

3.1 Histogram for the 3-SAT problem with the instance matrix A =

(20× 80) for b = 1, k = 0, N = 100 and ρ = 0.05. 54

3.2 Dynamics of Algorithm 3.5.1 . 57

4.1 Partial mixing of the Gibbs sampler. 76

4.2 Asymptotic normality: empirical (100 runs) and limiting Gaus-

sian cdf’s, 1000 replicas (left) and 10, 000 (right). 79

6.1 A network with e1 = (s, b), e2 = (b, t), e3 = (s, t) and capacity

vector C = (1, 2, 2) . 116

6.2 The dodecahedron graph. 119

6.3 The evolution process for the network of Example 6.2.1 126

7.1 SAW trapped after 15 iterations and its corresponding values

νt, t = 1, . . . , 15 . 141

7.2 Directed graph . 141

7.3 Tree corresponding to the set {000, 001, 100, 110, 111}. 143

7.4 The sub-trees {000, 001} (in bold) generated by nSLA using the

oracle . 144

7.5 A graph with 4 clauses and |X ∗| = 5. 145

7.6 A SAW of length n = 121. 146

7.7 The First Four Elites N
(e)
1 = N (e) = 4 149

xii

7.8 First Iteration of Algorithm 7.4.1 149

7.9 Second Iteration of Algorithm 7.4.1 150

7.10 Dynamics of the SE Algorithm 7.5.1 for the first 3 iterations . . . 154

7.11 The sub-trees {100, 000, 001} (in bold) corresponding to N (e) = 2. 156

7.12 A tree with 5 variables. 157

7.13 Sub-trees (in bold) corresponding to N (e) = 1. 157

7.14 Sub-trees (in bold) corresponding to N (e) = 2. 158

7.15 A graph with |X ∗| = 5 paths. 158

7.16 Procedure 2 . 162

7.17 Bridge network: number of path from A to B. 163

7.18 Extended bridge . 164

7.19 Sub-tree (in bold) corresponding to the path (e2, e3, e4, e7). . . . 166

7.20 The bipartite graph. 169

xiii

Abstract

In this research thesis we present a series of papers that deals with

problems under a rare events settings. Main results obtained are:

1. A generic randomized algorithm, called the splitting is presented. The

later is used for combinatorial optimization, counting and sampling

uniformly on complex sets, such as the set defined by the constraints

of an integer program. We adopt the classical randomized algorithm

scheme that uses a sequential sampling plan to decompose a ”diffi-

cult” problem into a sequence of ”easy” ones. The splitting combines

Markov Chain Monte Carlo (MCMC) sampler and specially designed

splitting mechanism. Our algorithm runs in parallel multiple Markov

chains by making sure that all of them run in steady-state at each

iteration.

In the first article we introduce a simple modification of the splitting

method based on Gibbs sampler and show that it can be efficiently

used for decision making.

In the second article we show that the classic MCMC used as a uni-

versal tool for generating samples on complex sets can fail and in

particular miss some points in the region of interest. On the other

hand, the splitting algorithm can be efficiently used for generating

uniform samples on those sets.

In the third article we present an entirely new splitting algorithm

called the smoothed splitting method (SSM). The main difference be-

tween SSM and splitting is that it works with an auxiliary sequence

of continuous sets instead of the original discrete ones. Operating in

the continuous space have an added value in sense of flexibility and

robustness.

In our last article dedicated to splitting we present an enhanced version

of the splitting method based on the capture-recapture technique.

This modification allows to achieve a variance and computation time

reductions. Moreover, we show how to apply the algorithm to count

graphs with prescribed degrees, and binary contingency tables.

2. We present an adaptation of the well known Permutation Monte Carlo

(PMC) method for estimation rare events in flow networks. (PMC)

was originally developed for reliability networks, but as we show in

our our last article can be successfully adapted for stochastic flow

networks, and in particular for estimation of the probability that the

maximal flow in such a network is above some fixed level, called the

threshold.

3. Finally, we present a new generic stochastic enumeration (SE) al-

gorithm for counting #P complete problems such as the number of

1

satisfiability assignments and the number of perfect matchings (per-

manent). We show that SE presents a natural generalization of the

classic sequential algorithm in the sense that it runs in parallel multi-

ple trajectories instead of a single one and employs a polynomial time

decision making oracle to prevent the exploration of empty trajecto-

ries (dead ends) and thus overcomes the difficulty of the rare events.

2

List of Acronyms

BFS Breadth first search
BRE Bounded Relative Error
CAP-RECAP Capture Recapture Method
CE Cross Entropy
CLT Central Limit Theorem
CMC Crude Monte Carlo
CNF Conjunctive Normal Form
DOWN Network Down State
FPAUS Fully Polynomial Almost Uniform Sampler
FPRAS Fully Polynomial Time Randomized Approximation Scheme
ID Internal Distribution
IS Importance Sampling
ISD Importance Sampling Distribution
MCMC Markov Chain Monte Carlo
nSLA n Step Look Ahead
OSLA One Step Look Ahead
PDF Probability Density Function
PMC Permutation Monte Carlo
RE Relative Error
SAT Satisfiability Problem
SAW Self Avoiding Walk
SE Stochastic Enumeration
SIS Sequential Importance Sampling
SSM Smoothed Splitting Method
UP Network Up State

3

Chapter 1

Introduction

Counting and optimization are not only common and natural human activities

but also an important issue in computer science and engineering. The majority

of practical problems in those fields belongs to the NP-Complete or even more

difficult complexity classes. In other words, they probably cannot be solved

efficiently according to the modern computation theory. As an example, con-

sider an efficient manufacture of microchips made possible by solving the well

known traveling salesman problem (TSP). Many real and abstract counting and

optimization problems become quickly too hard to solve exactly so we consider

randomized algorithms that return estimates of the exact solution. Those meth-

ods are based on computer simulation, also called Monte Carlo methods and

even if the rigorous proofs are not always available they are extensively used in

today industry with the hope to obtain optimal solutions.

The Monte Carlo method was pioneered in the 1940s by John von Neumann,

Stanislaw Ulam and Nicholas Metropolis, while they were working at nuclear

weapon Manhattan Project in the Los Alamo National Laboratory. It was named

after the Monte Carlo casino, a famous casino where Ulam’s uncle often gambled

away his money. In general, Monte Carlo algorithms are easy to implement and

they can deliver reliable estimates even for very hard problems. On the other

hand, there are settings for which the simple algorithm can quickly become

unusable so some more advanced techniques should be introduced.

In this work we concern mainely with counting problems under a rare event

settings. Most counting problems of interest belong to the class of so-called #P-

complete problems which is related to the familiar class of NP-hard problems.

See [69] for details. The area of counting, and in particular a definition of #P-

complete class, introduced by Valiant [92] received much attention in the Com-

4

puter Science community. An efficient Algorithms were found for some problems.

For example, Karp and Lubby [51] introduced a FPRAS (A fully polynomial ran-

domized approximation scheme) for counting the solutions of DNF satisfiability

formula. Similar results were obtained for Knapsack and Permanent problems,

see [47, 23]. On the other hand, there are many “negative” results. For example,

Dyer, Frieze and Jerrum showed that there is no FPRAS for #IS (Independent

Set) if the maximum degree of the graph is 25 unless RP = NP [24]. Count-

ing the number of vertex covers remains hard even when restricted to planar

bipartite graphs of bounded degree or regular graphs of constant degree, see [91]

for details. We can conclude that to date, very little is known about how to

construct efficient algorithms for solving various #P-complete problems.

Next, we present some examples of #P-complete problems:

• The Hamiltonian cycle problem.

How many Hamiltonian cycles does a graph have? That is, how many

tours contains a graph in which every node is visited exactly once (except

for the beginning/end node)?

• The permanent problem.

Calculate the permanent of a matrix A, or equivalently, the number of

perfect matchings in a bipartite balanced graph with A as its biadjacency

matrix.

• The self-avoiding walk problem.

How many self-avoiding random walks of length n exist, when we are al-

lowed to move at each grid point in any neighboring direction with equal

probability?

• The connectivity problem.

Given two different nodes in a directed or undirected graph, say v and w,

how many paths exist from v to w that do not traverse the same edge more

than once?

• The satisfiability problem.

Let X be a collection of all subsets of n Boolean variables {x1, . . . , xn}.
Thus, X has cardinality |X | = 2n. Let C be a set of m Boolean disjunctive

clauses. Examples of such clauses are C1 = x1 ∨ x̄2 ∨x4, C2 = x̄2 ∨ x̄3, etc.
How many (if any) satisfying truth assignments for C exist, that is, how

many ways are there to set the variables x1, . . . , xn either true or false so

that all clauses Ci ∈ C are true?

5

• The k-coloring problem.

Given k ≥ 3 distinct colors, in how many different ways can one color the

nodes (or the edges) of a graph, so that each two adjacent nodes (edges,

respectively) in the graph have different colors?

• The spanning tree problem.

How many unlabeled spanning trees has a graph G? Note that this count-

ing problem is easy for labeled graphs [10].

• The isomorphism problem.

How many isomorphisms exist between two given graphs G and H? In

other words, in an isomorphism problem one needs to find all mappings ϕ

between the nodes of G and H such that (v, w) is an edge of G if and only

if (ϕ(v), ϕ(w)) is an edge of H.

• The clique problem.

How many cliques of fixed size k exist in a graph G? Recall that a clique

is a complete subgraph of G.

The decision versions of #P problems generally belong to the NP-complete class

so counting all feasible solutions, denoted by #P, is even a harder problem.

Nevertheless, we encounter many examples where the counting problem is hard

to solve, while the associated decision problem is easy. As an example, finding

a perfect matching in bipartite graph is easy while counting all such matchings

is hard. Generally, the complexity class #P consists of the counting problems

associated with the decision problems in NP. Completeness is defined similarly to

the decision problems: a problem is #P-complete if it is in #P, and if every #P

problem can be reduced to it via parsimonious reduction. Hence, the counting

problems that we presented above are all #P-complete. For more details we

refer to the classic monograph [71].

There are two major approaches that proved useful when trying to tackle

counting problems. The first is MCMC (Markov Chain Monte Carlo). The

second is Importance Sampling and in particular a sequential one. The reason

for those is as follows; it was shown earlier by Jerrum at. al. [48] that count-

ing is equivalent to uniform sampling in the space of interest. Obviously, it is

possible to sample in such a region by constructing an ergodic Markov Chain

and sampling using MCMC methods. The pitfall is in the speed of convergence

of such a chain to the stationary distribution. If the chain “mixes” rapidly,

on in other words the chain reaches stationary distribution in number of steps

6

bounded by some polynomial, then an efficient algorithm for counting exists. On

the other hand, Importance Sampling can achieve the same results but usually

much faster. In general, counting algorithms based on Importance Sampling

report very good performance. A previously mentioned DNF satisfiability Al-

gorithm by Karp and Lubby is one such example. For success stories using SIS

Algorithm, see [84] and [14, 5]. Unfortunately, it is not easy to provide rigorous

proofs in those cases [4]. In this work, we employ the MCMC approach in our

Splitting method presented in chapters 2,3,4,5 and the Importance Sampling is

a basis for the Stochastic Enumeration presented in chapter 7. While MCMC

and IS are definitely the most common methods, a different approach called the

Evolution method, is presented in chapter 6. The later provides a general frame-

work for tackling counting problems with monotonic properties, like monotone

CNF and graph covers.

Next, we introduce some general overview of the techniques used in this

thesis.

• The splitting method dates back to Kahn and Harris [50] and Rosenbluth

and Rosenbluth [77]. The main idea is to partition the state-space of a

system into a series of nested subsets and to consider the rare event as the

intersection of a nested sequence of events. When a given subset is entered

by a sample trajectory during the simulation, numerous random retrials

are generated with the initial state for each retrial being the state of the

system at the entry point. By doing so, the system trajectory is split into a

number of new sub-trajectories, hence the name splitting. Since then hun-

dreds of papers have been written on that topic, both from a theoretical

and a practical point of view. Applications of the splitting method arise in

particle transmission (Kahn and Harris [50]), queueing systems (Garvels

[28], Garvels and Kroese [29], Garvels et al. [30]), and reliability (L’Ecuyer

et al. [57]). The method has been given new impetus by the RESTART

(Repetitive Simulation Trials After Reaching Thresholds) method in the

sequence of papers by Villén-Altimirano and Villén-Altimirano [95, 96, 97].

A fundamental theory of the splitting method was developed by Melas [64],

Glasserman et al. [39, 40], and Dean and Dupuis [21, 22]. Recent devel-

opments include the adaptive selection of the splitting levels in Cérou and

Guyader [11], the use of splitting in reliability networks [53, 80], to quasi-

Monte Carlo estimators in L’Ecuyer et al. [58], and the connection between

splitting for Markovian processes and interacting particle methods based

on the Feynman-Kac model in Del Morall [68]. In this work we further

7

developed the splitting method combined with Gibbs sampler. This com-

bination proved itself to be a powerful tool for solving hard combinatorial

optimization and counting problems.

• Importance sampling is a well-known variance reduction technique in stochas-

tic simulation studies. The idea behind importance sampling is that certain

values of the input random variables have a bigger impact on the output

parameters than others. If these “important” values are sampled more

frequently, the variance of the output estimator can be reduced. However,

such direct use of importance sampling distributions will result in a bi-

ased estimator. In order to eliminate the bias the simulation outputs must

be modified (weighted) by using a likelihood ratio factor, also called the

Radon Nikodym derivative [86]. The fundamental issue in implementing

importance sampling is the choice of the importance sampling distribution.

In case of counting problems, it is well known that a straightforward appli-

cation of importance sampling typically yields very poor approximations

of the quantity of interest. In particular, Gogate and Dechter [41, 42]

show that poorly chosen importance sampling in graphical models such

as satisfiability models generates many useless zero-weight samples, which

are often rejected yielding an inefficient sampling process. To address this

problem, which is called the problem of losing trajectories, the above au-

thors propose a clever sample search method, which is integrated into the

importance sampling framework.

Concerning probability problems, a wide range of applications of impor-

tance sampling have been reported successfully in the literature over the

last decades. Siegmund [89] was the first to argue that, using an expo-

nential change of measure, asymptotically efficient importance sampling

schemes can be built for estimating gambler’s ruin probabilities. His anal-

ysis is related to the theory of large deviations, which has since become an

important tool for the design of efficient Monte Carlo experiments. Impor-

tance sampling is now a subject of almost any standard book on Monte

Carlo simulation (see, for example, [1, 86]). We shall use importance sam-

pling in chapter 7.

The rest of this work is organized as follows. Sections 1.0.1 and 1.0.2 of this

chapter is dedicated to preliminaries for the methods used in this work. In Chap-

ter 2 we show how the splittingmethod combined with some simple modifications

can be used for decision making. In Chapter 3 we consider a crucial problem

8

of uniform sampling in complex sets. We show numerically, that the splitting

algorithm combined with Gibbs sampler provides good uniformity results. In

Chapter 4 we present a new version of splitting algorithm that operates in the

continuous domain. In Chapter 5 we present an enhanced version of the splitting

method based on the capture-recapture estimator. The later allows us to achieve

a considerable variance reduction. In Chapter 6 we present an adaptation of

Permutation Monte Carlo technique for solving stochastic flow networks thresh-

old problem. In Chapter 7 we present a new sequential counting algorithm for

solving self reducible problems. In Chapter 8 we present a discussion,concluding

remarks and some direction for future research. Finally, in the Appendix we con-

sider an efficiency of Monte Carlo estimators, then, we discuss the complexity of

randomized algorithms and in particular we give a formal definition of FPRAS

and FPAUS using [67]. In the end we introduce some mathematical background

on the Gibbs sampler - the method of Diaconis-Holmes-Ross (DHR), from which

we adopted some basic ideas.

1.0.1 Randomized algorithms for counting

Below we present some background on randomized algorithms. The main idea

of randomized algorithms for counting [67, 69] is to design a sequential sampling

plan, with a view to decomposing a “difficult” counting problem defined on the

set X ∗ into a number of “easy” ones associated with a sequence of related sets

X0,X1, . . . ,Xm and such that Xm = X ∗. Typically, randomized algorithms ex-

plore the connection between counting and sampling problems and in particular

the reduction from approximate counting of a discrete set to approximate sam-

pling of elements of this set, where the sampling is performed by the classic

MCMC method [86]. A typical randomized algorithm comprises the following

steps:

1. Formulate the counting problem as that of estimating the cardinality |X ∗|
of some set X ∗.

2. Find a sequence of sets X0,X1, . . . ,Xm such that

X0 ⊃ X1 ⊃ · · · ⊃ Xm = X ∗ and |X0| is known. Clearly, we have that

|Xm| = |X ∗|.

3. Write |X ∗| = |Xm| as

|X ∗| = |X0|
m∏
t=1

|Xt|
|Xt−1|

. (1.1)

9

Note that the quantity

ℓ =
|X ∗|
|X0|

is very small, like ℓ = 10−100, while each ratio

ct =
|Xt|
|Xt−1|

= P(x ∈ Xt|x ∈ Xt−1) (1.2)

should not be small, like ct = 10−2 or greater. As we shall see below in

typical applications such ct will be available. Clearly, estimating ℓ directly

while sampling in X0 is meaningless, but estimating each ct separately

seems to be a good alternative.

4. Develop an efficient estimator for each ct = |Xt|/|Xt−1|.

5. Estimate |X ∗| by

|̂X ∗| = |X0|
m∏
t=1

ĉt =

m∏
t=1

|X̂t|
|X̂t−1|

, (1.3)

where ĉt =
|X̂t|

|X̂t−1|
and |X̂t|, t = 1, . . . ,m is an estimator of |Xt|.

Algorithms based on the sequential Monte Carlo sampling estimator (1.3) are

called in computer literature [67, 69], randomized algorithms. We shall call them

simply the RAN algorithms.

It is readily seen that in order to deliver a meaningful estimator of |X ∗|, we
have to solve the following two major problems:

(i) Put the well known NP-hard counting problems into the framework (1.1)

by making sure that X0 ⊃ X1 ⊃ · · · ⊃ Xm = X ∗ and each ct is not a

rare-event probability.

(ii) Present a low variance unbiased estimator of each ct = |Xt|/|Xt−1|, such
that the resulting estimator of ℓ is of low variance and unbiased.

We shall see below that task (i) is not difficult and shall proceed with it in this

section. Task (ii) is quite complicated and is associated with uniform sampling

separately at each sub-region Xt. This will be done by combining the Gibbs

sampler with the classic splitting method [28] and will be considered in the

subsequent chapters.

It readily follows that as soon as both tasks (i) and (ii) are resolved one can

obtain an efficient estimators for each ct, and, thus a low variance estimator |̂X ∗|
in (1.3). We therefore proceed with task (i) by considering several well-known

NP-hard counting problems.

10

Example 1.0.1 (Independent Sets). Consider a graph G = (V,E) with m edges

and n vertices. Our goal is to count the number of independent node (vertex)

sets of this graph. A node set is called independent if no two nodes are connected

by an edge, that is, no two nodes are adjacent, see Figure 1.1 for an illustration

of this concept.

Figure 1.1: The black nodes form an independent set since they are not adjacent

to each other.

Consider an arbitrary ordering of the edges. Let Ej be the set of the first j

edges and let Gj = (V,Ej) = (V, {e1, . . . , ej}) be the associated sub-graph. Note

that Gm = G(V,Em) = G(V,E) = G, and that Gj+1 is obtained from Gj by

adding the edge ej+1, which is not in Gj . Denoting by Xj the set of independent

sets of Gi we can write |X ∗| = |Xm| in the form (1.1). Here |X0| = 2n, since

G0 has no edges and thus every subset of V is an independent set, including the

empty set. Note that here X0 ⊃ X1 ⊃ · · · ⊃ Xm = X ∗.

Example 1.0.2 (Vertex Coloring). Given a graph G = (V,E) with m edges

and n vertices, color the vertices of V with given q colors, such that for each

edge (i, j) ∈ E, vertices i and j have different colors. The procedure for vertex

coloring while applying the randomized algorithm is the same as for independent

sets. Indeed, we again consider an arbitrary ordering of the edges. Let Ej be

the set of the first j edges and let Gj = (V,Ej) be the associated sub-graph.

Note that Gm = G, and that Gj+1 is obtained from Gj by adding the edge ej+1.

Denoting by |Xi| the cardinality of the set Xi corresponding to Gi we can write

again |X ∗| = |Xm| in the form (1.1), where X0 ⊃ X1 ⊃ · · · ⊃ Xm = X ∗. Here

|X0| = qn, since G0 has no edges.

Example 1.0.3 (Hamiltonian Cycles). Given a graph G = (V,E) with k edges

and n vertices, find all Hamiltonian cycles, that is, those corresponding to the

tours of length n.

Figure 1.2 presents a graph with 9 nodes and several Hamiltonian cycles, one

of which is marked in bold lines.

11

Figure 1.2: A Hamiltonian graph. The bold edges form a Hamiltonian cycle.

The procedure for Hamiltonian cycles is similar to independent sets. Con-

sider now all possible graph edges e1, e2, · · · , e(n2) and suppose that k ≤
(
n
2

)
and that E = {e(n2)−k+1, · · · , e(n2)}. Define a graph Gj = (V,Ej), where Ej =

{ej+1, · · · , e(n2)} for j = 0, 1, 2, · · · ,m =
(
n
2

)
− k. Note that Gm = G(n2)−k =

G(V,E(n2)−k+1) = G(V,E) = G and Gj+1 is obtained from Gj by removing an

edge ej+1. Denoting by Xi the set of all Hamiltonian cycles of length n corre-

sponding to the graph Gi we can write again |X ∗| = |Xm|. Finally, having in

mind that G0 is a complete graph, we conclude that |X0| = (n − 1)! and the

X0 ⊃ X1 ⊃ · · · ⊃ Xm = X ∗ setting of framework (1.1) is obtained.

Example 1.0.4 (Knapsack Problem). Given items of sizes a1, . . . , am > 0 and

a positive integer b ≥ mini ai, find the number of vectors x = (x1, . . . , xn) ∈
{0, 1}n, such that

n∑
i=1

ai xi ≤ b.

The integer b represents the size of the knapsack, and xi indicates whether or not

item i is put into the knapsack. Let X ∗ denote the set of all feasible solutions,

that is, all different combinations of items that can be placed into the knapsack

without exceeding its capacity. The goal is to determine |X ∗|.
To put the knapsack problem into the framework (1.1) Jerrum and Sinclair

[46], assume without loss of generality that a1 ≤ a2 ≤ · · · ≤ an and define

bj = min{b,
∑j

i=1 ai}, with b0 = 0. Denote by Xj the set of vectors x that

satisfy
∑n

i=1 ai xi ≤ bj , and let m be the largest integer such that bm ≤ b.

Clearly, Xm = X ∗. Thus, (1.1) is established again.

12

Example 1.0.5 (Counting the Permanent). The permanent of a general n× n

binary matrix A = (aij) is defined as

per(A) = |X ∗| =
∑
x∈X

n∏
i=1

aixi , (1.4)

where X is the set of all permutations x = (x1, . . . , xn) of (1, . . . , n). It is well-

known that calculation of the permanent of a binary matrix is equivalent to the

calculation of the number of perfect matchings in a certain bipartite graph. A

bipartite graph G(V,E) is a graph in which the node set V is the union of two

disjoint sets V1 and V2, and in which each edge joins a node in V1 to a node in

V2. A matching of size m is a collection of m edges in which each node occurs

at most once. A perfect matching is a matching of size n.

To see the relation between the permanent of a binary matrix A = (aij)

and the number of perfect matchings in a graph, consider the bipartite graph

G = (V,E) where V1 and V2 are disjoint copies of {1, . . . , n}, and (i, j) ∈ E if

and only if aij = 1, for all i and j. As an example, let A be the 3× 3 matrix

A =

 1 1 1
1 1 0
0 1 1

 . (1.5)

The corresponding bipartite graph is given in Figure 1.3. The graph has 3

perfect matchings, one of which is displayed in the figure. These correspond to

all permutations x for which the product
∏n

i=1 aixi = 1.

1

3

1’

2’

3’

2

Figure 1.3: A bipartite graph. The bold edges form a perfect matching.

For a general binary matrix A let Xi denote the set of matchings of size i

in the corresponding bipartite graph G. Assume that Xn is non-empty, so that

G has a perfect matching of nodes V1 and V2. We are interested in calculating

|Xn| = per(A). Taking into account that |X0| = |E| we obtain (1.1).

1.0.2 The Evolution model

In order to understand the material presented in chapter 6, we give below a brief

introduction to the Evolution model for network reliability. The traditional net-

work reliability problem, as it has been stated in the recently published Hand-

book of Monte Carlo Methods [53] , is formulated as follows. Let G(V,E,K) be

13

an undirected graph (network) with V being the set of n nodes (or vertices), E

being the set of m edges (or links), and K ⊆ V , |K| = s, being a set of special

nodes called terminals.

Associated with each edge e ∈ E is a Bernoulli random variable X(e) such that

X(e) = 1 corresponds to the event that the edge is operational (up) andX(e) = 0

corresponds to the event that the edge has failed (is down). The edge failures

are assumed to be independent events.

Based on this model, the network reliability R = P(UP) and unreliability (prob-

ability to be DOWN) Q = P(DOWN) = 1 − R are defined as the probability

that a set of terminal nodes K is connected (not connected) in the sub-graph

containing all of the nodes in V . When s = 2, the model describes so-called s− t

terminal connectivity. When s = n, we have all-node connectivity.

This model, although very simple, has been employed in a wide number of ap-

plication settings. Among other cases, many examples can be found in the

reliability evaluation and topology design of communication networks, mobile

ad hoc and tactical radio networks, evaluation of transport and road networks,

see [16, 35, 37, 45, 59, 63, 70].

One of the most computationally efficient methods for calculating network

reliability for the above model is based on so-called evolution or creation process

first suggested in [26]. It works as follows. Initially, at t = 0 all edges e are down.

At some random moment ξ(e), edge e is born, independently of other edges, and

remains in state up forever. ξ(e) is assumed to be exponentially distributed with

parameter λ(e):

P(ξ(e) ≤ t) = 1− eλ(e)t, e ∈ E (1.6)

Fix an arbitrary moment t = t0, for example, t0 = 1. Choose for each e its birth

rate λ(e) so that the following condition holds:

P(ξ(e) > t0) = eλ(e)t0 = 1− p(e) (1.7)

This formula means that at time t0 the edge e has already born (is up) with

probability p(e). The crucial observation is that the snap shot of the whole

network taken at t0 gives the picture of the whole network which probabilistically

coincides with its true state as if we generate the state of each edge with static

probability p(e) of being up and 1− p(e) of being down.

The Monte Carlo procedure for estimating network UP probability R is im-

plemented by generating so-called trajectories which imitate the development in

14

time of the evolution process. The best way to explain how this method works

is to demonstrate it on a simple example, see figure 1.4.

�
�

�
�

�
�

�
�

�

�

� �

�

�
�

�
�

�
�

� �

�

�

�

�
� �

Figure 1.4: Evolution process. Edges are born in the sequence: 1→ 2→ 3

We have a four node network with five edges. The network is UP if all its

nodes are connected to each other. The initial state without edges at t = 0

is denoted as σ0. The network stays in it during random time τ0 which is

exponentially distributed with parameter Λ0 =
∑5

i=1 λi. Suppose the edge 1

is born first. By the properties of exponential distribution, this happens with

probability λ1
Λ . Then the system goes into its next state σ1. Now in this state the

system spends random exponentially distributed time τ1 ∼ Exp(Λ1 =
∑5

i=2 λi).

Suppose that the next edge born is 2. This happens with probability λ1∑5
i=2 λi

.

This transfers the system into state σ2. Now note that at this stage of the

evolution process we can add edge 5 to already born edges and exclude it from

the further evolution process because the existence or nonexistence of this edge

does not affect the already formed component of three nodes a, b, c created by

edges 1 and 2. This operation was originally called by its inventor M. Lomonosov

as closure [26].

After adding edge 5 to already born edges, there remains only two unborn

15

edges 3 and 4. The system spends in σ2 random time τ2 ∼ Exp(λ3+λ4). Suppose

edge 3 is born first, which happens with probability λ3
λ3+λ4

. Then the system

enters the state σ3 which is, by definition, the network UP state. Note that the

random times τ0, τ1, τ2 are independent, and the trajectory ω = {σ1 → σ2 → σ3}
takes place with probability

P(ω) =
λ1

Λ0
· λ2

Λ1
· λ3

Λ2
(1.8)

Finally, let us find out the probability P(UP ;ω) that the network will be UP

given that the evolution goes along this trajectory:

P(UP ;ω) = P(τ0 + τ1 + τ2 ≤ t0;ω) (1.9)

This probability can be found in a closed form using well-known hypoexponential

distribution, see [79], page 299. It is worth to present the corresponding formula

in its general form.

Let τi ∼ Exp(Λi), i = 0, 1, 2, · · · , r− 1 be independent random variables and

suppose that

Λ0 > Λ1 > · · · > Λr−1

Then

P(
r−1∑
i=0

τi ≤ t0) = 1−
r−1∑
i=0

e−Λit0
∏
j ̸=i

Λj

Λj − Λi
(1.10)

Let us observe in more detail the above evolution (creation) process. It starts

always when the number of components equals n, the number of nodes. Adding

a newborn edge always leads to the decrease of the number of components by

1. So, σ1 has three components, σ2 - two components, and σ3 - one component.

Therefore, in case of all-terminal connectivity, each trajectory has the same

length of n transitions. Without applying the closure operation, the trajectories

would have been considerably longer since the number of edges is usually larger

than the number of nodes, especially for dense graphs.

Now suppose that we have generated M trajectories ω1, · · · , ωM and for each

ωi we have calculated by (1.10) the corresponding convolution P(UP ;ωi). The

unbiased estimate of network UP probability is found as an average

P̂(UP) =
1

M

M∑
i=1

P(UP ;ωi) (1.11)

A detailed description of the above evolution process and its properties is given

in Chapter 9 of [35].

16

Chapter 2

The Splitting Method for

Decision Making

Reuven Rubinstein, Andrey Dolgin and Radislav Vaisman

Faculty of Industrial Engineering and Management,

Technion, Israel Institute of Technology, Haifa, Israel

ierrr01@ie.technion.ac.il

iew3.technion.ac.il:8080/ierrr01.phtml

0† This research was supported by the BSF (Binational Science Foundation, grant No

2008482) and ISF (Israel Science Foundation) grant No 2012910

17

Abstract

We show how a simple modification of the splitting method based on

Gibbs sampler can be efficiently used for decision making in the sense that

one can efficiently decide whether or not a given set of integer program con-

straints has at least one feasible solution. We also show how to incorporate

the classic capture-recapture method into the splitting algorithm in order

to obtain a low variance estimator for the counting quantity representing,

say the number of feasible solutions on the set of the constraints of an in-

teger program. We finally present numerical with with both, the decision

making and the capture-recapture estimators and show their superiority

as compared to the conventional one, while solving quite general decision

making and counting ones, like the satisfiability problems.

Keywords. Decision Making, Gibbs Sampler, Cross-Entropy, Rare-Event, Com-

binatorial Optimization, Counting, Splitting.

18

2.1 Introduction: The Splitting Method

In this work we show how a simple modification of the splitting method intro-

duced in [82, 83] can be used for decision making. The goal of the decision

making algorithm is to decide whether or not a discrete set, like the set defined

by the integer programming constraints has a feasible solution.

Although there is a vast literature on the splitting method, (see [7], [28], [31],

[55], [64], [58], [83]), we follow [83] and present some background on the split-

ting method, also called in [83] the cloning method. The main idea is to design

a sequential sampling plan, with a view of decomposing a “difficult” counting

problem defined on some set X ∗ into a number of “easy” ones associated with a

sequence of related sets X0,X1, . . . ,Xm and such that Xm = X ∗. Typically, split-

ting algorithms explore the connection between counting and sampling problems

and in particular the reduction from approximate counting of a discrete set to

approximate sampling of elements of this set, where the sampling is performed

by the classic MCMC method [86].

A typical splitting algorithm comprises the following steps:

1. Formulate the counting problem as that of estimating the cardinality |X ∗|
of some set X ∗.

2. Find a sequence of sets X = X0,X1, . . . ,Xm such that X0 ⊃ X1 ⊃ · · · ⊃
Xm = X ∗, |Xm| = |X ∗| and |X | = |X0| is known.

3. Write |X ∗| = |Xm| as

|X ∗| = |X0|
m∏
t=1

|Xt|
|Xt−1|

= ℓ|X0|, (2.1)

where ℓ =
∏m

t=1
|Xt|

|Xt−1| . Note that ℓ is typically very small, like ℓ = 10−100,

while each ratio

ct =
|Xt|
|Xt−1|

(2.2)

should not be small, like ct = 10−2 or bigger. Clearly, estimating ℓ directly

while sampling in |X0| is meaningless, but estimating each ct separately

seems to be a good alternative.

4. Develop an efficient estimator ĉt for each ct and estimate |X ∗| by

|̂X ∗| = |X0| ℓ̂ = |X0|
m∏
t=1

ĉt, (2.3)

where ℓ̂ = |X0|
∏m

t=1 ĉt.

19

It is readily seen that in order to obtain a meaningful estimator of |X ∗|, we
have to solve the following two major problems:

(i) Put the well known NP-hard counting problems into the framework (2.1)

by making sure that X0 ⊃ X1 ⊃ · · · ⊃ Xm = X ∗ and each ct is not a

rare-event probability.

(ii) Obtain a low variance estimator ĉt of each ct = |Xt|/|Xt−1|.

To proceed note that ℓ can be also written as

ℓ = Ef

[
I{S(X)≥m}

]
, (2.4)

where X ∼ f(x), f(x) is a uniform distribution on the set of points of X = X0,

m is a fixed parameter, like the total number of constraints in an integer pro-

gram, and S(X) is the sample performance, like the number of feasible solution

generated by the constraints of the integer program. It can be also written

(see(2.1)) as

ℓ =

T∏
t=1

ct, (2.5)

where

ct = |Xt|/|Xt−1| = Eg∗t−1
[I{S(X)≥mt−1}]. (2.6)

Here

g∗t−1 = g∗(x,mt−1) = ℓ(mt−1)
−1f(x)I{S(x)≥mt−1}, (2.7)

ℓ(mt−1)
−1 is the normalization constant and similar to (2.1) the sequencemt, t =

0, 1, . . . , T represents a fixed grid satisfying −∞ < m0 < m1 < · · · < mT = m.

Note that in contrast to (2.1) we use in (2.5) a product of T terms instead of a

product of m terms. Note that T might be a random variable. The later case

is associated with adaptive choice of the level sets {m̂t}Tt=0 resulting in T ≤ m.

Since for counting problems the pdf f(x) should be uniformly distributed on

X , which we denote by U(X), it follows from (2.7) that the pdf g∗(x,mt−1)

must be uniformly distributed on the set Xt = {x : S(x) ≥ mt−1}, that is,

g∗(x,mt−1) must be equal to U(Xt). Although the pdf g∗t−1 = U(Xt) is typically

not available analytically, it is shown in [82, 83] that one can sample from it by

using the MCMC method and in particular the Gibbs sampler, and as the result

to update the parameters ct and mt adaptively. This is one of the most crucial

issues of the cloning method.

20

Once sampling from g∗t−1 = U(Xt) becomes available, the final estimator of

ℓ (based on the estimators of ct = Eg∗t−1
[I{S(X)≥mt−1}], t = 0, . . . , T), can be

written as

ℓ̂ =
T∏
t=1

ĉt =
1

NT

T∏
t=1

Nt, (2.8)

where

ĉt =
1

N

N∑
i=1

I{S(Xi)≥mt−1} =
Nt

N
, (2.9)

Nt =
∑N

i=1 I{S(Xi)≥mt−1}, Xi ∼ g∗t−1 and g∗−1 = f .

We next show how to cast the problem of counting the number of feasible

solutions of the set of integer programming constraints into the framework (2.4)-

(2.7).

Example 2.1.1. Counting on the set of an integer programming con-

straints Consider the set X ∗ containing both equality and inequality constraints

of an integer program, that is,∑n
k=1 aikxk = bi, i = 1, . . . ,m1,∑n
k=1 ajkxk ≥ bj , j = m1 + 1, . . . ,m1 +m2,

x = (x1, . . . , xn) ≥ 0, xk is integer ∀k = 1, . . . , n.

(2.10)

Our goal is to count the number of feasible solutions (points) of the set (2.10).

We assume that each component xk, k = 1, . . . , n has d different values, labeled

1, . . . , d. Note that the SAT problem represents a particular case of (2.10) with

inequality constraints and where x1, . . . , xn are binary components. If not stated

otherwise we will bear in mind the counting problem on the set (2.10) and in

particular counting the number of true (valid) assignments in a SAT problem.

It is shown in [83] that in order to count the number of points of the set

(2.10) one can associate it with the following rare-event probability problem

ℓ = Ef

[
I{S(X)=m}

]
= Ef

[
I{

∑m
i=1 Ci(X)=m}

]
, (2.11)

where the first m1 terms Ci(X)’s in (2.11) are

Ci(X) = I{
∑n

k=1 aikXk=bi}, i = 1, . . . ,m1, (2.12)

while the remaining m2 ones are

Ci(X) = I{
∑n

k=1 aikXk≥bi}, i = m1 + 1, . . . ,m1 +m2 (2.13)

21

and S(X) =
∑m

i=1Ci(X). Thus, in order to count the number of feasible so-

lutions on the set (2.10) one can consider an associated rare-event probability

estimation problem (2.11) involving a sum of dependent Bernoulli random vari-

ables Ci i = m1+1, . . . ,m, and then apply |̂X ∗| = ℓ̂|X |. In other words, in order

to count on X ∗ one needs to estimate efficiently the rare event probability ℓ in

(2.11). A rare-event probability estimation framework similar to (2.11) can be

readily established for many NP-hard counting problems [83].

It follows from above that the proposed algorithm will generate an adaptive

sequence of tuples

{(m0, g
∗(x,m−1)), (m1, g

∗(x,m0)), (m2, g
∗(x,m1)), . . . , (mT , g

∗(x,mT−1))}
(2.14)

Here as before g∗(x,m−1) = f(x) = U(X), g∗(x,mt) = U(Xt), and mt is ob-

tained from the solution of the following non-linear equation

Eg∗t−1
I{S(X)≥mt} = ρ, (2.15)

where ρ is called the rarity parameter [86]. Typically one sets 0.1 ≤ ρ0.01. Note

that in contrast to the classic cross-entropy (CE) method [81], [85], where one

generates a sequence of tuples

{(m0,v0), (m1,v1), . . . , (mT ,vT)}, (2.16)

and, where {vt, t = 1, . . . , T} is a sequence of parameters in the parametric fam-

ily of distributions f(x,vt), here in (2.14), {g∗(x,mt−1) = g∗t−1, t = 0, 1, . . . , T}
is a sequence of non-parametric IS distributions. Otherwise, the CE and the

splitting algorithms are very similar.

In Appendix (see Section 2.6), following [83], we present two versions of the

splitting algorithm: the so-called basic version and the enhanced version having

in mind Example 2.1.1. Here we also present what is called the direct estimator

and an associated Algorithm 2.6.3, which can be viewed as an alternative to the

conventional product estimator |X̂ ∗| generated by Algorithm 2.6.2. This estima-

tor is based on direct counting of the number of samples obtained immediately

after crossing the level m, that is without involving the product of ĉt. The draw-

back of the direct Algorithm 2.6.3 is that it is able to count only if |X ∗| is up to

the order of thousands.

Note that the splitting algorithm in [83] is also suitable for optimization.

Here we shal use the same sequence of tuples (2.14), but without involving the

product of the estimators ĉt, t = 1, . . . , T .

22

The rest of the paper is organized as follows. In Section 2.2 we present

two heuristics for speeding up the direct splitting Algorithm 2.6.3. They are

called (i) local mt updating and (ii) global mt updating, respectively and will be

used for decision making. Recall that decision making here is merely to decide

whether or not the set X ∗ of the integer programming constraints (2.10) has

a feasible solution. Section 2.3 shows how to combine the well known capture-

recapture (CAP-RECAP) method with splitting in order to obtain a low variance

alternative to both the product estimator |̂X ∗| in (2.3) and the direct estimator

|̂X ∗
dir| in (2.22). Note that the CAP-RECAP estimator (see (2.17) below) can

be viewed as a generalization of the direct one |̂X ∗
dir| in the sense that once

mt = m it involves two Gibbs samples instead of one sample. In Section 2.4

supportive numerical results are presented. In particular we show that the CAP-

RECAP estimator outperforms the product one |̂X ∗|. Finally, in Section 2.5

some concluding remarks are given.

2.2 Decision Making

Here we present two heuristics for speeding up the direct Algorithm 2.6.3, which

will be used for decision making. They are called (i) local mt updating and (ii)

global mt updating, respectively. It is important to note that they are applicable

only for the direct estimator (see (2.22) below), but not for the product one

(2.8).

Local mt updating In this version, at each iteration t we replace the fixed

mt value in the Gibbs sampler with the elite sample values at that iteration.

To clarify, consider for simplicity the sum of n Bernoulli random variables. Let

for concreteness n = 5, N = 100 and ρ = 0, 01. Assume that while taking the

sample of size N = 100 we obtained the following sequence of elite vectors Xt1 =

(1, 1, 0, 1, 0), Xt2 = (1, 0, 0, 1, 0), Xt3 = (1, 0, 1, 1, 0), Xt4 = (1, 0, 0, 1, 0), Xt5 =

(1, 0, 0, 1, 1). The corresponding elite sample values are S(Xt1) = 3, S(Xt2) =

2, S(Xt3) = 3, S(Xt4) = 2, S(Xt5) = 3, and clearly mt = 2. Thus, in

this version we simple replace mt = 2 by the corresponding S(X) elite values

3, 2, 3, 2, = 3, while all ather data in the direct Algorithm 2.6.3 remaining the

same.

Global mt updating In this version we want the sample performance S(X)

to be a non-decreasing function as Gibbs proceeds. To clarify, assume that at

iteration t we have the same elite sample as before, that is Xt1 = (1, 1, 0, 1, 0),

Xt2 = (1, 0, 0, 1, 0), Xt3 = (1, 0, 1, 1, 0), Xt4 = (1, 0, 0, 1, 0), Xt5 = (1, 0, 0, 1, 1)

23

with mt = 2. Let us pick up one of the elites, say the first one corresponding

to Xt1 = (1, 1, 0, 1, 0) and let us apply to it the systematic Gibbs sampler.

Noticing that Xt1 has 3 unities, we simply replace the original level mt = 2 by

the current value S(Xt1) = 3 and set a new sub-level mt1 = S(Xt1) = 3. We

then proceed from Xt1 = (1, 1, 0, 1, 0) with mt1 = 3 to a new value denoted

as X
(1)
t1 . Assume that while applying systematic Gibbs sampler to the first

components we obtained X
(1)
t1 = (1, 1, 0, 1, 0), that is X

(1)
t1 = Xt1 = (1, 1, 0, 1, 0).

We next proceed from X
(1)
t1 = (1, 1, 0, 1, 0) (with mt2 = 3) to a new vector X

(2)
t1

by applying systematic Gibbs sampler to the second components. Let X
(2)
t1 =

(1, 1, 1, 1, 0). Since X
(2)
t1 = (1, 1, 1, 1, 0) contains 4 unities, we set the new sub-

level mt3 = 4. Assume that proceeding further we obtain mt5 = mt4 = mt3 = 4

and let also X
(4)
t1 = X

(3)
t1 = X

(2)
t1 = (1, 1, 1, 1, 0). The resulting sequence of

sub-levels mti in the systematic Gibbs sampler starting at Xt1 = (1, 1, 0, 1, 0) is

therefore (mt1,mt2,mt3,mt4,mt5) = (3, 3, 4, 4, 4) and similar for the remaining

four elite values Xt2 = (1, 0, 0, 1, 0), Xt3 = (1, 0, 1, 1, 0), Xt4 = (1, 0, 0, 1, 0),

Xt5 = (1, 0, 0, 1, 1). After that we define a new common level mt+1 for iteration

t+1. In Section 2.4 we present some numerical results with the above heuristics.

2.3 Counting with the Capture-Recapture Method

Here we show how the well known capture-recapture (CAP-RECAP) method can

be used as alternative to the product estimator |̂X ∗| in (2.3).

We consider two versions of (CAP-RECAP) (i) the classic one (ii) the pro-

posed on-line one.

2.3.1 Application of the Classic Capture Recapture

Originally the capture-recapture method was used to estimate the size, say M ,

of unknown population, under the assumption that two independent samples are

taken from that population.

To see how the CAP-RECAP method works consider an urn model model

with a total of M identical balls. Denote by N1 and N2, the sample sizes taken

at the first and the second draw. Assume in addition that

1. The second draw take place only after all N1 balls are returned back to

the urn.

2. Before returning the N1 balls back we mark each of them, say we paint

them in a different color.

24

Denote by R the number of balls from the first draw that also appear at the

second one. Clearly that the estimate of M , denoted by M̃ is

M̃ =
N1N2

R
.

This is so since
N2

M
≈ R

N1
.

Note that the name capture-recapture comes from the name of model where

one is interested to estimate the animal population size in a particular area,

provided two visits are available to the area. In this case R denotes the number

of animals captured on the first visit that were then recaptured on the second

one.

It is well know that a slightly better unbiased estimate of M is

M̂ =
(N1 + 1)(N2 + 1)

(R+ 1)
− 1. (2.17)

The corresponding variance is

Var(M̂) =
(N1 + 1)(N2 + 1)(N1 −R)(N2 −R)

(R+ 1)(R+ 2)(R+ 3)
. (2.18)

Application of The CAP-RECAP to counting problems is trivial. We set

|X ∗| = M and note that N1 and N2 correspond to the screened out Gibbs

samples at the first and second draws, which are performed after Algorithm

2.6.2 reaches the desired level m.

As an example, assume that in both experiments (draws) we set originally

N = 10, 000 and then we obtained N1 = 5, 000, N2 = 5, 010 and R = 10.

The capture-recapture (CAP-RECAP) estimator of |X ∗|, denoted by ̂|X ∗|cap is

therefore

̂|X ∗|cap = 2, 505, 000.

Clearly, the direct estimator ̂|X ∗|dir can not handle such big number.

Our numerical results below clearly indicate that the CAP-RECAP estimator

̂|X ∗|cap is typically more accurate than the product one |̂X ∗|, that is

Var|̂X ∗| > Var ̂|X ∗|cap,

provided that the the sample N is limited, say by 10,000 and if |X ∗| is large

but limited, say by 107. If, however, |X ∗| is very large, say |X ∗| > 107, then

̂|X ∗|cap might become meaningless, since with the budget of N = 10, 000 we will

obtain often R = 0, provided |X ∗| > 107. However, the latter case has limited

application, since if |X ∗| is very large we can estimate it with the crude Monte

Carlo.

25

2.3.2 Application of the On-line Capture Recapture

To see how the CAP-RECAP method works on-line consider again the urn model

with a total of M unknown identical balls. In this case we take only one draw

of size N instead of two ones (of sizes N1 and N2, respectively as before) and

proceed as follows:

1. We draw the N balls one-by-one with replacement.

2. Before returning each of the N balls back to the urn we mark it.

3. As in classic method we count the number of marked balls.

Note that the marking procedure here is different from the classic one. Also

note that by drawing the N balls on-line (sequentially), each ball can be drawn

with positive probability up to N times, while in the classic one each ball has a

positive probability to be drawn only up to two times. Now having R marked

balls at hand how can we find the on-line estimator ofM , denoted by |̂X ∗
on| (recall

that in our case M = |X ∗|), its expected value and the associated variance. We

proceed argue as follows.

The probability that the same ball will appear exactly N times is (1/M)N ;

exactly 2 times is N(1− 1/M)(1/M)N−1, etc.

Proceeding we can readily obtain that the on-line estimator of M and the

associated variance. Although this will be done some where else, it is intuitively

clear that the on-line CAP-RECAP estimator |̂X ∗
on| is more exact than the classic

one |̂X ∗
cap|, provided N = N1 +N2. The reason is that the on-line one is based

on conditioning and conditioning always reduces variance.

Remark 2.3.1. As a third alternative to both the classic and the on-line CAP-

RECAP estimators we can use the direct estimator |̂X ∗
dir| in (2.22) to estimate

M by taking into account the number of screened out elements at the level m,

which is equal to N − |̂X ∗
dir|. As an estimator of X ∗, denoted by |̂X ∗

scr| we can

take the following one.

|̂X ∗
scr| = |̂X ∗

dir| if |̂X ∗
dir| ≤ N/2 and |̂X ∗

scr| = N2

|̂X ∗
dir|

, otherwise.

2.4 Numerical Results

Below we present numerical results with CAP-RECAP method for counting and

with the global mt heuristics for decision making.

26

2.4.1 Counting

Consider the random 3-SAT with the instance matrix A = (75×325) taken from

www.satlib.org and its truncated version A = (75× 305).

Table 2.1 presents comparison of the performance of the product estimator

|̂X ∗| and its counterpart |̂X ∗
cap| using the enhanced splitting Algorithm 2.6.2 for

A = (75 × 305). Table 2.2 presents similar data for A = (75 × 325). We set

N = 10, 000, ρ = 0.1 and b = η. Table 2.3 presents the dynamic of one of the

runs of Algorithm 2.6.2 for A = (75× 305). We found that the the average CPU

time is about 6 minutes for each run.

Note that the sample N1 was obtained as soon as soon as Algorithm 2.6.2

reaches the final level m, and N2 was obtained while runing Algorithm 2.6.2 for

one more iteration at the same level m. The actual sample sizes N1 and N2 were

chosen according to the following rule: sample until Algorithm 2.6.2 screens out

50% of the samples and then stop. It follows from Tables 2.1 that for model

A = (75 × 305) this corresponds to N1 ≈ N2 ≈ 26, 000 and R ≈ 22, 000, while

for model A = (75× 325) it follows from Table 2.2 that N1 ≈ N2 ≈ R ≈ 2, 200.

It also follows that for A = (75 × 305) and A = (75 × 325) the relative error

of |̂X ∗
cap| is about 10 and 100 times smaller as compared to |̂X ∗|. It is readily

seen that by enlarging the samples N1 and N2 only at the last two iterations of

Algorithm 2.6.2 the relative error of |̂X ∗
cap| will further decrease.

Table 2.1: Comparison of the performance of the product estimator |̂X ∗| with
its counterpart |̂X ∗

cap| for SAT (75× 305) model.

Run N0 Iterations |̂X ∗| RE of |̂X ∗| |̂X ∗
cap| RE of |̂X ∗

cap| N1 N2 R

1 21 2.67E+04 1.39E-01 3.07E+04 4.49E-02 23993 23908 18681
2 21 4.10E+04 3.22E-01 3.27E+04 1.57E-02 27064 26945 22333
3 21 2.85E+04 8.08E-02 3.19E+04 7.33E-03 26638 26567 22176
4 21 2.96E+04 4.36E-02 3.09E+04 3.83E-02 23907 23993 18552
5 21 2.87E+04 7.29E-02 3.29E+04 2.41E-02 26967 27120 22214
6 21 3.63E+04 1.71E-01 3.23E+04 4.25E-03 26838 26762 22247
7 21 2.39E+04 2.28E-01 3.30E+04 2.64E-02 26719 26697 21618
8 21 4.10E+04 3.22E-01 3.29E+04 2.32E-02 26842 26878 21933
9 21 2.72E+04 1.23E-01 3.21E+04 1.44E-03 26645 26578 22060
10 21 2.70E+04 1.29E-01 3.21E+04 1.75E-03 26512 26588 21965

Average 21 3.10E+04 1.63E-01 3.21E+04 1.87E-02
Variance 0 3.77E+07 9.71E-03 6.45E+05 2.34E-04

27

Table 2.2: Comparison of the performance of the product estimator |̂X ∗| and its

counterpart |̂X ∗
cap| for SAT (75× 325) model.

Run N0 Iterations |̂X ∗| RE of |̂X ∗| |̂X ∗
cap| RE of |̂X ∗

cap| N1 N2 R

1 24 2.02E+03 1.03E-02 2.21E+03 6.55E-03 2201 2195 2191
2 24 1.94E+03 2.95E-02 2.20E+03 7.01E-03 2200 2202 2198
3 24 1.59E+03 2.03E-01 2.24E+03 7.86E-03 2234 2235 2232
4 24 2.34E+03 1.70E-01 2.23E+03 2.45E-03 2221 2223 2219
5 24 1.69E+03 1.54E-01 2.20E+03 1.11E-02 2194 2191 2190
6 24 2.38E+03 1.89E-01 2.24E+03 6.96E-03 2230 2230 2225
7 24 1.63E+03 1.86E-01 2.22E+03 6.53E-04 2215 2216 2210
8 24 2.38E+03 1.89E-01 2.23E+03 5.15E-03 2225 2229 2223
9 24 1.97E+03 1.66E-02 2.22E+03 1.55E-03 2217 2219 2213
10 24 2.12E+03 6.03E-02 2.21E+03 3.86E-03 2206 2208 2203

Average 24 2.01E+03 1.21E-01 2.22E+03 5.31E-03
Variance 0 9.10E+04 6.55E-03 2.04E+02 1.03E-05

Table 2.3: Dynamics of of one of the runs of the enhanced Algorithm for the

random 3-SAT with matrix A = (75× 305).

t |̂X ∗| |̂X ∗
cap| Nt N

(s)
t m∗

t m∗t ρt
1 4.62E+21 − 1223 1223 285 274 0.122
2 6.88E+20 − 1490 1490 288 279 0.149
3 7.52E+19 − 1093 1093 291 283 0.109
4 8.62E+18 − 1146 1146 292 286 0.115
5 1.57E+18 − 1817 1817 293 288 0.182
6 2.33E+17 − 1489 1489 296 290 0.149
7 2.46E+16 − 1053 1053 296 292 0.105
8 7.34E+15 − 2987 2987 297 293 0.299
9 1.93E+15 − 2635 2635 298 294 0.264
10 4.74E+14 − 2454 2454 300 295 0.245
11 1.07E+14 − 2251 2251 299 296 0.225
12 2.09E+13 − 1960 1960 300 297 0.196
13 3.65E+12 − 1742 1742 302 298 0.174
14 5.66E+11 − 1551 1551 302 299 0.155
15 7.22E+10 − 1276 1276 303 300 0.128
16 8.34E+09 − 1155 1155 304 301 0.116
17 7.64E+08 − 917 917 304 302 0.092
18 5.10E+07 − 667 667 304 303 0.067
19 2.10E+06 − 412 412 305 304 0.041
20 3.28E+04 − 156 156 305 305 0.016
21 3.38E+04 3.21e+004 10000 8484 305 305 1.000

Here we used the following notations

28

1. Nt and N
(s)
t denote the actual number of elites and the one after screening,

respectively.

2. m∗
t and m∗t denote the upper and the lower elite levels reached, respec-

tively.

3. ρt = Nt/N denote the adaptive rarity parameter.

2.4.2 Decision Making

Recall that the goal of the decision making algorithm is to decide whether or not

the set X of the integer program constraints (2.10) has a feasible solution. The

decision making algorithm presents a simple modification the direct Algorithm

2.6.3. In particular:

1. Instead of counting according to (2.22), that is

|̂X ∗
dir| =

N∑
i=1

I{S(X(d)
i)≥m},

we make decision in the sense that we need to decide whether |X̂ ∗
dir| > 0

or |X̂ ∗
dir| = 0.

2. Apply global mt policy from instead of the standard splitting step (see Step

3. in Algorithm 2.6.3.

We call such modified Algorithm 2.6.3 as the decision making Algorithm.

We run the decision making Algorithm 2.6.3 for different SAT problems taken

from www.satlib.org using the global mt policy. In particular we took 40 instances

out of more than 200 instances available, each presenting a random 3-SAT with

the instance matrix A of size (250 × 1065) and with |X̂ ∗
dir| > 1. We set the

burn in parameter b = 10, N = 10, 000 and ρ = 0.5. The CPU time was about

10 minutes. We always obtained that |X̂ ∗
dir| > 1, that is we found that our

algorithms works nicely. For N = 1, 000 we found, however that our algorithm

failed for some instances. The same was true for N = 10, 000 and ρ < 0.5.

Table 2.4 presents the dynamics of one of such runs.

29

Table 2.4: Performance of the decision making Algorithm 2.6.3 with global mt

policy for the random 3-SAT with the clause matrix A = (250 × 1065), N =

10, 000, ρ = 0.5 and b = 10

t |̂X ∗| |X̂ ∗
dir| Nt N

(s)
t m∗

t m∗t ρt
1 8.76e+074 0 5161 4841 972 933 0.48
2 4.27e+074 0 7436 7079 1050 1023 0.49
3 1.84e+074 0 7288 6106 1058 1043 0.43
4 7.49e+073 0 6601 4970 1062 1051 0.41
5 2.85e+073 0 8318 5665 1062 1056 0.38
6 8.43e+072 0 6383 3353 1064 1059 0.30
7 2.48e+072 0 6745 2965 1065 1061 0.29
8 3.65e+071 0 6090 1745 1065 1063 0.15
9 5.90e+070 0 10470 1690 1065 1064 0.16
10 1.09e+070 1871 10140 1873 1065 1065 0.18
11 1.09e+070 11238 11238 11238 1065 1065 1.00

Table 2.5 presents the dynamics of a run with the same global mt policy Al-

gorithm 2.6.3 for the random SAT with the instance matrix A = (122×663) and a

single valid assignment, (|X ∗| = 1), taken from http://www.is.titech.ac.jp/ watan-

abe/gensat. We set N = 50, 000, ρ = 0.95 and b = 10. The results are self-

explanatory. Note that

1. For ρ < 0.95 Algorithm 2.6.3 is stacked some where before 663.

2. The CPU time is about 5 hours.

3. For this difficult model with a single valid assignment we found that the

global mt policy Algorithm 2.6.3 has approximately the same running time

as the enhanced cloning Algorithm 2.6.2, for which we used the same N =

50, 000, but ρ = 0.1 instead of ρ = 0.95.

30

Table 2.5: Performance of the global mt policy Algorithm 2.6.3 for the random

3− 4-SAT with the instance matrix A = (122× 663), N = 50, 000, ρ = 0.95 and

b = 10

t |̂X ∗| |X̂ ∗
dir| Nt N

(s)
t m∗

t m∗t ρt
1 5.03e+036 0 28777 28412 627 585 0.96
2 4.77e+036 0 54792 53926 650 622 0.96
3 4.43e+036 0 52042 50652 653 634 0.97
4 4.18e+036 0 49586 48082 655 639 0.98
5 3.90e+036 0 47238 45392 656 642 0.98
6 3.63e+036 0 44824 42724 657 644 0.99
7 3.15e+036 0 41357 37781 658 646 0.97
8 2.85e+036 0 37781 34972 658 647 1.00
9 2.62e+036 0 34972 31710 658 648 1.00
10 2.20e+036 0 31710 27547 658 649 1.00
11 2.03e+036 0 55094 45921 660 650 1.00
12 1.44e+036 0 45921 34996 660 651 1.00
13 5.36e+035 0 34996 23854 660 652 1.00
14 4.20e+035 0 47708 28573 660 653 1.00
15 4.19e+035 0 57146 28378 660 654 1.00
16 3.43e+035 0 56756 22473 661 655 1.00
17 1.07e+035 0 44946 13879 661 656 1.00
18 1.66e+032 0 41637 7867 661 657 1.00
19 1.08e+031 0 31468 3390 661 658 1.00
20 9.72e+030 0 30510 1126 663 659 1.00
21 6.98e+024 0 30402 204 663 660 1.00
22 1.99e+017 0 30600 3 663 661 1.00
23 1.10e+010 0 30600 1 663 662 1.00
24 1.10e+010 1 30600 1 663 663 1.00

2.5 Concluding Remarks

We showed how a simple modification of the splitting method based on Gibbs

sampler can be efficiently used for decision making in the sense that one can

efficiently decide whether or not a given set of integer program constraints has

at least one feasible solution. Our decision making is based on what is called

the local mt and global mt modification of the direct splitting Algorithm 2.6.3.

We also show how to incorporate the classic capture-recapture method into the

direct Algorithm 2.6.3 in order to obtain a low variance estimator for the counting

quantity representing, say the number feasible solution on the set defined as by

the constraints of an integer program. We finally present numerical with with

both, the decision making and the capture-recapture estimators and show their

31

superiority as compared to the conventional product one |̂X ∗|, while solving quite
general decision making and counting ones, like the satisfiability problems.

2.6 Appendix: Splitting Algorithms

Below, following [83], we present two versions of the splitting algorithm: the

so-called basic version and the enhanced version having in mind Example 2.1.1.

2.6.1 Basic Splitting Algorithm

Let N , ρt and Nt be the fixed sample size, the adaptive rarity parameter and

the number of elite samples at iteration t, respectively (see [83] details). Recall

[83] that the elite sample X̂1, . . . , X̂Nt corresponds to the largest subset of the

population {X1, . . . ,XNt}, for which S(Xi) ≥ m̂t, that is m̂t is the (1 − ρt)

sample quantile of of the ordered statistics values of S(X1), . . . , S(XN). It

follows that the number of elites Nt = ⌈Nρt⌉, where ⌈·⌉ denotes rounding to the

largest integer.

In the basic version at iteration t we split each elite sample ηt =
⌈
ρ−1
t

⌉
times.

By doing so we generate
⌈
ρ−1
t Nt

⌉
≈ N new samples for the next iteration t+ 1.

The rationale is based on the fact that if all ρt are not small, say ρt ≥ 0.01, we

have at each iteration t enough stationary elite samples, and all what the Gibbs

sampler has to do for the next iteration is to generate N ≈
⌈
ρ−1
t Nt

⌉
new samples

uniformly distributed on Xt+1.

Algorithm 2.6.1 (Basic Splitting Algorithm for Counting). Given the initial

parameter ρ0, say ρ0 ∈ (0.01, 0.25) and the sample size N , say N = nm, execute

the following steps:

1. Acceptance-Rejection Set a counter t = 1. Generate a sampleX1, . . . ,XN

uniformly on X0. Let X̂0 = {X̂1, . . . , X̂N0} be the elite samples. Take

ĉ0 = ℓ̂(m̂0) =
1

N

N∑
i=1

I{S(Xi)≥m̂0} =
N0

N
(2.19)

as an unbiased estimator of c0. Note that X̂1, . . . , X̂N0 ∼ g∗(x, m̂0), where

g∗(x, m̂0) is a uniform distribution on the set X1 = {x : S(x) ≥ m̂0}.

2. Splitting Let X̂t−1 = {X̂1, . . . , X̂Nt−1} be the elite sample at iter-

ation (t − 1), that is the subset of the population {X1, . . . ,XN} for

which S(Xi) ≥ m̂t−1. Reproduce ηt−1 =
⌈
ρ−1
t−1

⌉
times each vector X̂k =

32

(X̂1k, . . . , X̂nk) of the elite sample {X̂1, . . . , X̂Nt−1}, that is take ηt−1 iden-

tical copies of each vector X̂k. Denote the entire new population (ηt−1Nt−1

cloned vectors plus the original elite sample {X̂1, . . . , X̂Nt−1}) by Xcl =

{(X̂1, . . . , X̂1), . . . , (X̂Nt−1 , . . . , X̂Nt−1)}. To each of the cloned vectors of

the population Xcl apply the MCMC (and in particular the random Gibbs

sampler) for a single period (single burn-in). Denote the new entire popu-

lation by {X1, . . . ,XN}. Note that each vector in the sample X1, . . . ,XN

is distributed g∗(x, m̂t−1), where g∗(x, m̂t−1) has approximately a uniform

distribution on the set Xt = {x : S(x) ≥ m̂t−1}.

3. Estimating ct Take ĉt =
Nt
N (see (2.9)) as an estimator of ct in (2.7). Note

again that each vector of X̂1, . . . , X̂Nt of the elite sample is distributed

g∗(x, m̂t), where g∗(x, m̂t) has approximately a uniform distribution on

the set Xt+1 = {x : S(x) ≥ m̂t}.

4. Stopping rule If mt = m go to step 5, otherwise set t = t+ 1 and repeat

from step 2.

5. Final Estimator Deliver ℓ̂ given in (2.8) as an estimator of ℓ and |X̂ ∗| =
ℓ̂|X | as an estimator of |X ∗|.

Note that at iteration t Algorithm 2.6.1 splits each elite sample ηt =
⌈
ρ−1
t

⌉
times. By doing it generates

⌈
ρ−1
t Nt

⌉
≈ N new samples for the next iteration

t+1. The rationale is based on the fact that if all ρt are not small, say ρt ≥ 0.01,

we have at each iteration t enough stationary elite samples, and all what the

Gibbs sampler has to do for the next iteration is to generate N ≈
⌈
ρ−1
t Nt

⌉
new

samples uniformly distributed on Xt+1.

Figure 2.1 presents a typical dynamics of the splitting algorithm, which ter-

minates after two iterations. The set of points denoted ⋆ and • is associated

with these two iterations. In particular the points marked by ⋆ are uniformly

distributed on the sets X0 and X1. (Those, which are in X1 correspond to the

elite samples). The points marked by • are approximately uniformly distributed

on the sets X1 and X2. (Those, which are in X2 = X ∗ likewise correspond to the

elite samples).

33

Figure 2.1: Dynamics of Algorithm 2.6.1

2.6.2 Enhanced Splitting Algorithm for Counting

Here we introduce an enhanced version of the basic splitting Algorithm 2.6.1,

which contains (i) an enhanced splitting (splitting) step instead of the original

one as in Algorithms 2.6.1 and a (ii) new screening step.

(i) Enhanced cloning step Denote be ηt the number of times each of the

Nt elite samples is reproduced at iteration t, and call it the cloning (splitting)

parameter. Denote by bt the burn-in parameter, that is the number of times each

elite sample has to follow through the MCMC (Gibbs) sampler. The purpose

of enhanced cloning step is to find a good balance, in terms of bias-variance of

the estimator of |X ∗|, between ηt and bt, provided the number of samples N is

given.

Let us assume for a moment that bt = b is fixed. Then for fixed N , we can

define the adaptive cloning parameter ηt−1 at iteration t− 1 as follows

ηt−1 =

⌈
N

bNt−1

⌉
− 1 =

⌈
Ncl

Nt−1

⌉
− 1. (2.20)

Here Ncl = N/b is called the cloned sample size, and as before Nt−1 = ρt−1N de-

notes the number of elites and ρt−1 is the adaptive rarety parameter at iteration

t− 1 [see [86] for details).

As an example, let N = 1, 000, b = 10. Consider two cases: Nt−1 = 21 and

Nt−1 = 121. We obtain ηt−1 = 4 and ηt−1 = 0 (no cloning), respectively.

34

As an alternative to (2.20) one can use the following heuristic strategy in

defining b and η: find bt−1 and ηt−1 from bt−1ηt−1 ≈ N
Nt−1

and take bt−1 ≈ ηt−1.

In short, one can take

bt−1 ≈ ηt−1 ≈
(

N

Nt−1

)1/2

. (2.21)

Consider again the same two cases for Nt−1 and N We have bt−1 ≈ ηt−1 = 7 and

bt−1 ≈ ηt−1 = 3, respectively. We found numerically that both versions work

well, but unless stated otherwise we shall use (2.21).

(ii) Screening step. Since the IS pdf g∗(x,mt) must be uniformly distributed

for each fixed mt, the splitting algorithm checks at each iteration whether or not

all elite vectors X̂1, . . . , X̂Nt are different. If this is not the case, we screen out

(eliminate) all redundant elite samples. We denote the resulting elite sample

as X̂1, . . . , X̂Nt and call it, the screened elite sample. Note that this procedure

prevents (at least partially) the empirical pdf associated with X̂1, . . . , X̂Nt from

deviating from the uniform.

Algorithm 2.6.2 (Enhanced Splitting Algorithm for Counting). Given the pa-

rameter ρ, say ρ ∈ (0.01, 0.25) and the sample size N , say N = nm, execute the

following steps:

1. Acceptance-Rejection - the same as in Algorithm 2.6.1.

2. Screening Denote the elite sample obtained at iteration (t− 1) by

{X̂1, . . . , X̂Nt−1}. Screen out the redundant elements from the subset

{X̂1, . . . , X̂Nt−1}, and denote the resulting (reduced) one as {X̂1, . . . , X̂Nt−1}.

3. Splitting (Cloning)Given the sizeNt−1 of the screened elites {X̂1, . . . , X̂Nt−1}
at iteration (t − 1), find the splitting and the burn-in parameters ηt−1

and bt−1 according to (2.21). Reproduce ηt−1 times each vector X̂k =

(X̂1k, . . . , X̂nk) of the screened elite sample {X̂1, . . . , X̂Nt−1}, that is, take
ηt−1 identical copies of each vector X̂k obtained at the (t−1)-th iteration.

Denote the entire new population (ηt−1Nt−1 cloned vectors plus the orig-

inal screened elite sample {X̂1, . . . , X̂Nt−1}) by Xcl = {(X̂1, . . . , X̂1), . . . ,

(X̂Nt−1 , . . . , X̂Nt−1)}. To each of the cloned vectors of the population Xcl

apply the MCMC (and in particular the Gibbs sampler) for bt−1 burn-

in periods. Denote the new entire population by {X1, . . . ,XN}. Note

that each vector in the sample X1, . . . ,XN is distributed approximately

g∗(x, m̂t−1), where g∗(x, m̂t−1) is a uniform distribution on the set Xt =

{x : S(x) ≥ m̂t−1}.

35

4. Estimating ct - the same as in Algorithm 2.6.1.

5. Stopping rule -the same as in Algorithm 2.6.1.

6. Final estimator - the same as in Algorithm 2.6.1.

Note that the basic Algorithm 2.6.1 (with b = 1 and without screening)

presents a particular case of the enhanced Algorithm 2.6.2.

2.6.3 Direct Splitting Algorithm

The direct estimator below can be viewed as an alternative to the estimator |X̂ ∗|
obtained by Algorithm 2.6.1. This estimator is based on direct counting of the

number of screened samples obtained immediately after crossing the level m.

Such a counting estimator, denoted by |X̂ ∗
dir|, is associated with the empirical

distribution of the uniform distribution g∗(x,m). We found numerically that

|X̂ ∗
dir| is extremely useful and very accurate. Note that it is applicable only for

counting problems with |X ∗| not too large. Specifically |X ∗| should be less than

the sample size N , that is |X ∗| < N . Note also that counting problems with

values small relative to |X | are the most difficult ones and in many counting

problems one is interested in the cases where |X ∗| does not exceed some fixed

quantity, say N . Clearly, this is possible only if N ≥ N . It is important to note

that |X̂ ∗
dir| is typically much more accurate than its counterpart, the standard

estimator |X̂ ∗| = ℓ̂|X |. The reason is that |X̂ ∗
dir| is obtained directly by counting

all distinct values of Xi, i = 1, . . . , N satisfying S(Xi) ≥ m, that is it can be

written as

|̂X ∗
dir| =

N∑
i=1

I{S(X(d)
i)≥m}, (2.22)

where X
(d)
i = Xi, if Xi ̸= Xj , ∀j = 1, . . . , i− 1 and X

(d)
i = 0, otherwise. Note

that we set in advance X
(d)
1 = X1. Note also that there is no need here to

calculate ĉt at any step.

Algorithm 2.6.3 (Direct Algorithm for Counting). Given the rarity parameter

ρ, say ρ = 0.1, the parameters a1 and a2, say a1 = 0.01 and a2 = 0.25, such that

ρ ∈ (a1, a2), and the sample size N , execute the following steps:

1. Acceptance-Rejection - same as in Algorithm 2.6.2.

2. Screening - same as in Algorithm 2.6.2.

3. Splitting - same as in Algorithm 2.6.2.

36

4. Stopping rule - same as in Algorithm 2.6.2.

5. Final Estimator For mT = m, take a sample of size N , and deliver |X̂ ∗
dir|

in (2.22) as an estimator of |X ∗|.

Note that the counting Algorithm 2.6.3 can be readily modified for combi-

natorial optimization, since an optimization problem can be can be viewed as a

particular case of counting, where the counting quantity |X ∗| = 1.

37

Chapter 3

How to Generate Uniform

Samples on Discrete Sets

Using the Splitting Method

Peter W. Glynn, Andrey Dolgin, Reuven Y. Rubinstein and Radislav

Vaisman

Faculty of Industrial Engineering and Management,

Technion, Israel Institute of Technology, Haifa, Israel

ierrr01@ie.technion.ac.il

iew3.technion.ac.il:8080/ierrr01.phtml

0† This research was supported by the BSF (Binational Science Foundation) grant No

2008482 and ISF (Israel Science Foundation) grant No 2012910

38

Abstract

The goal of this work is twofold. We show that

1. In spite of the common consensus on the classic MCMC as a universal

tool for generating samples on complex sets, it fails to generate points

uniformly distributed on discrete ones, such as that defined by the

constraints of integer programming. In fact, we shall demonstrate

empirically that not only does it fail to generate uniform points on

the desired set, but typically it misses some of the points of the set.

2. The splitting, also called the cloning method, originally designed for

combinatorial optimization and for counting on discrete sets and pre-

senting a combination of MCMC, like the Gibbs sampler, with a spe-

cially designed splitting mechanism- can also be efficiently used for

generating uniform samples on these sets. Without introducing the

appropriate splitting mechanism, MCMC fails. Although we do not

have a formal prove, but we guess (conjecture) that the main reason

the classic MCMC is not working is that its resulting chain is not irre-

ducible. We provide valid statistical tests supporting the uniformity

of generated samples by the splitting method and present supportive

numerical results.

Keywords. Combinatorial Optimization, Counting, Cross-Entropy, Decision

Making, Gibbs Sampler, MCMC, Rare-Event, Splitting.

39

3.1 Introduction: The Splitting Method

The goal of this work is to show that:

1. The classic MCMC (Markov Chain Monte Carlo) fails to generate points

uniformly distributed on discrete sets, such as that defined by the con-

straints of integer programming with both equality and inequality con-

straints, that is∑n
k=1 aikxk = bi, i = 1, . . . ,m1,∑n
k=1 ajkxk ≥ bj , j = m1 + 1, . . . ,m1 +m2,

x = (x1, . . . , xn) ≥ 0, xk is integer ∀k = 1, . . . , n.

(3.1)

We demonstrate empirically that starting MCMC from any initial point

in the desired set X ∗ given in (3.1) and running it for a very long time,

not only it fails to generate uniform points on X ∗, but it samples only in

some subset of X ∗, rather than in the entire set X ∗. We observed that this

is the case even if X ∗ is very small containing only view points. Thus, in

spite of the common consensus on MCMC as a universal tool for generating

samples on complex sets, our empirical studies on discrete sets, like (3.1)

have proved quite negative. Although we do not have a formal prove,

but we guess (conjecture) that the main reason the classic MCMC is not

working is that its resulting chain is not irreducible.

2. In contrast to MCMC, the splittingmethod, also called the cloningmethod,

recently introduced in [82, 83] can be efficiently used for generating uniform

samples on sets like (3.1). We provide valid statistical tests supporting the

uniformity of generated samples on X ∗ and present supportive numerical

results.

At first glance one might think that the classic MCMC [1, 78, 86, 90] should

be a good alternative sets like (3.1). Indeed, MCMC has been successfully used

for generating points on different complex regions. In all such cases, given an

arbitrary initial point in X ∗, one runs MCMC for some time until it reaches

steady-state, and then collects the necessary data. One of the most popular

MCMC is the hit-and-run method [90] for generation of uniform points on con-

tinuous regions. Applications of hit-and-run for convex optimization are given

in [72].

As mentioned, we shall show that this is not always the case: MCMC fails

when one deals with discrete sets like (3.1). To emphasize this point, observe

40

that most decision making, optimization and counting problems associated with

the set (3.1) are NP-hard, thus one should not expect an easy way of generating

points uniformly on (3.1) since it is shown in [82, 83]) that counting on X ∗

(which is NP-hard) is directly associated with uniform sampling on X ∗. It is

also shown that the splitting method [82, 83] presents a combination of MCMC

with a specially designed splitting mechanism. Again, without the appropriate

splitting mechanism, MCMC fails.

Although this paper is mainly of empirical nature, we believe that it provides

a good insight of the state of the art of generating uniform points on discrete

sets X ∗ like (3.1), and that it will motivate further research.

We start by presenting some background on the splitting method following

[82, 83]. For related references see [7], [28], [31], [55], [64], and [58].

Like the classic cross-entropy (CE) method [81], [85], the splitting one in

[82, 83] was originally designed for counting and combinatorial optimization. As

mentioned, the counting algorithm in [82, 83] assumes, in fact, uniform genera-

tion on that set X ∗. So, from that retrospective, one can view this generation

as a nice ”free“ by-product of this algorithm.

The rest of this section deals with the splitting method from [83] for counting.

The main idea is to design a sequential sampling plan, with a view to decom-

posing a “difficult” counting problem defined on some set X ∗ into a number of

“easy” ones associated with a sequence of related sets X0,X1, . . . ,Xm and such

that Xm = X ∗. Typically, splitting algorithms explore the connection between

counting and sampling problems, in particular - reduction from approximate

counting on a discrete set to approximate sampling of its elements by the classic

MCMC method [86].

A typical splitting algorithm comprises the following steps:

1. Formulate the counting problem as that of estimating the cardinality |X ∗|
of some set X ∗.

2. Find a sequence of sets X = X0,X1, . . . ,Xm such that X0 ⊃ X1 ⊃ · · · ⊃
Xm = X ∗ and |X | = |X0| being known.

3. Write |X ∗| = |Xm| as

|X ∗| = |X0|
m∏
t=1

|Xt|
|Xt−1|

= ℓ|X0|, (3.2)

where ℓ =
∏m

t=1
|Xt|

|Xt−1| . Note that ℓ is typically very small, e.g. ℓ = 10−100,

41

while each ratio

ct =
|Xt|
|Xt−1|

(3.3)

should not be small, e.g. ct = 10−2 or larger. Clearly, estimating ℓ directly

while sampling in |X0| is meaningless, but estimating each ct separately

seems to be a good alternative.

4. Develop an efficient estimator ĉt =
|X̂t|

|X̂t−1|
for each ct = |Xt|/|Xt−1|.

5. Estimate |X ∗| by

|̂X ∗| = |X |
m∏
t=1

ĉt, (3.4)

where |X̂t|, t = 1, . . . ,m is an estimator of |Xt|, and similarly for the

rare-event probability ℓ.

It is readily seen that in order to obtain a meaningful estimator of |X ∗|, we
have to solve the following two major problems:

(i) Put the well known NP-hard counting problems into the framework (3.2)

by making sure that X0 ⊃ X1 ⊃ · · · ⊃ Xm = X ∗ and each ct is not a

rare-event probability.

(ii) Obtain a low variance estimator ĉt for each ct = |Xt|/|Xt−1|.

While task (i) is typically not difficult [83], task (ii) is quite complicated and

associated with generation of uniform samples at each sub-region Xt separately.

As we shall see below, this can be done by combining the Gibbs sampler with

a specially designed splitting mechanism. The resulting algorithm is called the

splitting or cloning algorithm [83].

The main goal of this work is to show empirically that the splitting algorithm

[83] is able to generate points uniformly distributed on different discrete sets.

To proceed, note that ℓ can be also written as

ℓ = Ef

[
I{S(X)≥m}

]
, (3.5)

where X ∼ f(x), f(x) is a uniform distribution on the entire set X , as before; m
is a fixed parameter, e.g. the total number of constraints in an integer program;

and S(X) is the sample performance, e.g. the number of feasible solutions

generated by the above constraints. Alternatively (see(3.2)), ℓ can be written as

ℓ =
T∏
t=1

ct, (3.6)

42

where

ct = |Xt|/|Xt−1| = Eg∗t−1
[I{S(X)≥mt−1}]. (3.7)

Here

g∗t−1 = g∗(x,mt−1) = ℓ(mt−1)
−1f(x)I{S(x)≥mt−1}, (3.8)

ℓ(mt−1)
−1 is the normalization constant and similarly to (3.2) the sequence

mt, t = 0, 1, . . . , T represents a fixed grid satisfying −∞ < m0 < m1 < · · · <
mT = m. Note that in contrast to (3.2) we use in (3.6) a product of T terms

instead of m terms, where T may be a random variable. The latter case is asso-

ciated with adaptive choice of the level sets {m̂t}Tt=0 resulting in T ≤ m. Since

for counting problems the pdf f(x) should be uniformly distributed on X , which
we denote by U(X), it follows from (3.8) that the pdf g∗(x,mt−1) should be

uniformly distributed on each set Xt = {x : S(x) ≥ mt−1}, t = 1, . . . , T , that

is, g∗(x,mt−1) should be equal to U(Xt). Recall that the goal of the paper is

to show that this is indeed the case for XT = X ∗ = {x : S(x) ≥ mT }, where
mT = m.

Once sampling from g∗t = U(Xt) becomes feasible, the final estimator of ℓ

(based on the estimators of ct = Eg∗t−1
[I{S(X)≥mt−1}], t = 0, . . . , T), can be

written as

ℓ̂ =

T∏
t=1

ĉt =
1

NT

T∏
t=1

Nt, (3.9)

where

ĉt =
1

N

N∑
i=1

I{S(Xi)≥mt−1} =
Nt

N
, (3.10)

Nt =
∑N

i=1 I{S(Xi)≥mt−1}, Xi ∼ g∗t−1 and g∗−1 = f .

We next show how to put the counting problem of finding the number of fea-

sible solutions of the set of integer programming constraints into the framework

(3.5)- (3.8).

Example 3.1.1. The set of integer programming constraints Consider

again the set X ∗ of integer programming constraints given in (3.1). Our goal

is to generate points uniformly distributed of this set. We assume that each

component xk, k = 1, . . . , n has d different values, labeled 1, . . . , d. Note that

the SAT problem represents a particular case of (3.1) with inequality constraints,

and where x1, . . . , xn are binary components. Unless stated otherwise, we will

bear in mind the counting problem on the set (3.1), in particular counting the

true (valid) assignments in a SAT problem.

43

It is shown in [83] that in order to count the points of the set (3.1), one can

associate it with the following rare-event probability problem

ℓ = Ef

[
I{S(X)=m}

]
= Ef

[
I{

∑m
i=1 Ci(X)=m}

]
, (3.11)

where the first m1 terms Ci(X)’s in (3.11) are

Ci(X) = I{
∑n

k=1 aikXk=bi}, i = 1, . . . ,m1, (3.12)

while the remaining m2 ones are

Ci(X) = I{
∑n

k=1 aikXk≥bi}, i = m1 + 1, . . . ,m1 +m2 (3.13)

and S(X) =
∑m

i=1Ci(X). Thus, in order to count the number of feasible so-

lutions on the set (3.1) one can consider an associated rare-event probability

estimation problem (3.11) involving a sum of dependent Bernoulli random vari-

ables Ci i = m1 + 1, . . . ,m, and then apply |̂X ∗| = ℓ̂|X |. In other words, in

order to count on X ∗ one needs to estimate efficiently the rare event probability

ℓ in (3.11). A framework similar to (3.11) can be readily established for many

NP-hard counting problems [83].

It follows from the above that the splitting algorithm will generate an adap-

tive sequence of tuples

{(m0, g
∗(x,m−1)), (m1, g

∗(x,m0)), (m2, g
∗(x,m1)), . . . , (mT , g

∗(x,mT−1))}.
(3.14)

Here as before g∗(x,m−1) = f(x) and mt is obtained from the solution of the

following non-linear equation

Eg∗t−1
I{S(X)≥mt} = ρ, (3.15)

where ρ is called the rarity parameter [83]. Typically one sets 0.1 ≤ ρ ≤ 0.01.

Note that in contrast to the CE method [81], [85], where one generates a sequence

of tuples

{(m0,v0), (m1,v1), . . . , (mT ,vT)}, (3.16)

and where {vt, t = 1, . . . , T} is a sequence of parameters in the parametric family

of distributions f(x,vt) here in (3.14) {g∗(x,mt−1) = g∗t−1, t = 0, 1, . . . , T} is a
sequence of non-parametric IS distributions. Otherwise, the CE and the splitting

algorithms are similar.

In the Appendix (see Section 3.5), following [83], we present two versions of

the splitting algorithm for counting: the so-called basic Algorithm 3.5.1 and the

44

enhanced one, Algorithm 3.5.2 bearing in mind Example 3.1.1. Recall that the

crucial point is to ensure that the points generated from the pdf g∗(x,mt−1) =

g∗t−1 are uniformly distributed on the corresponding set Xt = {S(X) ≥ mt}, t =
1, . . . , T .

To understand that this is so, consider the enhanced Algorithm 3.5.2, bearing

in mind that

1. The samples generated on the set X1 = {S(X) ≥ m̂0} from the pdf

g∗(x, m̂0) = g∗0 are exactly distributed uniformly, since the original dis-

tribution f is a uniform one on the entire space X = X0 and since use of

acceptance-rejection (see Step 1) yields uniform points on X1.

2. The samples generated on the sets Xt = {S(X) ≥ m̂t−1} from the cor-

responding pdfs g∗(x,mt−1) = g∗t−1, t = 2, . . . , T are distributed only

approximately uniformly. This is so since starting from iteration t = 2 we

first split the elite samples and then apply to each of them the Gibbs sam-

pler, which runs for some burn-in periods (see Step 2). This in turn means

that we run N Markov chains in parallel. The goal of the Gibbs sampler

is, therefore, to keep the N Markov chains in steady-state while sampling

at Xt = {S(X) ≥ m̂t−1}, t = 2, . . . , T . This is an easy task achievable by

running the Gibbs sampler for a number of burn-in periods.

Note that the splitting algorithm in [83] is also suitable for optimization as well.

Here we use the same sequence of tuples (3.14), but without involving the product

of the estimators ĉt, t = 1, . . . , T .

The rest of our paper is organized as follows. Section 3.2 deals with the

Gibbs sampler, which is an important element of the splitting algorithm. In

particular, we show how to generate points uniformly on the set (3.1) avoiding

acceptance-rejection. Section 3.3 presents supporting numerical results. In Sec-

tion 3.4 conclusions and some directions for further research are given. Finally,

in Appendix 3.5 the basic and the enhanced versions of the splitting algorithm

are presented.

3.2 The Gibbs Sampler

In this Section we show how to use efficiently the Gibbs sampler to generate

points uniformly on the set (3.1). We start with some background [86] on gen-

eration of points from a given joint pdf g(x1, . . . , xn) . In the latter, instead of

sampling directly from g(x1, . . . , xn), which might be very difficult, one samples

45

from the one-dimensional conditional pdfs

g(xi|X1, . . . , Xi−1, Xi+1, . . . , Xn), i = 1, . . . , n, which is typically much simpler.

Two basic versions of the Gibbs sampler are available: systematic and random.

In the former the components of the vector X = (X1, . . . , Xn) are updated

in a fixed, say increasing order, while in the latter they are chosen randomly

according to a discrete uniform n-point pdf. Below we present the system-

atic Gibbs sampler algorithm. In the systematic version, for a given vector

X = (X1, . . . , Xn) ∼ g(x), one generates a new vector X̃ = (X̃1, . . . , X̃n) with

the same distribution ∼ g(x) as follows:

Algorithm 3.2.1 (Systematic Gibbs Sampler).

1. Draw X̃1 from the conditional pdf g(x1|X2, . . . , Xn).

2. Draw X̃i from the conditional pdf g(xi|X̃1, . . . , X̃i−1, Xi+1, . . . , Xn), i =

2, . . . , n− 1.

3. Draw X̃n from the conditional pdf g(xn|X̃1, . . . , X̃n−1).

Iterating with Algorithm 3.2.1, the Gibbs sampler generates (under some

mild conditions [86]), a sample distributed g(x1, . . . , xn).

We denote for convenience each conditional pdf g(xi|X̃1, . . . , X̃i−1, Xi+1, . . . , Xn)

by g(xi|x−i), where |x−i denotes conditioning on all random variables except the

i-th component.

Next we present a random Gibbs sampler taken from [78] for estimating each

ct = Eg∗t−1
[I{S(X)≥mt−1}], t = 0, 1, . . . , T separately according to (3.10), that is,

ĉt =
1

N

N∑
i=1

I{S(Xi)≥mt−1} =
N

(e)
t

N
.

Algorithm 3.2.2 (Ross’ Acceptance-Rejection Algorithm for Estimating ct).

1. Set N
(e)
t = N=0.

2. Choose a vector x such that S(x) ≥ mt−1.

3. Generate a random number U ∼ U(0, 1) and set I=Int(nU) + 1.

4. If I = k, generate Yk from the conditional one-dimensional distribution

g(xk|x−k) (see Algorithm 3.2.1).

5. If S(X̃1, . . . , X̃k−1, Yk, Xk+1, . . . , Xn) < mt−1, return to 4.

6. Set N = N + 1 and Yk = X̃k.

46

7. If S(x) ≥ mt, then N
(e)
t = N

(e)
t + 1.

8. Go to 3.

9. Estimate ct as ĉt =
N

(e)
t
N .

Note that Algorithm 3.2.2 (see Step 5) is based on the acceptance-rejection

method. For many rare-event and counting problems, generation from the con-

ditional pdf g(xi|x−i) can be done directly, that is, skipping step 5 in it. This

should clearly result in a speed-up.

Example 3.2.1. Sum of Independent Random Variables

Consider estimation of ℓ with S(x) =
∑n

i=1Xi, that is,

ℓ = Ef

[
I{

∑n
i=1 Xi≥m}

]
. (3.17)

In this case, random variables Xi, i = 1, . . . , n for a fixed value m can be easily

generated by the Gibbs sampler based on the following conditional pdf

g∗(xi,m|x−i) =∝ fi(xi)I{xi≥m−
∑

j ̸=i xj} , (3.18)

where ∝ means proportional to.

Note also that each of the n conditional pdfs g∗(xi,m|x−i) represents a trun-

cated version of the proposed marginal pdf fi(xi) with the truncation point at

m −
∑

j ̸=i xj . In short, the random variable X̃ from g∗(xi,m|x−i) represents a

shifted original random variable X ∼ fi(xi). Generation from a such a trun-

cated one- dimensional pdf g∗(xi,m|x−i) is easy and can be typically done by

the inverse-transform method, thus dispensing with Step 5.

Generating a Bernoulli random variable X̃i from (3.18) with the Gibbs sam-

pler can be done as follows. Generate Y ∼ Ber (p). If I{Y≥m−
∑

j ̸=i Xj} , is unity,

then set X̃i = Y , otherwise set X̃i = 1− Y .

Example 3.2.2. Assume that allXi ∼ fi(xi) are iid, and each fi(xi) is a uniform

d-point discrete pdf with mass equal to 1/d at points 1, 2, . . . , d, that is

fi(xi) = U(1, 2, . . . , d) = U(
1

d
).

We first apply for this example the original Algorithm 3.2.2, that is using

acceptance-rejection, and then show how one can dispense with it.

Procedure 1: Acceptance-Rejection In this case, given a fixed point

X = (X1, . . . , Xn), generating X̃i from g(xi,m|x−i) (see step 5 of Algorithm

3.2.2) can be done as follows:

47

Generate Y ∼ fi(xi). If Y ≥ m−
∑

j ̸=iXj , then accept Y , that is set X̃i = Y ,

otherwise reject Y and try again.

For instance, consider generation with a systematic Gibbs sampler of a two-

dimensional random vector (X̃1, X̃2) on the set {X : x1 + x2 ≥ m}, given a

fixed two-dimensional vector x = (x1, x2). Assume that both random variables

X1 and X2 are iid symmetric dice, m = 8 and that the initial point (x1, x2) =

(3, 5). Consider the following dynamic while simulating (X̃1, X̃2) according to

Procedure 1.

1. Generating X̃1. Generate Y ∼ f1(x1). Let Y = 2. Check if Y ≥ m −∑
j ̸=1Xj holds. We have 2 ≥ 8 − 5 = 3. This is false, so we reject Y and

try again. Let next Y = 4. In this case Y ≥ m −
∑

j ̸=1Xj , holds, so we

set X̃1 = Y = 4.

2. Generating X̃2. Generate Y ∼ f2(x2). Let Y = 3. Check if Y ≥ m −∑
j ̸=2Xj holds. We have 3 ≥ 8 − 4 = 4. This is false, so we reject Y and

try again. Let next Y = 6. In this case Y ≥ m −
∑

j ̸=2Xj , holds, so we

set X̃2 = Y = 6.

The resulting point is therefore (X̃1, X̃2) = (4, 6), with S(X̃1, X̃2) = 10.

Let us proceed from (X̃1, X̃2) = (4, 6) to generate one more point using the

Gibbs sampler and the same level m = 8. Denote (X1, X2) = (X̃1, X̃2).

1. Generating X̃1. Generate Y ∼ f1(x1). Let Y = 2. Check if Y ≥ m −∑
j ̸=1Xj holds. We have 2 ≥ 8−6 = 2. This is true, so we set X̃1 = Y = 2.

2. Generating X̃2. Generate Y ∼ f2(x2). Let Y = 3. Check if Y ≥ m −∑
j ̸=2Xj holds. We have 3 ≥ 8 − 3 = 5. This is false, so we reject Y and

try again. Let next Y = 6. In this case Y ≥ m−
∑

j ̸=2Xj holds, so we set

X̃2 = Y = 6.

The resulting point is therefore (X̃1, X̃2) = (2, 6) and S(X̃1, X̃2) = 8.

We could alternatively view the above experiment as one with two simultane-

ously given independent initial points, namely X1 = (3, 5) and X2 = (4, 6), each

of them run independently using the Gibbs sampler. Assume that the results

of such a run (from X1 = (3, 5) and X2 = (4, 6)) are again X̂1 = (4, 6) and

X̂2 = (2, 6), respectively. If in addition we denote m = mt−1 and we set a new

level mt = 10, then we have N
(e)
t = 1, N = 2 and we obtain ĉt =

N
(e)
t
N = 1/2 (by

accepting the point X̂1 = (4, 6) and rejecting the point X̂2 = (2, 6)).

48

Example 3.2.3. Sum of Independent Random Variables: Example 3.2.1

Continued

We now modify the above Procedure 1 such that all Gibbs samples X̃ =

(X̃1, . . . , X̃n) are accepted. The modified procedure takes into account availabil-

ity of the quantity m −
∑

j ̸=iXj and the fact that Y is a truncated version of

Xi with the truncation point m−
∑

j ̸=iXj .

Define

ri =

m−

∑
j ̸=iXj , if m−

∑
j ̸=iXj ≥ 0,

0, otherwise.
(3.19)

Once ri, (ri ≥ 0) is available, we sample a point Z ∼ U(1
d−ri+1), instead

of Y ∼ U(1d) . Recall that d is the number of different values taken by each

random variable Xi. Procedure 2: Without Acceptance-Rejection Gen-

erate Y from the truncated uniform distribution U(1
d−ri+1), where ri is an online

parameter defined in (3.19).

We demonstrate now how this works in practice. Let again m = 8, and let

the initial point be (X1, X2) = (3, 5).

1. Generating X̃1 without rejection. Find r1 = m −
∑

j ̸=iXj . We have r1 =

8 − 5 = 3. o, the truncated distribution is uniform over the points (3,

4, 5, 6) rather than over all 6 points (1, 2, 3, 4, 5, 6) as in the case of

acceptance-rejection. Generate Y uniformly over the points (3, 4, 5, 6).

Let the outcome be Y = 4. Set X̃1 = Y = 4.

2. Generating X̃2 without rejection. Find r2 = m −
∑

j ̸=iXj . We have r2 =

8− 4 = 4. So, the truncated distribution is uniform on the points (4, 5, 6).

Generate Y uniformly on these points. Let the result be Y = 6. Set

X̃2 = Y = 6.

Thus, the generated point is (X̃1, X̃2) = (4, 6) and S(X̃1, X̃2) = 10.

Let us generate one more point proceeding from (X̃1, X̃2) = (4, 6) using the

same m = 8. Denote (X1, X2) = (X̃1, X̃2).

1. Generating X̃1 without rejection. Find r1 = m −
∑

j ̸=iXj . We have r1 =

8 − 6 = 2. So the truncated distribution is uniform over the points (2,

3, 4, 5, 6). Generate Y uniformly over the points (2, 3, 4, 5, 6). Let the

outcome be Y = 2. Set X̃1 = Y = 2.

2. Generating X̃2 without rejection. Find r2 = m −
∑

j ̸=iXj . We have r2 =

8−2 = 6. So the truncated distribution is a degenerated one with the whole

49

mass at point 6 and we set automatically Y = 6. We deliver X̃2 = Y = 6.

The generated point is therefore (X̃1, X̃2) = (2, 6) with S(X̃1, X̃2) = 8.

Note that we deliberately made the results of Examples 3.2.1 and 3.2.3 iden-

tical.

Clearly, the above enhancement can be used for more complex models as in

Example 3.1.1 for SAT and also for continuous pdfs. Our numerical results show

that it can be typically achieve a speed-up by a factor of 2-3 as compared with

the acceptance-rejection approach.

Example 3.2.4. Counting on the set of an integer program: Example

3.1.1 continued

Consider the set (3.1). It is readily seen (see also [82]) that in order to count

on this set with given matrix A = {aij}, one only needs to sample from the

one-dimensional conditional pdfs

g∗(xi, m̂t−1|x−i) =∝ U(1/d)I{∑r∈Ri
Cr(X)≥(m̂t−1−c−i)−

∑
r ̸∈Ri

Cr(X)} , (3.20)

where Ri = {j : aij ̸= 0} and c−i = m − |Ri|. Note that Ri represents the set

of indices of all the constraints affected by xi, and c−i counts the number of all

those unaffected ones.

Remark 3.2.1. The goal of the set Ri is to avoid calculation of every Cr. It is

used mainly for speed-up, which can be significant for sparse matrices A, where

matrix calculations are performed in loops and when using low level program-

ming languages, e.g. MatLab. The latter operates with matrices very fast and

has its own inner optimizer.

Sampling a random variable X̃i from (3.20) using the Gibbs sampler is simple.

In particular for the Bernoulli case with x ∈ {0, 1}n this can be done as follows.

Generate Y ∼ Ber (1/2). If∑
r∈Ri

Cr(x1, . . . , xi−1, Y, xi+1, . . . , xn) ≥ m̂t−1, (3.21)

then set X̃i = Y , otherwise set X̃i = 1− Y .

3.3 Uniformity Results

Here we demonstrate empirically that

50

1. The original MCMC (without splitting) fails to generate points uniformly

distributed on discrete sets of type (3.1). As mentioned, we shall demon-

strate that not only does MCMC fail to generate uniform points on the

set X ∗, but typically it samples only on some subset of X ∗ instead of the

entire one.

2. The splitting Algorithm 3.5.2 handles successfully the uniformity problem

in the sense that it generates uniform points on the set X ∗.

We consider both issues separately.

3.3.1 MCMC without Splitting

Our first model is the random 3-SAT model with the instance matrix (A =

20× 80) adapted from [82]. Table 3.1 presents the performance of the splitting

Algorithm 3.5.1 based on 10 independent runs for the 3-SAT problem with with

N = 1, 000, rarity parameter ρ = 0.1 and burn-in parameter b = 1.

Here we use the following notations:

1. N
(e)
t and N

(s)
t denote the actual number of elites and the one after screen-

ing, respectively.

2. m∗
t and m∗t denote the upper and the lower elite levels reached, respec-

tively.

3. ρt = N
(e)
t /N denotes the adaptive proposal rarity parameter.

4. |̂X ∗| and |̂X
∗
dir| denote the product and what is called the direct estimator.

The latter counts all distinct values of Xi, i = 1, . . . , N satisfying S(Xi) ≥
m, that is it can be written as

|̂X ∗
dir| =

N∑
i=1

I{S(X(d)
i)≥m}, (3.22)

where X
(d)
i = Xi, if Xi ̸= Xj , ∀j = 1, . . . , i− 1 and X

(d)
i = 0, otherwise.

For more details on |̂X
∗
dir| see [83].

51

Table 3.1: Performance of splitting Algorithm 3.5.1 for SAT problem with in-

stance matrix A = (20× 80).

Run N0 Iterations |̂X ∗| RE of |̂X ∗| |̂X ∗
dir| RE of |̂X ∗

dir| CPU

1 10 14.612 0.026 15 0.000 5.143
2 10 14.376 0.042 15 0.000 5.168
3 10 16.304 0.087 15 0.000 5.154
4 10 19.589 0.306 15 0.000 5.178
5 10 13.253 0.116 15 0.000 5.140
6 10 17.104 0.140 15 0.000 5.137
7 10 14.908 0.006 15 0.000 5.173
8 10 13.853 0.076 15 0.000 5.149
9 10 18.376 0.225 15 0.000 5.135
10 10 12.668 0.155 15 0.000 5.156

Average 10 15.504 0.118 15.000 0.000 5.153

Table 3.2 presents the dynamics for one run of the splitting Algorithm 3.5.1

for the same model.

Table 3.2: Dynamics of Algorithm 3.5.1 for SAT 20× 80 model.

t |̂X ∗| |̂X
∗
dir| Nt N

(s)
t m∗

t m∗t ρt
1 1.59E+05 0 152 152 78 56 0.152
2 3.16E+04 0 198 198 78 74 0.198
3 8.84E+03 0 280 276 79 76 0.280
4 1.78E+03 3 201 190 80 77 0.201
5 229.11 6 129 93 80 78 0.129
6 15.580 15 68 15 80 79 0.068
7 15.580 15 1000 15 80 80 1.000
8 15.580 15 1000 15 80 80 1.000
9 15.580 15 1000 15 80 80 1.000
10 15.580 15 1000 15 80 80 1.000

To demonstrate that the original Gibbs sampler (without splitting) fails to

allocate all 15 valid SAT assignments as per Table 3.2, we took one of these 15

points and ran it for a very long time (allowing 1,000,000 Gibbs steps). We found

that depending on the initial point X ∈ X ∗ Gibbs sampler converges either to

6 or 9, that is it is able to find only 6 or 9 points out of the 15.

It is interesting to note that a similar phenomenon occurs with the splitting

Algorithm 3.5.2 if instead of keeping all 15 elites N
(s)
T for mT = m = 80, we

52

leave only one of them and then proceed with the Gibbs sampler for a long time.

Clearly that setting N
(s)
t = 1 is exactly the same as dispensing with the splitting,

that is staying with the original Gibbs sampler.

A similar phenomenon was observed with some other SAT models: starting

Gibbs from a single point X ∈ X ∗ it was able to generate points inside only of

some subsets of X ∗, rather than in the entire X ∗. In other words, Gibbs sampler

was stacked at some local minima.

We found that the picture changes dramatically if X ∗ is a nice continuous

convex set, like that of linear constraints. In this case, starting from any X ∈ X ∗

and running the Gibbs sampler alone for a long time we are able to obtain

uniform samples, that is to pass the χ-square test.

3.3.2 Uniformity of the Splitting Method

To get uniform samples on X ∗ we modify Algorithm 3.5.2 as follows. Once

it reaches the desired level mT = m we perform several more steps (burn-in

periods) with the corresponding elite samples. That is, we use the screening and

splitting (cloning) steps exactly as we did for mt < m. This will clearly only

improve the uniformity of the samples of the desired set X ∗.

Observe also that the number of additional steps k needed for the resulting

sample to pass the χ2 test depends on the quality of the original elite sample

at level m, which in turn depends on the values of ρ and b set in Algorithm

3.5.2. We found numerically that the closer ρ is to 1 the more uniform is the

sample. But, clearly running the splitting Algorithm 3.5.2 at ρ close to 1 is time

consuming. Thus, there exists a trade-off between the quality (uniformity) of

the sample and the number of additional iterations k required.

Consider again the 3-SAT problem with the instance matrix A = (20 × 80)

and |X ∗| = 15 (see Table 3.1). Figure 3.1 presents the histogram for k = 0,

N = 100, ρ = 0.05 and b = 1. We found that the corresponding sample passes

the χ2 test with χ2 = 12.8333. With ρ > 0.05 instead of ρ = 0.05, and with k > 0

instead of k = 0 we found that χ2 was even smaller as expected. In particular for

for ρ = 0.5 and k = 1, we found that χ2 = 9.7647 and χ2 = 10.3524, respectively.

53

Figure 3.1: Histogram for the 3-SAT problem with the instance matrix A =

(20× 80) for b = 1, k = 0, N = 100 and ρ = 0.05.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

1

2

3

4

5

6

7

8

9

Note again that using a single elite X ∈ X ∗, that is using one of the 15 points

(valid SAT assignments), the Gibbs sampler was unable to find all of them. More

precisely, depending on the initial value of the point X ∈ X ∗, Algorithm 3.5.2

was stacked at a local extremum, delivering as an estimator of |X ∗| either 6 or

9 instead of the true value |X ∗| = 15.

We checked the uniformity for many SAT problems and found that typically

(about 95%) the resulting sample passes the χ2 test, provided we set k = 2, 3,

that is we perform 2-3 more steps (burn-in) with the corresponding elite sample

after reaching the desired level m.

3.4 Conclusion and Further Research

In this paper we showed empirically that

1. In spite of the common consensus on MCMC as n universal tool for gen-

erating samples on complex sets, we show that this is not the case when

one needs to generate points uniformly distributed on discrete sets, such

as on that defined in (3.1), that is one containing the constraints of integer

programming. We have demonstrated empirically that not only does the

original MCMC fail to generate uniform points on the set X ∗, but typically

it generates points only at some subset of X ∗ instead on the entire set X ∗.

2. In contrast to the classic MCMC, the splitting Algorithm 3.5.2, which

represents a combination of MCMC with a specially designed splitting

54

mechanism handles efficiently the uniformity problem in the sense that

under some mild requirements the generated samples pass the χ2 test.

Further Research

We intend to present rigorous statistical treatment of the splitting Algorithm

3.5.2, and in particular find the associated parameters N, ρ, b and η ensuring

that generated samples are uniformly distributed on different discrete sets X ∗.

3.5 Appendix: Splitting Algorithms

Below, following [83], we present the two versions of the splitting algorithm: the

so-called basic version and the enhanced version, bearing in mind Example 3.1.1.

3.5.1 Basic Splitting Algorithm

Let N , ρt and Nt be the fixed sample size, the adaptive rarity parameter and

the number of elite samples at iteration t, respectively (see [83] for details).

Recall that the elite sample X̂1, . . . , X̂Nt corresponds to the largest subset of

the population {X1, . . . ,XNt}, for which S(Xi) ≥ m̂t, that is m̂t is the (1− ρt)

sample quantile of of the ordered statistics values of S(X1), . . . , S(XN). It

follows that the number of elites Nt = ⌈Nρt⌉, where ⌈·⌉ denotes rounding to the

largest integer.

In the basic version at iteration t we split each elite sample ηt =
⌈
ρ−1
t

⌉
times.

By doing so we generate
⌈
ρ−1
t Nt

⌉
≈ N new samples for the next iteration t+ 1.

The rationale is based on the fact that if all ρt are not small, say ρt ≥ 0.01,

we have enough stationary elite samples and all the Gibbs sampler has to do is

to continue with these Nt elites and generate N new stationary samples for the

next level.

Algorithm 3.5.1 (Basic Splitting Algorithm for Counting). Given the initial

parameter ρ0, say ρ0 ∈ (0.01, 0.25) and the sample size N , say N = nm, execute

the following steps:

1. Acceptance-Rejection Set a counter t = 1. Generate a sampleX1, . . . ,XN

uniformly on X0. Let X̂0 = {X̂1, . . . , X̂N0} be the elite samples. Take

ĉ0 = ℓ̂(m̂0) =
1

N

N∑
i=1

I{S(Xi)≥m̂0} =
N0

N
(3.23)

55

as an unbiased estimator of c0. Note that X̂1, . . . , X̂N0 ∼ g∗(x, m̂0), where

g∗(x, m̂0) is a uniform distribution on the set X1 = {x : S(x) ≥ m̂0}.

2. Splitting Let X̂t−1 = {X̂1, . . . , X̂Nt−1} be the elite sample at iter-

ation (t − 1), that is the subset of the population {X1, . . . ,XN} for

which S(Xi) ≥ m̂t−1. Reproduce ηt−1 =
⌈
ρ−1
t−1

⌉
times each vector X̂k =

(X̂1k, . . . , X̂nk) of the elite sample {X̂1, . . . , X̂Nt−1}, that is take ηt−1 iden-

tical copies of each vector X̂k. Denote the entire new population (ηt−1Nt−1

cloned vectors plus the original elite sample {X̂1, . . . , X̂Nt−1}) by Xcl =

{(X̂1, . . . , X̂1), . . . , (X̂Nt−1 , . . . , X̂Nt−1)}. To each cloned vector of the

population Xcl apply MCMC (and in particular the random Gibbs sam-

pler) for a single period (single burn-in). Denote the new entire population

by {X1, . . . ,XN}. Note that each vector in the sample X1, . . . ,XN is

distributed g∗(x, m̂t−1), where g∗(x, m̂t−1) has approximately a uniform

distribution on the set Xt = {x : S(x) ≥ m̂t−1}.

3. Estimating ct Take ĉt =
Nt
N (see (3.10)) as an estimator of ct in (3.8). Note

again that each vector of X̂1, . . . , X̂Nt of the elite sample is distributed

g∗(x, m̂t), where g∗(x, m̂t) has approximately a uniform distribution on

the set Xt+1 = {x : S(x) ≥ m̂t}.

4. Stopping rule If mt = m go to step 5, otherwise set t = t+ 1 and repeat

from step 2.

5. Final Estimator Deliver ℓ̂ given in (3.9) as an estimator of ℓ and |X̂ ∗| =
ℓ̂|X | as an estimator of |X ∗|.

Figure 3.2 presents a typical dynamics of the splitting algorithm, which ter-

minates after two iterations. The set of points denoted ⋆ and • is associated with

these two iterations. In particular the points marked ⋆ are uniformly distributed

on the sets X0 and X1. (Those which are in X1 correspond to the elite samples).

The points marked • are approximately uniformly distributed on the sets X1 and

X2. (Those which are in X2 = X ∗ like wise correspond to the elite samples).

56

Figure 3.2: Dynamics of Algorithm 3.5.1

3.5.2 Enhanced Splitting Algorithm for Counting

The improved version of the basic splitting Algorithm 3.5.1, which contains (i)

an enhanced splitting step instead of the original one as in Algorithms 3.5.1 and

a (ii) new screening step.

(i) Enhanced splitting step Denote by ηt the number of times each of the

Nt elite samples is reproduced at iteration t, and call it the splitting parameter.

Denote by bt the burn-in parameter, that is, the number of times each elite

sample has to follow through the MCMC (Gibbs) sampler. The purpose of the

enhanced splitting step is to find a good balance, in terms of bias-variance of

the estimator of |X ∗|, between ηt and bt, provided the number of samples N is

given.

Let us assume for a moment that bt = b is fixed. Then for fixed N , we can

define the adaptive cloning parameter ηt−1 at iteration t− 1 as follows

ηt−1 =

⌈
N

bNt−1

⌉
− 1 =

⌈
Ncl

Nt−1

⌉
− 1. (3.24)

Here Ncl = N/b is called the cloned sample size, and as before Nt−1 = ρt−1N de-

notes the number of elites and ρt−1 is the adaptive rarety parameter at iteration

t− 1 (see [86] for details).

As an example, let N = 1, 000, b = 10. Consider two cases: Nt−1 = 21 and

Nt−1 = 121. We obtain ηt−1 = 4 and ηt−1 = 0 (no splitting), respectively.

57

As an alternative to (3.24) one can use the following heuristic strategy in

defining b and η: find bt−1 and ηt−1 from bt−1ηt−1 ≈ N
Nt−1

and take bt−1 ≈ ηt−1.

In short, one can take

bt−1 ≈ ηt−1 ≈
(

N

Nt−1

)1/2

. (3.25)

Consider again the same two cases for Nt−1 and N We have bt−1 ≈ ηt−1 = 7 and

bt−1 ≈ ηt−1 = 3, respectively. We found numerically that both versions work

well, but unless stated otherwise we shall use (3.25).

(ii) Screening step. Since the IS pdf g∗(x,mt) must be uniformly distributed

for each fixed mt, the splitting algorithm checks at each iteration whether or not

all elite vectors X̂1, . . . , X̂Nt are different. If this is not the case, we screen out

(eliminate) all redundant elite samples. We denote the resulting elite sample

as X̂1, . . . , X̂Nt and call it, the screened elite sample. Note that this proce-

dure prevents (at least partially) deviation of the empirical pdf associated with

X̂1, . . . , X̂Nt from the uniform.

Algorithm 3.5.2 (Enhanced Splitting Algorithm for Counting). Given the pa-

rameter ρ, say ρ ∈ (0.01, 0.25) and the sample size N , say N = nm, execute the

following steps:

1. Acceptance-Rejection - same as in Algorithm 3.5.1.

2. Screening Denote the elite sample obtained at iteration (t− 1) by

{X̂1, . . . , X̂Nt−1}. Screen out the redundant elements from the subset

{X̂1, . . . , X̂Nt−1}, and denote the resulting (reduced) one as {X̂1, . . . , X̂Nt−1}.

3. Splitting (Cloning)Given the sizeNt−1 of the screened elites {X̂1, . . . , X̂Nt−1}
at iteration (t − 1), find the splitting and the burn-in parameters ηt−1

and bt−1 according to (3.25). Reproduce ηt−1 times each vector X̂k =

(X̂1k, . . . , X̂nk) of the screened elite sample {X̂1, . . . , X̂Nt−1}, that is, take
ηt−1 identical copies of each vector X̂k obtained at the (t−1)-th iteration.

Denote the entire new population (ηt−1Nt−1 cloned vectors plus the orig-

inal screened elite sample {X̂1, . . . , X̂Nt−1}) by Xcl = {(X̂1, . . . , X̂1), . . . ,

(X̂Nt−1 , . . . , X̂Nt−1)}. To each of the cloned vectors of the population Xcl

apply the the Gibbs sampler for bt−1 burn-in periods. Denote the new

entire population by {X1, . . . ,XN}. Note that each vector in the sample

X1, . . . ,XN is distributed approximately g∗(x, m̂t−1), where g∗(x, m̂t−1)

is a uniform distribution on the set Xt = {x : S(x) ≥ m̂t−1}.

58

4. Estimating ct - same as in Algorithm 3.5.1.

5. Stopping rule - same as in Algorithm 3.5.1.

6. Final estimator - same as in Algorithm 3.5.1.

59

Chapter 4

On the Use of Smoothing to

Improve the Performance of

the Splitting Method

Frédéric Céroub, Arnaud Guyaderb,c, Reuven Rubinsteina,1 and Radislav

Vaismana

a Faculty of Industrial Engineering and Management,

Technion, Israel Institute of Technology, Haifa, Israel

ierrr01@ie.technion.ac.il,slvaisman@gmail.com

b INRIA Rennes Bretagne Atlantique

Aspi project-team

Campus de Beaulieu, 35042 Rennes Cedex, France

Frederic.Cerou@irisa.fr

c Université Rennes II – Haute Bretagne

Campus Villejean

Place du Recteur Henri Le Moal, CS 24307

35043 Rennes Cedex, France

arnaud.guyader@uhb.fr

1Corresponding author (http://iew3.technion.ac.il/Home/Users/ierrr01.phtml).
1† The research of Reuven Rubinstein was supported by the BSF (Binational Science Foun-

dation, grant No 2008482).

60

Abstract

We present an enhanced version of the splitting method, called the

smoothed splitting method (SSM), for counting associated with complex

sets, such as the set defined by the constraints of an integer program and

in particular for counting the number of satisfiability assignments. Like

the conventional splitting algorithms, ours uses a sequential sampling plan

to decompose a “difficult” problem into a sequence of “easy” ones. The

main difference between SSM and splitting is that it works with an auxil-

iary sequence of continuous sets instead of the original discrete ones. The

rationale of doing so is that continuous sets are easier to handle. We show

that while the proposed method and its standard splitting counterpart are

similar in their CPU time and variability, the former is more robust and

more flexible than the latter.

Keywords. Combinatorial Optimization, Rare Event, Counting, Splitting.

Mathematical Subject Classification. Primary 65C05, 65C35; Secondary

68W20, 60C05.

61

4.1 Introduction: The Splitting Method

The goal of this work is to propose a novel and original way, called the smoothed

splitting method (SSM), for counting on discrete sets associated with NP-hard

discrete combinatorial problems and in particular counting the number of sat-

isfiability assignments. The main idea of the SSM is to transform a combina-

torial counting problem into a continuous integration problem using a type of

“smoothing” of discrete indicator functions. Then we are in a position to apply

a quite standard Sequential Monte Carlo/splitting method to this continuous

integration problem. We show that although numerically the proposed method

performs similar to the standard splitting one [82, 83] (in terms of CPU time and

accuracy), the former one is more robust than the latter. In particular, tuning

the parameters in SSM is simpler than in its standard splitting counterpart.

Before proceeding with SSM we present the splitting method for counting,

following [82, 83]. For relevant references on the splitting method see [7], [12],

[11], [28], [31], [55], [64], [58], which contain extensive valuable material as well

as a detailed list of references. Recently, the connection between splitting for

Markovian processes and interacting particle methods based on the Feynman-Kac

model with a rigorous framework for mathematical analysis has been established

in Del Moral’s monograph [68].

The main idea of the splitting method for counting is to design a sequential

sampling plan, with a view of decomposing a “difficult” counting problem de-

fined on some set X ∗ into a number of “easy” ones associated with a sequence

of related sets X0,X1, . . . ,XT and such that XT = X ∗. Similar to randomized

algorithms [67], [69] splitting algorithms explore the connection between count-

ing and sampling problems and in particular the reduction from approximate

counting of a discrete set to approximate sampling of elements of this set, where

the sampling is performed by the classic MCMC method [86]. Very recently,

[8] discusses several splitting variants in a very similar setting, including a dis-

cussion on an empirical estimate of the variance of the rare event probability

estimate.

A typical splitting algorithm comprises the following steps:

1. Formulate the counting problem as that of estimating the cardinality |X ∗|
of some set X ∗.

2. Find a sequence of sets X = X0,X1, . . . ,XT such that X0 ⊃ X1 ⊃ · · · ⊃
XT = X ∗, and |X | = |X0| is known.

62

3. Write |X ∗| = |XT | as

|X ∗| = |X0|
T∏
t=1

|Xt|
|Xt−1|

= |X0|ℓ, (4.1)

where ℓ =
∏T

t=1
|Xt|

|Xt−1| . Note that ℓ is typically very small, like ℓ = 10−100,

while each ratio

ct =
|Xt|
|Xt−1|

(4.2)

should not be small, like ct = 10−2 or bigger. Clearly, estimating ℓ directly

while sampling in X0 is meaningless, but estimating each ct separately

seems to be a good alternative.

4. Develop an efficient estimator ĉt for each ct and estimate |X ∗| by

|̂X ∗| = |X0| ℓ̂ = |X0|
T∏
t=1

ĉt, (4.3)

where ℓ̂ =
∏T

t=1 ĉt is an estimator of ℓ =
∏T

t=1
|Xt|

|Xt−1| .

It is readily seen that in order to obtain a meaningful estimator of |X ∗|, we
have to resolve the following two major problems:

(i) Put the well known NP-hard counting problems into the framework (4.1)

by making sure that X0 ⊃ X1 ⊃ · · · ⊃ XT = X ∗ and each ct is not a

rare-event probability.

(ii) Obtain a low variance estimator ĉt of each ct = |Xt|/|Xt−1|.

In Section 4.2, we briefly recall the SAT problem, which we will focus on in

order to present our new method. In Section 4.3, which is our main one, we

show how to resolve problems (i) and (ii) for the SAT problem by using the

smoothed splitting method (SSM), which presents an enhanced version of the

splitting method [82, 83]. Section 4.4 is devoted to the theoretical analysis of

SSM in an idealized version, which we call i.i.d. SSM. In Section 4.5 numerical

results for both the SSM and splitting algorithm are presented. Their efficiencies

are compared for several SAT instances.

4.2 Presentation of the SAT problem

The most common SAT problem comprises the following two components:

63

• A set of n Boolean variables {x1, . . . , xn}, representing statements that can

either be TRUE (=1) or FALSE (=0). The negation (the logical NOT) of a

variable x is denoted by x. For example, TRUE = FALSE. A variable or its

negation is called a literal.

• A set of m distinct clauses {S1, S2, . . . , Sm} of the form Sj = zj1∨zj2∨· · ·∨
zjq , where the z’s are literals and the ∨ denotes the logical OR operator.

For example, 0 ∨ 1 = 1.

The binary vector x = (x1, . . . , xn) is called a truth assignment, or simply an

assignment. Thus, xi = 1 assigns truth to xi and xi = 0 assigns truth to xi, for

each i = 1, . . . , n. The simplest SAT problem can now be formulated as: find a

truth assignment x such that all clauses are true.

Denoting the logical AND operator by ∧, we can represent the above SAT

problem via a single formula as

F = S1 ∧ S2 ∧ · · · ∧ Sm,

where the Sj ’s consist of literals connected with only ∨ operators. The SAT

formula is then said to be in conjunctive normal form (CNF).

The problem of deciding whether there exists a valid assignment, and, in-

deed, providing such a vector, is called the SAT-assignment problem.

Toy Example Let us consider the following toy SAT problem with two

clauses and two variables: (x1 ∨ x2) ∧ (x̄1 ∨ x̄2). It is straightforward by con-

sidering all the four possible assignments, that this formula is satisfiable, with

two valid assignments x1 = 1, x2 = 0 and x1 = 0, x2 = 1. If now we consider

the three clauses formula (x1∨x2)∧(x̄1∨x̄2)∧(x̄2), then it is clearly unsatisfiable.

It is shown in [86] that the SAT-assignment problem can be modeled via

rare-events with ℓ given by

ℓ = E
[
1{∑m

j=1 Cj(X)=m}
]
, (4.4)

where X has a “uniform” distribution on the finite set {0, 1}n. It is important

to note that here each Cj(x) = 1{
∑n

k=1 ajkxk≥bj} can be also written alternatively

as

Cj(x) = max
k
{0, (2xk − 1) ajk}.

Here Cj(x) = 1 if clause Sj is TRUE with truth assignment x and Cj(x) = 0

if it is FALSE, A = (ajk) is a given clause matrix that indicates if the literal

64

corresponds to the variable (+1) , its negation (-1), or that neither appears in

the clause (0). If for example xk = 0 and ajk = −1, then the literal xj is

TRUE. The entire clause is TRUE if it contains at least one true literal. In other

words, ℓ in (4.4) is the probability that a uniformly generated SAT assignment

(trajectory) X is valid, that is, all clauses are satisfied, that is

S(x) = min
1≤j≤m

Cj(x) ≥ 1,

which is typically very small.

4.3 Smoothed Splitting Method

Before presenting the SSM algorithm we shall discuss its main features having

in mind a SAT problem.

To proceed, recall that the main idea of SSM is to work within a continuous

space rather than a discrete one. As a result this involves a continuous random

vector Y instead of the discrete random vector X with i.i.d. components with

law Ber(p = 1/2). For example for a SAT problem one needs to adopt the

following steps:

1. Choose a random vector Y of the same size as X, such that the compo-

nents Y1, . . . , Yn, are i.i.d. uniformly distributed on the interval (0, 1).

Clearly the Bernoulli components X1, . . . , Xn can be written as X1 =

1{Y1>1/2}, . . . , Xn = 1{Yn>1/2}.

2. Instead of the former 0 − 1 variables x or x̄ we will use for each clause a

family of functions from (0, 1) to (0, 1). In particular, for each occurrence

of x or x̄, we consider two functions, say gε(y) and hε(y) = gε(1−y) indexed
by ε ≥ 0. These functions need to be increasing in ε, which means that

0 < ε ≤ ε′ ⇒ gε(y) ≤ gε′(y), ∀y ∈ (0, 1). (4.5)

and for ε = 0, g0(y) = 1{y>1/2}, h0(y) = g0(1 − y) = 1{y≤1/2}. Possible

choices of gε(y) are:

gε(y) = (2y)1/ε1{0<y< 1
2
} + 1{y> 1

2
} (4.6)

or

gε(y) = 1{ 1
2
−ε<y< 1

2
}

(
y

ε
+ 1− 1

2ε

)
+ 1{y> 1

2
}. (4.7)

or

gε(y) = I[1/2−ε,1](y). (4.8)

65

3. For each clause Cj , we consider the approximate ε-clause Cjε, where we

replace x by gε(y), x̄ by hε(y), and ∨ by +. Note also that the statement

“Cj is true” is replaced in the new notations by Cjε ≥ 1.

4. Nested sets. For each ε ≥ 0, consider the subset (or event) Bε of (0, 1)n

defined as

Bε = {y ∈ (0, 1)n : ∀j ∈ {1, . . . ,m}, Cjε(y) ≥ 1} = {y ∈ (0, 1)n : Sε(y) ≥ 1},

where Sε(y) = min1≤j≤mCjε(y). Then it is clear from the above that

for ε1 ≥ ε2 ≥ 0, we have the inclusions B0 ⊂ Bε2 ⊂ Bε1 . Note that

B0 is the event for which all the original clauses are satisfied and Bε is

an event on which all the approximate ε-clauses are satisfied. Note also

that εt, t = 1, . . . , T, should be a decreasing sequence, with T being the

number of nested sets, and εT = 0. In our SSM algorithm below (see

section 4.3.2), we shall choose the sequence εt, t = 1, . . . , T, adaptively,

similar as the sequence mt, t = 1, . . . , T, is chosen in the Basic Splitting

Algorithm of [83].

4.3.1 The SSM Algorithm with fixed nested subsets

Below we outline the main steps of the SSM algorithm.

1. InitializationGenerateN i.i.d. samples Y 1
1, . . . ,Y

1
N of distribution U((0, 1)n).

2. Selection Keep only those samples for which all the ε1-clauses (con-

structed with gε1 and hε1) are satisfied. Reindex them 1, . . . , N1. Set

p̂1 = N1/N .

3. Cloning Draw N −N1 clones from the previous sample (with equal prob-

abilities). Together with it we have again a sample of size N .

4. Mutation For all N − N1 new samples apply the Gibbs sampler (see

subsection 4.3.3 below) one or several times.

5. Selection/Cloning/Mutation for ε2, . . . , εT . This yields the estimates

p̂2, . . . , p̂T−1.

6. Final Estimator and solutions to the original SAT problem Select

the samples that satisfy all the original clauses. Let NT be their number.

Estimate p̂T = NT /N . From this last sample, construct a discrete sample

X1, . . . , XNT
by Xj,k = I{Yj,k>1/2}, 1 ≤ k ≤ n, which is not independent,

66

but identically distributed on the instances of x that satisfy all the original

clauses. An estimate of ℓ is given by ℓ̂ =
∏T

t=1 p̂t, so that an estimate of

|X ∗| is given by 2nℓ̂ = 2n
∏T

t=1 p̂t.

A crucial issue in this algorithm is to choose the successive levels ε1, ε2, etc.,

so that the variance of the estimator ℓ̂ is as small as possible. The following

subsection explains how to do it adaptively.

4.3.2 The SSM Algorithm with adaptive nested subsets

Say that we implemented the algorithm up to iteration t, and want to choose

εt+1. Let Y
t
1, . . . ,Y

t
N the current sample satisfying all the εt-clauses. Choose (as

usual in adaptive rare-event simulation) a given rate of success ρ, with 0 < ρ < 1.

Then the appropriate choice for εt+1 would be a value ε > 0 such that the number

of replicas in the current sample Y t
1, . . . ,Y

t
N that satisfy all the ε-clauses is equal

(close) to ρN . A simple way of doing this is to perform a binary search in the

interval [0, εt] bearing in mind that εt ≥ εt+1.

The following algorithm summarizes the above.

Algorithm 4.3.1. [Adaptive Choice of εt+1] Given the parameters ρ and εt

proceed as follows:

1. Set εlow = 0, εhigh = εt and εt+1 =
εhigh
2 .

2. While the proportion of replicas in the current sample Y t
1, . . . ,Y

t
N that

satisfy all εt+1-clauses is not close to ρ, do the following:

(a) Calculate the εt+1 performance Sεt+1(Y) of the trajectories conve-

niently defined as the minimum over all Cεt+1(Y) corresponding to

the trajectory Y . [Recall that by saying that Y is a satisfying tra-

jectory, we mean that Sεt+1(Y) ≥ 1].

(b) If the number of εt+1 satisfying trajectories is larger than ρN set

εhigh = εt+1.

(c) If the number of εt+1 satisfying trajectories is smaller than ρN set

εlow = εt+1.

(d) Set εt+1 =
εlow+εhigh

2 .

3. Deliver εt+1 as the new adaptive level.

67

We are now in a position to describe the adaptive smoothed splitting algo-

rithm, which is the one that will be used in the simulations.

Algorithm 4.3.2. [SSM Algorithm for Counting]

Fix the parameter ρ, say ρ ∈ (0.01, 0.5) and the sample size N such that

Ne = ρN is an integer which denotes the size of the elite sample at each step.

Choose also the function gε(y), say the one given in (4.8), and ε0 accordingly

(e.g. ε0 = 1/2 for (4.8)). Then execute the following steps:

1. Acceptance-Rejection Set a counter t = 1. Generate an i.i.d. sample

Y 1
1, . . . ,Y

1
N each uniformly on (0, 1)n. Obtain the first ε̂1 using Algo-

rithm 4.3.1 and let Ŷ1 = {Ŷ
1

1, . . . , Ŷ
1

Ne
} be the elite sample. Note that

Ŷ
1

1, . . . , Ŷ
1

Ne
∼ U(Bε̂1), the uniform distribution on Bε̂1 .

2. Splitting (Cloning) Given the elite sample {Ŷ
t

1, . . . , Ŷ
t

Ne
} at iteration

t, reproduce ρ−1 times each vector Ŷ
t

i. Denote the entire new population

by

Ycl = {(Ŷ
t

1, . . . , Ŷ
t

1), . . . , (Ŷ
t

Ne
, . . . , Ŷ

t

Ne
)}.

To each of the cloned vectors of the population Ycl apply the MCMC (and

in particular the Gibbs sampler Algorithm 4.3.3) for bt burn-in periods.

Denote the new entire population by {Y t+1
1 , . . . ,Y t+1

N }. Note that each

vector in the sample Y t+1
1 , . . . ,Y t+1

N is distributed uniformly in Bε̂t .

3. Adaptive choice Obtain ε̂t+1 using Algorithm 4.3.1. Note again that

each vector of Ŷ
t+1

1 , . . . , Ŷ
t+1

Ne
of the elite sample is distributed uniformly

in Bε̂t+1
.

4. Stopping rule If ε̂t+1 = 0 go to step 5, otherwise set t = t+1 and repeat

from step 2.

5. Final Estimator Denote T̂ + 1 the current counter, and

r̂ =
|{i ∈ {1, . . . , N} : S0(Y

T̂+1
i) ≥ 1}|

N
> ρ,

and deliver ℓ̂ = r̂×ρT̂ as an estimator of ℓ and |X̂ ∗| = 2n ℓ̂ as an estimator

of |X ∗|.

Remark: Differences between Basic Splitting and SSM Algorithms

1. SSM Algorithm 4.3.2 operates on a continuous space, namely (0, 1)n, while

the Basic Splitting Algorithm of [83] operates on a discrete one, namely

{0, 1}n. As a consequence their MCMC (Gibbs) samplers are different.

68

2. In the discrete case the performance function S(X) represents the number

of satisfied clauses, while in the continuous one it depends on both ε and

the gε. It is crucial to note that in the discrete case all clauses are satisfied

at the last iteration only while in the continuous case each clause is εt-

satisfied at each iteration t.

3. The stopping rules in both algorithms are the same. In particular, at

the last iteration the SSM Algorithm 4.3.2 transforms its vectors from the

continuous space to the discrete one.

4.3.3 Gibbs Sampler

Starting from Y = (Y1, . . . , Yn), which is uniformly distributed on

Bε = {y ∈ (0, 1)n : ∀j ∈ {1, . . . ,m}, Cjε(y) ≥ 1} = {y ∈ (0, 1)n : Sε(y) ≥ 1},

a possible way to generate Ỹ with the same law as Y is to use the following

general systematic Gibbs sampler:

Algorithm 4.3.3. [Systematic Gibbs Sampler]

1. Draw Ỹ1 from the conditional pdf g(y1|y2, . . . , yn).

2. Draw Ỹk from the conditional pdf g(yk|ỹ1, . . . , ỹk−1, yk+1, . . . , yn), 2 ≤ k ≤
n− 1.

3. Draw Ỹn from the conditional pdf g(yn|ỹ1, . . . , ỹn−1).

where g is the target distribution. In our case, g is the uniform distribution

on Bε, and the conditional distribution of the kth component given the others is

simply the uniform distribution on some interval (r,R) given as explained below.

Toy Example Let us consider first a small example with four variables and

two clauses: (X1 ∨X2) ∧ (X̄2 ∨X3 ∨ X̄4). For a given ε > 0, this gives the two

ε-clauses:

gε(Y1) + gε(Y2) ≥ 1

hε(Y2) + gε(Y3) + hε(Y4) ≥ 1.

Let us say we want the distribution of Y2 given Y1, Y3, Y4. If we want the first

one to be satisfied, we need gε(Y2) ≥ 1−gε(Y1), that is Y2 ≥ g−1
ε (1−gε(Y1)) = r.

Similarly, the second clause gives hε(Y2) ≥ 1 − gε(Y3)− hε(Y4), and because hε

is decreasing, Y2 ≤ h−1
ε (1− gε(Y3)−hε(Y4)) = 1− g−1

ε (1− gε(Y3)−hε(Y4)) = R.

Thus the conditional distribution of Y2 is uniform on the interval (r,R).

The generalization is straightforward, and is given below.

69

Algorithm 4.3.4. [Conditional sampling of Ỹk]

• Denote by Ik the set of ε-clauses Cjε in which gε(Yk) is involved.

• For all j ∈ Ik, denote by Z1, . . . , Zq−1 the other gε(Yi)’s or hε(Yi)’s involved

in clause Cjε. Denote rj = g−1
ε (1− Z1 − · · · − Zq−1), and r = supj∈Ik rj .

• Denote by Jk the set of ε-clauses Cjε in which hε(Yk) = gε(1 − Yk) is

involved.

• For all j ∈ Jk, denote by Z1, . . . , Zq−1 the other gε(Yi)’s or hε(Yi)’s involved

in clause Cjε. Denote Rj = 1−g−1
ε (1−Z1−· · ·−Zq−1), and R = infj∈Ik Rj .

• Sample Ỹk uniformly in the interval [r,R].

Remark: It is readily seen that r < R and Ỹ = (Ỹ1, . . . , Ỹn) has the same

distribution as Y . This is so since the initial point Y = (Y1, . . . , Yn) belongs to

and is uniformly distributed in Bε. Note that our simulation results clearly indi-

cate that one round of the Gibbs Algorithm 4.3.3 suffices for good experimental

results. Nonetheless, if one wants the new vector Ỹ to be independent of its

initial position Y , then in theory the Gibbs sampler would have to be applied

an infinite number of times. This is what we call the i.i.d. SSM in section 4.4,

and this is the algorithm that we will analyze from a theoretical point of view.

4.4 Statistical Analysis of i.i.d. SSM

It is possible to obtain exact results about the estimator ℓ̂ in an assumed situation

(never encountered in practice) that each step begins with an N i.i.d. sample.

We call this idealized version “the i.i.d. smoothed splitting algorithm” - i.i.d.

SSM. This would typically correspond to the situation where at each step the

Gibbs sampler is applied an infinite number of times, which is not realistic but

will be our main hypothesis in Subsection 4.4.1. The following theoretical results

do not exactly match the algorithm which is used in practice, but can be expected

to provide insight.

4.4.1 Statistical Analysis of i.i.d. SSM

The aim of this subsection is to precise the statistical properties of the estimator

ℓ̂ obtained by the i.i.d. SSM.

Let us denote by s the number of solutions of the SAT problem at hand, and

by S the union of s hypercubes (with edge length 1/2) which correspond to these

70

solutions in the continuous version: this means that for all y = (y1, . . . , yn) ∈
(0, 1)n, y belongs to S if and only if x = (Iy1≥1/2, . . . , Iyn≥1/2) is a solution of

the SAT problem.

With these notations, the probability that we are trying to estimate is

ℓ = P(Y ∈ S)

where Y is a uniform random vector in the hypercube (0, 1)n. Recall that for

any ε ≥ 0

Bε = {y ∈ (0, 1)n : ∀j ∈ {1, . . . ,m}, Cjε(y) ≥ 1} = {y ∈ (0, 1)n : Sj(y) ≥ ε},

so that we have the following Bayes formula for the splitting algorithm

ℓ = P(B0) = P(B0|BεT)× · · · ×P(Bε1 |Bε0),

where ε0 is large enough (possibly infinite) so that P(Bε0) = 1 (for example

ε0 = 1/2 when gε is defined by formula (4.8) and ε0 = +∞ when gε is defined

by formula (4.6) or (4.7)).

Let us now describe briefly the smoothed splitting algorithm in this frame-

work. As previously, ρ is the fixed proportion of the elite sample at each step.

For simplicity, we will assume that ρN is an integer.

Starting with an N i.i.d. sample (Y1
1, . . . ,Y

1
N), with Y1

i uniformly dis-

tributed in (0, 1)n for all i ∈ {1, . . . , N}, the first step consists in applying a

binary search to find ε̂1 such that

|{i ∈ {1, . . . , N} : Y1
i ∈ Bε̂1}|

N
= ρ.

Such an ε̂1 is not unique, but this will not matter from the theoretical point of

view, as will become clear in the proof of Theorem 4.4.1 below.

Knowing ε̂1 and using a Gibbs sampler, the elite sample of size ρN allows ide-

ally (which means: for the i.i.d. SSM) to draw an N i.i.d. sample (Y2
1, . . . ,Y

2
N),

with Y2
i uniformly distributed in Bε̂1 . Using a binary search , one can then find

ε̂2 such that
|{i ∈ {1, . . . , N} : Y2

i ∈ Bε̂2}|
N

= ρ,

and iterate the algorithm, with only the last step being different: the algorithm

stops when for an N i.i.d. sample (YT̂+1
1 , . . . ,YT̂+1

N), with YT̂+1
i uniformly

distributed in Bε̂
T̂
, the proportion of points which satisfy the SAT problem is

larger than ρ:

|{i ∈ {1, . . . , N} : YT̂+1
i ∈ B0}|

N
= r̂ > ρ.

71

In summary, the “ideal” smoothed splitting estimator is defined as

ℓ̂ = r̂ ρT̂ ,with r̂ ∈ (ρ, 1],

whereas the true probability of the rare event may be decomposed as

ℓ = r ρT ,with T =

⌊
log ℓ

log ρ

⌋
and r = ℓρ−T ∈ (ρ, 1].

Let us summarize now the statistical properties of this “ideal” estimator.

Theorem 4.4.1. The ideal estimator ℓ̂ has the following properties:

1. Strong consistency: ℓ̂
a.s.−−−−→

N→∞
ℓ

2. Number of steps: P(T̂ ̸= T) ≤ 2 (T + 1) e−2Nα2
where α = min(ρ −

ℓ
1
T , ℓ

1
T+1 − ρ).

3. Asymptotic normality:
√
N ℓ̂−ℓ

ℓ
D−−−−→

N→∞
N (0, σ2) where σ2 = T 1−ρ

ρ + 1−r
r .

4. Positive bias: N E[ℓ̂]−ℓ
ℓ −−−−→

N→∞
T 1−ρ

ρ .

Proof. We first prove the strong consistency. Let us denote by F (ε) the

Lebesgue measure of Bε: ∀ε ∈ R, F (ε) = P(Y ∈ Bε). By convention, we will

assume that Bε = ∅ for ε < 0. One can readily see that F (ε) has the following

properties:

• F (ε) = 0 when ε < 0,

• F (0) = ℓ,

• F (ε) = 1 when ε ≥ ε0, or limε→+∞ F (ε) = 1 in the infinite case (cf. for

example formulae (4.6) or (4.7)),

• F is a non decreasing and continuous function on (0, ε0).

We will also make use of the mapping F (ε, ε′), defined for 0 ≤ ε′ ≤ ε ≤ ε0 as

F (ε, ε′) = P(Y ∈ Bε′ |Y ∈ Bε) =
F (ε′)

F (ε)
.

With these notations, let us recall the following point: by construction and by

assumption on the i.i.d. SSM, given ε̂t−1, the random vectors Yt
1, . . . ,Y

t
N are

i.i.d. with uniform distribution in Bε̂t−1
. For all i = 1, . . . , N , let us define

ε(Yt
i) = inf{ε ∈ [0, ε̂t−1] : Sε(Y

t
i) ≥ 1}.

72

Then the random variables D1 = ε(Yt
1), . . . , DN = ε(Yt

N) are i.i.d. with cdf

F (ε̂t−1, .).

Thus, given ε̂t−1, ε̂t is an empirical quantile of order ρ for the i.i.d. sample

(D1, . . . , DN). Denoting by FN (ε̂t−1, .) the empirical cdf of F with this sample,

we have

|F (ε̂t−1, ε̂t)− ρ| ≤ |F (ε̂t−1, ε̂t)− FN (ε̂t−1, ε̂t)|+ |FN (ε̂t−1, ε̂t)− ρ| .

By construction of ε̂t, we know that the second term of this inequality is less

than 1/N , so that the almost sure convergence to 0 follows for it. For the first

term, denoting by ∥f∥∞ the supremum norm of f , and using the Dvoretsky-

Kiefer-Wolfowitz inequality (see for example [93] p. 268), we know that for any

η > 0

P(∥F (ε̂t−1, .)− FN (ε̂t−1, .)∥∞ ≥ η) ≤ 2e−2Nη2 ,

which guarantees the almost sure convergence via the Borel-Cantelli Lemma.

Thus we have proved that for all t

F (ε̂t−1, ε̂t)
a.s.−−−−→

N→∞
ρ

Next, since the product of a finite and deterministic number of random variables

will almost surely converge to the product of the limits, we conclude that for all

t

ρt −
t∏

k=1

F (ε̂k−1, ε̂k)
a.s.−−−−→

N→∞
0.

Finally we have to proceed with the last step. We will only focus on the general

case where log ℓ/ log ρ is not an integer. Recall that T = ⌊log l/ log ρ⌋ is the

“correct” (theoretical) number of steps i.e. the number of steps that “should”

be done, whereas T̂ is the true and random number of steps of the algorithm.

From the preceding results, we have that almost surely for N large enough

T+1∏
k=1

F (ε̂k−1, ε̂k) < ℓ <
T∏

k=1

F (ε̂k−1, ε̂k),

so that, almost surely for N large enough, the algorithm stops after T̂ = T steps.

Therefore, in the following, we can assume that T̂ = T .

Using the same reasoning as previously, we have

|F (ε̂T , 0)− FN (ε̂T , 0)|
a.s.−−−−→

N→∞
0.

73

By definition, T satisfies

T∏
k=1

F (ε̂k−1, ε̂k) F (ε̂T , 0) = F (0) = ℓ,

which implies

F (ε̂T , 0)
a.s.−−−−→

N→∞

ℓ

ρT
,

and also

FN (ε̂T , 0)
a.s.−−−−→

N→∞

ℓ

ρT
.

Putting all things together, we get

ℓ̂ = FN (ε̂T , 0)× ρT
a.s.−−−−→

N→∞

ℓ

ρT
× ρT = ℓ,

which concludes the proof of the consistency.

Let us prove now the exponential upper bound for the probability that T̂

differs from T . To this end, let us denote by A = {T̂ = T} the event for which

the algorithm stops after the correct number of steps, and which can be written

as follows

A = {ε̂T+1 = 0 < ε̂T } =

{
T+1∏
k=1

F (ε̂k−1, ε̂k) = ℓ̂ <
T∏

k=1

F (ε̂k−1, ε̂k)

}
.

For all k = 1, . . . , T + 1, if we denote

Ak =
{
ℓ

1
T − ρ < ρ− F (ε̂k−1, ε̂k) < ℓ

1
T+1 − ρ

}
,

we have

P(A) ≥ P(A1 ∩ · · · ∩AT+1) ≥ 1−
T+1∑
k=1

(1−P(Ak)).

Denoting α = min
(
ρ− ℓ

1
T , ℓ

1
T+1 − ρ

)
, the Dvoretsky-Kiefer-Wolfowitz inequal-

ity implies

1−P(Ak) ≤ P(|ρ− F (ε̂k−1, ε̂k)| > α) ≤ 2e−2Nα2
,

so that the result is proved

P(A) = P(T̂ = T) ≥ 1− 2(T + 1)e−2Nα2
.

By the way, this is another method to see that T̂
a.s.−−−−→

N→∞
T.

For the asymptotic normality and bias properties, we refer the reader to

Theorem 1 and Proposition 4 of [13]: using the notations and tools of smoothed

splitting, the proofs there can be adapted to yield the desired results.

74

4.4.2 Remarks and comments

Number of steps With an exponential probability, the number of steps of

the algorithm is T = ⌊log ℓ/ log ρ⌋.

Bias The fact that this estimator is biased stems from the adaptive character

of the algorithm. This is not the case with a sequence of fixed levels (ε1, . . . , εT).

However, this bias is of order 1/N , so that when N is large enough, it is clearly

negligible relative to the standard deviation. Moreover, the explicit formula for

this bias allows us to derive confidence intervals for ℓ which take this bias into

account.

Estimate of the rare-event cardinality The previous discussion focused on

the estimation of the rare-event probability, which in turn provides an estimate of

the actual number of solutions to the original SAT problem by taking |X̂ ∗| = 2n ℓ̂.

In fact, the number of solutions may be small and thus can be determined by

actual counting the different instances in the last sample of the algorithm.This

estimator will be denoted by |X̂ ∗
dir|. Typically it underestimates the true number

of solutions |X ∗|, but at the same time it has a smaller (empirical) variance as

compared to the product estimator. Even if we do not know its mathematical

properties, this estimate can be useful. Firstly, it may be interesting for practical

purposes to know the set (and the number) of all the different solutions that have

been found for the original SAT problem. Secondly, it is also convenient when

we compare our results with the ones given by the algorithm in [83], where a

screening step (i.e. removal of the duplicates on the finite space) is involved.

Mixing properties Our purpose here is to explain why the Gibbs sampler

used at each step of the algorithm is irreducible and globally reaching and hence

has good mixing properties. For the sake of clarity, we will focus first on gε as per

(4.8). With this function, for a given ε, we can split the region explored by the

Gibbs sampler in several small (sub) hypercubes or hyperrectangles, as shown

schematically in Figure 4.1. To each vertex of the whole hypercube (0, 1)n that

represents a solution of the original SAT problem, corresponds a sub-hypercube

of edge length 1/2+ε, including the central point with coordinates (1/2, . . . , 1/2).

And around this point, we have a sub-hypercube of edge length 2ε, which is

common to all those elements.

For the other parts of the domain, which do not correspond to a solution,

things become a bit more complicated. It is a union of ε-thin “fingers” extend-

75

ing outwards in several directions (a subspace). The corresponding sub-domain

being explored depends on the minimum number of variables that need to be

taken in (1/2 − ε, 1/2 + ε) in order to satisfy all the ε-clauses. The domain is

then a rectangle of length 1/2+ε on the “free” variables, and of length 2ε in the

other directions, that is on the (1/2 − ε, 1/2 + ε) constrained variables. Again,

all those rectangles include the small central sub-hypercube.

The union of all these sub-hypercubes/rectangles is the domain currently

explored by the Gibbs sampler. The geometry of the whole domain is then quite

complex.

Not a solution (not all clauses satisfied)

True solution
ε

2ε

(1
2
, . . . , 1

2
)

Figure 4.1: Partial mixing of the Gibbs sampler.

It is clear that starting with any one of these sub-hypercubes/rectangles we

can reach any other point within it in one iteration of the Gibbs sampler. More-

over, as long as the Markov chain stays within the same sub-hypercube/rectangle,

any other point is accessed with uniform probability. This means that the mixing

properties of our Gibbs sampler are the best possible as long as we are restricted

to one sub-hypercube. Actually this suffices to make the algorithm work.

For gε as per (4.6) or (4.7), the same picture mostly holds, but the mix-

ing properties within each sub-hypercube is not that easy to analyze. This is

somehow compensated by an ability to deal with the inter-variable relations:

the geometry of the domain explored around the centre point reflects these con-

straints, and thus has a much more complicated shape. These gε functions work

in practice better than (4.8).

76

4.5 Numerical Results

Below we present numerical results with both SSM Algorithm 4.3.2 and its coun-

terpart Enhanced Cloner Algorithm [83] for several SAT instances. In particular

we present data for three different SAT models: one of small size, another of

moderate size and the third of large size. To study the variability in the solu-

tions we run each problem 10 times and report the statistic.

To compare the efficiencies of both algorithms we run them on the same

set of parameters ρ and b, where b is the number of cycles in the systematic

Gibbs sampler. If not stated otherwise we set b = 1 and ρ = 0.2. From our

numerical results follows that although both algorithms perform similarly (in

terms of the CPU time and variability) the SSM is more robust than its split-

ting counterpart. In particular we shall see that SSM Algorithm 4.3.2 produces

quite reliable estimator for a large set of b including b = 1, while its splitting

counterpart Enhanced Cloner Algorithm is quite sensitive to b and thus, requires

tuning.

Below we use the following notations:

1. N
(e)
t and N

(s)
t denote the actual number of elites and the one after screen-

ing, respectively.

2. εt denotes the adaptive ε parameter at iteration t.

3. ρt = N
(e)
t /N denotes the adaptive proposal rarity parameter at iteration

t.

4. RE denotes the relative error. Note that for our first, second and third

model we used |X ∗| = 15, |X ∗| = 2258 and |X ∗| = 1, respectively. They

were obtained by using the direct estimator |X̂ ∗
dir| with a very large sample,

namely N = 100, 000.

4.5.1 Smoothed Splitting Algorithm

In all our numerical results we use gε(y) in (4.7).

First Model: 3-SAT with matrix A = (20× 80)

Table 4.1 presents the performance of smoothed Algorithm 4.3.2 for the 3-SAT

problem with an instance matrix A = (20 × 80) with N = 1, 000, ρ = 0.2 and

b = 1. Since the true number of solution is |X ∗| = 15, following the notations of

77

Section 4.4, we have that

ℓ =
15

220
= r ρT ,with T =

⌊
log ℓ

log ρ

⌋
=

⌊
log(15/220)

log 0.2

⌋
= 6

and

r = ℓρ−T =
15

220
0.2−6 ≈ 0.22.

Each run of the algorithm gives an estimator :

|X̂ ∗| = 220 × ℓ̂ = 220 × (r̂ ρT̂) = 220 × (r̂ 0.2T̂),with r̂ ∈ (ρ, 1] = (0.2, 1].

In Table 4.1 , the column “Iterations” corresponds to T̂ + 1 for each of the 10

runs (the theoretical value is thus T + 1 = 7). It is indeed 7 most of the time,

but sometimes jumps to 8, which is not a surprise since r = 0.22 ≈ 0.2.

Concerning the relative error of |X̂ ∗| (RE of |X̂ ∗|), Theorem 4.4.1 states that

it should be approximately equal to

1√
N

√
T
1− ρ

ρ
+

1− r

r
≈ 0.17,

while we find experimentally (see Table 4.1) a relative error of 0.228. There are

two main reasons for this: first we performed only 10 runs, and second we set

b = 1, while the analysis of the i.i.d. SSM suggests b to be large. Altogether, it

gives the correct order of magnitude.

Concerning the relative bias of |X̂ ∗|, Theorem 4.4.1 states that it should be

approximately equal to

1

N
×
(
T
1− ρ

ρ

)
≈ 0.024,

while experimentally (see Table 4.1) we find a relative bias of 0.018. The com-

ments on the bias are the same as for the relative error above.

Table 4.1: Performance of smoothed Algorithm 4.3.2 for SAT 20× 80 model.

Run N0 Iterations |X̂∗| RE of |X̂∗| |X̂∗
dir| RE of |X̂∗

dir| CPU

1 7 13.682 0.088 15 0 1.207
2 7 16.725 0.115 15 0 1.192
3 7 24.852 0.657 15 0 1.189
4 8 12.233 0.184 15 0 1.383
5 7 14.217 0.052 15 0 1.248
6 8 12.564 0.162 15 0 1.341
7 7 19.770 0.318 15 0 1.174
8 7 17.073 0.138 15 0 1.192
9 8 12.448 0.170 15 0 1.338
10 8 9.089 0.394 15 0 1.399

Average 7.4 15.265 0.228 15 0 1.266

78

In Figure 4.2, we give an illustration of the asymptotic normality, as given by

theorem 4.4.1. The Figure compares the cdf of the limit Gaussian distribution,

and the empirical distribution on 100 runs. Here ρ = 1/2.

−3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F
(x

)

Empirical CDF

Empirical

Standard Normal

−3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F
(x

)

Empirical CDF

Empirical

Standard Normal

Figure 4.2: Asymptotic normality: empirical (100 runs) and limiting Gaussian

cdf’s, 1000 replicas (left) and 10, 000 (right).

Second model: Random 3-SAT with matrix A = (75× 325).

This example is taken from www.satlib.org. Table 4.2 presents the performance

of smoothed Algorithm 4.3.2. We set N = 10, 000, ρ = 0.2 and b = 1 for all

iterations.

Table 4.2: Performance of the smoothed Algorithm 4.3.2 for SAT 75×325 model.

Run N0 Iterations |X̂∗| RE of |X̂∗| |X̂∗
dir| RE of |X̂∗

dir| CPU

1 28 2210.2 0.021 2254 0.0018 519.7
2 28 2750.5 0.218 2232 0.0115 518.0
3 28 1826.1 0.191 2248 0.0044 523.6
4 28 2403.3 0.064 2254 0.0018 524.3
5 28 2189.6 0.030 2250 0.0035 519.3
6 28 1353.6 0.401 2254 0.0018 524.5
7 28 2572.8 0.139 2214 0.0195 528.6
8 28 2520.0 0.116 2246 0.0053 525.2
9 28 2049.2 0.092 2208 0.0221 521.8
10 28 2827.3 0.252 2244 0.0062 528.8

Average 28 2270.3 0.153 2240.4 0.0078 523.4

It follows from Table 4.2 that the average relative error of the product es-

timator |X̂ ∗| is RE = 0.163 and of the direct estimator |X̂ ∗
dir| is only RE =

0.038.

Third Model: Random 3− 4-SAT with matrix A = (122× 663).

Our last model is the random 3-SAT with the instance matrix A = (122× 663)

and a single valid assignment, that is |X ∗| = 1, taken from http://www.is.

titech.ac.jp/~watanabe/gensat. We set N = 50, 000 and ρ = 0.4 for all

iterations.

79

We found that the the average CPU time is about 3 hours for each run, the

average relative error for the product estimator |X̂ ∗| is RE = 0.15, while for the

direct estimator |X̂ ∗
dir| it is RE = 0.1. This means that in 9 out of 10 runs SSM

finds the unique SAT assignment.

4.5.2 Splitting Algorithm

First Model: 3-SAT with matrix A = (20× 80)

Table 4.3 presents the performance of the improved splitting Enhanced Cloner

Algorithm [83] for the 3-SAT problem with an instance matrix A = (20 × 80)

with N = 1, 000, ρ = 0.2 and b = 1.

Table 4.3: Performance of Enhanced Cloner Algorithm [83] for SAT 20 × 80

model.

Run N0 Iterations |X̂∗| RE of |X̂∗| |X̂∗
dir| RE of |X̂∗

dir| CPU

1 10 17.316 0.154 15 0 0.641
2 10 15.143 0.010 15 0 0.640
3 10 12.709 0.153 15 0 0.645
4 9 16.931 0.129 15 0 0.566
5 10 13.678 0.088 15 0 0.644
6 9 15.090 0.006 15 0 0.565
7 9 10.681 0.288 15 0 0.558
8 10 13.753 0.083 15 0 0.661
9 10 14.022 0.065 15 0 0.646
10 10 13.445 0.104 15 0 0.651

Average 9.7 14.277 0.108 15 0 0.622

Second model: Random 3-SAT with matrix A = (75× 325).

This example is taken from www.satlib.org. Table 4.4 presents the performance

of the Enhanced Cloner Algorithm [83]. We set N = 10, 000 and ρ = 0.1 and

b = η for all iterations until the Enhanced Cloner Algorithm reached the desired

level 325, (recall that b is the number of Gibbs cycles and η is the number of

splitting of each trajectory). After that, at the last iteration, we switched to

N = 100, 000.

80

Table 4.4: Performance of the Enhanced Cloner Algorithm [83] for SAT 75×325

model.

Run N0 Iterations |X̂∗| RE of |X̂∗| |X̂∗
dir| RE of |X̂∗

dir| CPU

1 24 2458.8 0.089 2220 0.017 640.8
2 24 1927.8 0.146 2224 0.015 673.8
3 24 1964.6 0.130 2185 0.032 664.5
4 24 2218.9 0.017 2216 0.019 661.3
5 24 2396.9 0.062 2191 0.030 678.1
6 24 2271.8 0.006 2230 0.012 661
7 24 2446.1 0.083 2202 0.025 695
8 24 2090.5 0.074 2200 0.026 711.7
9 24 2147.7 0.049 2213 0.020 696.8
10 24 2395 0.061 2223 0.016 803.3

Average 24 2231.8 0.072 2210.4 0.021 688.6

It is interesting to note that if we set b = 1 instead of b = η, the average

relative error of both the product and the direct estimators of Enhanced Cloner

Algorithm [83] substantially increases. They become 0.27 and 0.16 instead of

0.072 and 0.021, respectively (see Table 4.4). This is in turn worse than 0.153 and

0.0078, the average relative errors of the product estimator of SSM Algorithm

4.3.2 (see Table 4.2). It is also important to note that by setting b ̸= 1 in the SSM

Algorithm 4.3.2, in particular setting b = η we found that both relative errors

remain basically close to these for b = 1. This means that one full cycle of the

Gibbs sampler suffices for Algorithm 4.3.2, while the Basic Splitting Algorithm

of [83] requires tuning of b. In other words, the SSM Algorithm 4.3.2 is robust

with respect to b, while its counterpart Basic Splitting Algorithm is not.

Third Model: Random 3-4-SAT with matrix A = (122× 663)

Similar to SSM Algorithm 4.3.2 we set N = 10, 000 and ρ = 0.1 for all iterations

until Enhanced Cloner Algorithm [83] has reached the desired level 663. After

that we switched to N = 100, 000 for the last iteration. Again, as for the second

model, we set here b = η instead of b = 1 as for SSM Algorithm 4.3.2.

The the average CPU time is about 2 hours for each run, the average relative

error for the product estimator |X̂ ∗| is RE = 0.23, while for the direct estimator

|X̂ ∗
dir| it is RE = 0.4. This means that only in 6 out of 10 runs Enhanced Cloner

Algorithm [83] finds the unique SAT assignment (compare this with 9 out of 10

runs for SSM Algorithm 4.3.2).

The above numerical results can be summarized as follows:

The proposed smoothed splitting method performs similarly to the standard

splitting one (in terms of CPU time and variability).

The proposed method is robust, while the standard splitting is not, especially

for the more difficult models, such as the Second and the Third Models. This

81

means that parameters ρ and N in the former method can be chosen from a

wide range, while in the latter they require careful tuning.

82

Chapter 5

Counting with Combined

Splitting and

Capture-Recapture Methods

Paul Dupuisa

Brown University, Providence, USA

Bahar Kaynarb , Ad Ridderd

Vrije University, Amsterdam, Netherlands

Reuven Rubinsteinc , Radislav Vaisman

Technion, Haifa, Israel

1Research supported by AFOSR grant FA9550-09-0378.
2Research supported by NWO grant 400-06-044.
3Research supported by BSF(Binational Science Foundation) grant 2008482, and by NWO

grant 040-11-168.
4Corresponding author. Department of Econometrics and Operations Research; Vrije Uni-

versity Amsterdam; Netherlands. Email address: ad.ridder@vu.nl

83

Abstract

We apply the splitting method to three well-known counting problems,

namely 3-SAT, random graphs with prescribed degrees, and binary con-

tingency tables. We present an enhanced version of the splitting method

based on the capture-recapture technique, and show by experiments the

superiority of this technique for SAT problems in terms of variance of the

associated estimators, and speed of the algorithms.

Keywords. Counting, Gibbs Sampler, Capture-Recapture, Splitting.

84

5.1 Introduction

In this paper we apply the splitting method introduced in Botev and Kroese [8]

to a variety of counting problems in the class #P-complete. The classes #P and

#P-complete have been introduced by Valiant [92] in the following way. Given

any decision problem in the class NP, one can formulate the corresponding count-

ing problem which asks for the total number of solutions for a given instance of

the problem. The set of all these counting problems determines the complexity

class #P. Clearly, a #P problem is at least as hard as its corresponding NP

problem. In this paper we consider #P-complete problems. Completeness is

defined similarly as for the decision problems: a problem is #P-complete if it

is in #P, and if every #P problem can be reduced to it in polynomial counting

reduction. This means that exact solutions to these problems cannot be ob-

tained in polynomial time, and accordingly, our study focuses on approximation

algorithms.

As an example, the satisfiability problem—commonly abbreviated to SAT—

is well-known to be NP-complete. Its associated counting problem is denoted by

#SAT for which is proved that it is #P-complete [92]. For more background on

the complexity theory of decision and counting problems we refer to Papadim-

itriou [71].

The proposed splitting algorithm for approximate counting is a randomized

one. It is based on designing a sequential sampling plan, with a view to decom-

posing a “difficult” counting problem defined on some set X ∗ into a number of

“easy” ones associated with a sequence of related sets X0,X1, . . . ,Xm and such

that Xm = X ∗. Splitting algorithms explore the connection between counting

and sampling problems, in particular the reduction from approximate count-

ing of a discrete set to approximate sampling of elements of this set, with the

sampling performed, typically, by some Markov chain Monte Carlo method.

Recently, counting problems have attracted research interest, notably #SAT

which is also called model counting in Gomes et al. [44]. Although it has been

shown that many solution techniques for SAT problems can be adapted for these

problems, yet due to the exponential increase in memory usage and running times

of these methods, their application area in counting is limited. This drawback

motivated the approximative approach mentioned earlier. There are two main

heuristic algorithms for approximate counting methods in #SAT. The first one,

called ApproxCount, is introduced by Wei and Selman [98]. It is a local search

method that uses Markov Chain Monte Carlo (MCMC) sampling to compute

85

an approximation of the true model count of a given formula. It is fast and

has been shown to provide good estimates for feasible solution counts, but, in

contrast with our proposed splitting method, there are no guarantees as to the

uniformity of the MCMC samples. Gogate and Dechter [41] recently proposed

a second model counting technique called SampleMinisat, which is based on

sampling from the so-called backtrack-free search space of a Boolean formula

through SampleSearch. An approximation of the search tree thus found is used

as the importance sampling density instead of the uniform distribution over

all solutions. Experiments with SampleMinisat show that it is very fast and

typically it provides very good estimates.

The splitting method discussed in this work for counting in deterministic

problems is based on its classic counterpart for efficient estimation of rare-event

probabilities in stochastic problems. The relation between rare-event simulation

methods and approximate counting methods have also been discussed, for in-

stance, by Blanchet and Rudoy [3], Botev and Kroese [7], Rubinstein [83]; and

Chapter 9 in Rubinstein and Kroese [86].

As said, we propose to apply the sequential sampling method presented in

Botev and Kroese [8] which yields a product estimator for counting the number

of solutions |X ∗|, where the product is taken over the estimators of the con-

secutive conditional probabilities, each of which represents an “easy” problem.

In addition, we shall consider an alternative version, in which we use the gen-

erated samples after the last iteration of the splitting algorithm as a sample

for the capture-recapure method. This method gives us an alternative estimate

of the counting problem. Furthermore, we shall study an extended version of

the capture-recapture method when the problem size is too large for the split-

ting method to give reliable estimates. The idea is to decrease artificially the

problem size and then apply a backwards estimation. Whenever applicable, the

estimators associated with our proposed enhancements outperform the splitting

estimators in terms of variance normalized by computational effort.

The paper is organized as follows. We first start with describing the splitting

method in detail in Section 5.2. Section 5.3 deals with the combination of the

classic capture-recapture method with the splitting algorithm. Finally, numerical

results and concluding remarks are presented in Sections 5.4 and 5.5, respectively.

86

5.2 Splitting Algorithms for Counting

The splitting method is one of the main techniques for the efficient estimation of

rare-event probabilities in stochastic problems. The method is based on the idea

of restarting the simulation in certain states of the system in order to obtain more

occurrences of the rare event. Although the method originated as a rare event

simulation technique (see Cérou and Guyader [11], L’Ecuyer et al. [58], Garvels

[28], Glasserman et al. [40], Lagnoux [55], Melas [64]), it has been modified in

Blanchet and Rudoy [3], Botev and Kroese [7], and Rubinstein [83], for counting

and combinatorial optimization problems.

Consider a NP decision problem with solution set X ∗, i.e., the set containing

all solutions to the problem. We are interested in computing the size |X ∗| of the
solution set. Suppose that there is a larger set X ⊃ X ∗ which can be represented

by a simple description or formula; specifically, its size |X | is known and easy to

compute. We call X the state space of the problem. Let p = |X ∗| / |X | denote
the fraction (or “probability”) of the solution set w.r.t. the state space. Since

|X | is known, it suffices to compute p. In most cases p is extremely small, in

other words we deal with a rare-event probability. However, assuming we can

estimate p by p̂, we obtain automatically

|̂X ∗| = |X |p̂

as an estimator of |X ∗|. Note that straightforward simulation based on genera-

tion of i.i.d. uniform samples Xi ∈ X and delivering the Monte Carlo estimator

p̂MC = 1
N

∑N
i=1 I{Xi∈X ∗} as an unbiased estimator of |X ∗|/|X | fails when p is

a rare-event probability. To be more specific, assume a parametrization of the

decision problem. The size of the state space |X | is parameterized by n, such

that |X | → ∞ as n → ∞. For instance, in SAT n represents the number of

variables. Furthermore we assume that the fraction of the solution set p→ 0 as

n→∞. The required sample size N to obtain a relative accuracy ε of the 95%

confidence interval by the Monte Carlo estimation method is (see Section 1.13

in [86])

N ≈ 1.962

ε2p
,

which increases like p−1 as n→∞.

The purpose of the splitting method is to estimate p more efficiently via the

following steps:

1. Find a sequence of sets X = X0,X1, . . . ,Xm such that X0 ⊃ X1 ⊃ · · · ⊃ Xm =

X ∗.

87

2. Write |X ∗| = |Xm| as the telescoping product

|X ∗| = |X0|
m∏
t=1

|Xt|
|Xt−1|

, (5.1)

thus the target probability becomes a product p =
∏m

t=1 ct, with ratio factors

ct =
|Xt|
|Xt−1|

. (5.2)

3. Develop an efficient estimator ĉt for each ct and estimate |X ∗| by

ℓ̂ = |̂X ∗| = |X0| p̂ = |X0|
m∏
t=1

ĉt. (5.3)

It is readily seen that in order to obtain a meaningful estimator of |X ∗|, we have
to solve the following two major problems:

(i). Put the counting problem into the framework (5.1) by making sure that

X0 ⊃ X1 ⊃ · · · ⊃ Xm = X ∗, (5.4)

such that each ct is not a rare-event probability.

(ii). Obtain a low-variance estimator ĉt of each ratio ct.

To deal with both problems, we propose an adaptive version of the splitting

method. As a demonstration, consider a specific family of decision problems,

namely those whose solution set is finite and given by linear integer constraints.

In other words, X ∗ ⊂ Zn
+ is given by

∑n
j=1 aijxj = bi, i = 1, . . . ,m1;∑n
j=1 aijxj ≥ bi, i = m1 + 1, . . . ,m1 +m2 = m;

xj ∈ {0, 1, . . . , d}, ∀j = 1, . . . , n.

(5.5)

Our goal is to count the number of feasible solutions (or points) to the set (5.5).

Note that we assume that we know, or can compute easily, the bounding finite

set X = {0, 1 . . . , d}n, with points x = (x1, . . . , xn) (in this case |X | = (d+ 1)n)

as well for other counting problems.

Below we follow Rubinstein [83]. Define the Boolean functions Ci : X →
{0, 1} (i = 1, . . . ,m) by

Ci(x) =

I{
∑n

j=1 aijxj=bi}, i = 1, . . . ,m1;

I{
∑n

j=1 aijxj≥bi}, i = m1 + 1, . . . ,m1 +m2.
(5.6)

88

Furthermore, define the function S : X → Z+ by counting how many constraints

are satisfied by a point x ∈ X , i.e., S(x) =
∑m

i=1Ci(x). Now we can formulate

the counting problem as a probabilistic problem of evaluating

p = Ef

[
I{S(X)=m}

]
, (5.7)

where X is a random point on X , uniformly distributed with probability den-

sity function (pdf) f(x), denoted by X
d∼ f = U(X). Consider an increasing

sequence of thresholds 0 = m0 < m1 < · · · < mT−1 < mT = m, and define the

sequence of decreasing sets (5.4) by

Xt = {x ∈ X : S(x) ≥ mt}.

Note that in this way

Xt = {x ∈ Xt−1 : S(x) ≥ mt},

for t = 1, 2, . . . , T . The latter representation is most useful since it shows that

the ratio factor ct in (5.2) can be considered as a conditional expectation:

ct =
|Xt|
|Xt−1|

= Egt−1 [I{S(X)≥mt}], (5.8)

where X
d∼ gt−1 = U(Xt−1). Note that gt−1(x) is also obtained as a conditional

pdf by

gt−1(x) = f(x|Xt−1) =

f(x)

f(Xt−1)
, x ∈ Xt−1;

0, x ̸∈ Xt−1.
(5.9)

To draw samples from the uniform pdf gt−1 = U(Xt−1) on a complex set given

implicitly, one applies typically MCMC methods. For further details we refer to

Rubinstein [83].

5.2.1 The Basic Adaptive Splitting Algorithm

We describe here the adaptive splitting algorithm from Botev and Kroese [8].

The thresholds (mt) are not given in advance, but determined adaptively via

a simulation process. Hence, the number T of thresholds becomes a random

variable. In fact, the (mt)-thresholds should satisfy the requirements ct =

|Xt|/|Xt−1| ≈ ρt, where the parameters ρt ∈ (0, 1) are not too small, say

ρt ≥ 0.01, and set in advance. We call these the splitting control parameters. In

most applications we choose these all equal, that is ρt ≡ ρ.

89

Consider a sample set [X]t−1 = {X1, . . . ,XN} of N random points in Xt−1.

That is, all these points are uniformly distributed on Xt−1. Let mt be the (1−
ρt−1)-th quantile of the ordered statistics values of the scores S(X1), . . . , S(XN).

The elite set [X]
(e)
t−1 ⊂ [X]t−1 consists of those points of the sample set for which

S(Xi) ≥ mt. Let Nt be the size of the elite set. If all scores S(Xi) are distinct,

it follows that the number of elites Nt = ⌈Nρt−1⌉, where ⌈·⌉ denotes rounding

to the largest integer. However, dealing with a discrete space, typically we will

find more samples with S(Xi) ≥ mt. All these are added to the elite set. Finally

we remark that from (5.9) it easily follows that the elite points are distributed

uniformly on Xt.

Regarding the elite set based in Xt−1 as a subset of Xt, we do two things.

First, we screen out (delete) duplicates, so that we end up with a set of size

N
(s)
t of distinct elites. Secondly, each screened elite is the starting point of an

independent Markov chain simulation (MCMC method) in Xt using a transition

probability matrix Pt with gt = U(Xt) as its stationary distribution. Because

the starting point is uniformly distributed, all consecutive points on the sample

path are uniformly distributed on Xt. Therefore, we may use all these points in

the next iteration.

Thus, we simulate N
(s)
t independent trajectories, each trajectory for bt =

⌊N/N
(s)
t ⌋ steps. This produces a total of N

(s)
t bt ≤ N uniform points in Xt. To

continue with the next iteration again with a sample set of size N , we choose

randomly N − N
(s)
t bt of these sample paths and extend them by one point.

Denote the new sample set by [X]t, and repeat the same procedure as above.

The algorithm iterates until we find mt = m, say at iteration T , at which stage

we stop and deliver

|̂X ∗| = |X |
T∏
t=1

ĉt (5.10)

as an estimator of |X ∗|, where ĉt = Nt/N at iteration t.

In our experiments we applied a Gibbs sampler to implement the MCMC simu-

lation for obtaining uniformly distributed samples. To summarize, we give the

algorithm.

Algorithm 5.2.1 (Basic splitting algorithm for counting).

• Input: the counting problem (5.5); the bounding set X0; sample size N ;

splitting control parameters (ρt)t.

• Output: counting estimator (5.10).

90

1. Set a counter t = 1. Generate a sample set [X]0 of N points uniformly

distributed in X0. Compute the threshold m1, and determine the size N1 of

the elite set. Set ĉ1 = N1/N as an estimator of c1 = |X1|/|X0|.

2. Screen out the elite set to obtain N
(s)
t distinct points uniformly distributed in

Xt.

3. Let bt = ⌊N/N
(s)
t ⌋. For all i = 1, 2, . . . , N

(s)
t , starting at the i-th screened elite

point run a Markov chain of length bt in Xt with gt = U(Xt) as its stationary

distribution. Extend N−N (s)
t bt randomly chosen sample paths with one point.

Denote the new sample set of size N by [X]t.

4. Increase the counter t = t+1. Compute the threshold mt, and determine the

size Nt of the elite set. Set ĉt = Nt/N as an estimator of ct = |Xt|/|Xt−1|.

5. If mt = m deliver the estimator (5.10); otherwise repeat from step 2.

Remark 5.2.1. Note that the goal of our algorithm 5.2.1 is to produce points

uniformly distributed on each subregion Xt. At the first iteration (due to the

acceptance-rejection technique) the samples are indeed uniformly distributed on

the entire space X0. In the subsequent iterations we generate in parallel a sub-

stantial number of independent sequences of uniform points. We also make sure

that they have sufficient lengths. By doing so we guarantee that the generated

points at each Xt are distributed approximately uniform, see the discussion in

Gelman and Rubin [32]. We found numerically that this is obtained by choosing

the sample size about 10-100 times larger then dimension n and the splitting

parameters ρt not too small, say 10−1 ≥ ρt ≥ 10−3.

The following figures support these rapid mixing properties. We applied the

splitting algorithm to a 3-SAT problem from the SATLIB benchmark problems,

consisting of n = 75 literals and m = 375 clauses, see Section 5.4.1 for further

details. In each iteration we chose arbitrarily one of the screened elite points as

a starting point of the Gibbs sampler of length N = 1000. From this sequence of

points X1, . . . ,XN in the subset Xt we constructed the time series y1, . . . , yN of

their partial sums yi =
∑n

j=1Xi,j , and computed the autocorrelation function

of the times series. The figures show these autocorrelation functions of the first

four iterations, up to lag 20.

91

5 10 15 20
−0.1

0

0.1

0.2

0.3

0.4

0.5
autocorrelation (iteration 1)

lag
5 10 15 20

−0.1

0

0.1

0.2

0.3

0.4

0.5
autocorrelation (iteration 2)

lag

5 10 15 20
−0.1

0

0.1

0.2

0.3

0.4

0.5
autocorrelation (iteration 3)

lag
5 10 15 20

−0.1

0

0.1

0.2

0.3

0.4

0.5
autocorrelation (iteration 4)

lag

5.3 Combining Splitting and Capture–Recapture

In this section we discuss how to combine the well known capture-recapture

(CAP-RECAP) method with the basic splitting Algorithm 5.2.1. First we present

the classical capture-recapture algorithm in the literature.

5.3.1 The Classic Capture–Recapture in the Literature

Originally the capture-recapture method was used to estimate the size, say M ,

of an unknown population on the basis of two independent samples, each taken

without replacement from it. To see how the CAP-RECAP method works,

consider an urn model with a total of M identical balls. Denote by N1 and N2

the sample sizes taken at the first and second draws, respectively. Assume, in

addition, that

• The second draw takes place after all N1 balls have been returned to the

urn.

• Before returning the N1 balls, each is marked, say we painted them a

different color.

92

Denote by R the number of balls from the first draw that reappear in the second.

Then a biased estimate M̃ of M is

M̃ =
N1N2

R
. (5.11)

This is based on the observation that N2/M ≈ R/N1. Note that the name

capture-recapture was borrowed from a problem of estimating the animal popu-

lation size in a particular area on the basis of two visits. In this case R denotes

the number of animals captured on the first visit and recaptured on the second.

A slightly less biased estimator of M is

M̂ =
(N1 + 1)(N2 + 1)

(R+ 1)
− 1. (5.12)

See Seber [88] for an analysis of its bias. Furthermore, defining the statistic

V =
(N1 + 1)(N2 + 1)(N1 −R)(N2 −R)

(R+ 1)2(R+ 2)
,

Seber [88] shows that

E[V] ∼ Var[M̂]
(
1 + µ2e−µ

)
,

where

µ = E[R] = N1N2/M,

so that V is an approximately unbiased estimator of the variance of M̂ .

5.3.2 Splitting algorithm combined with Capture–Recapture

Application of the CAP-RECAP to counting problems is trivial. The target

is to estimate size M = |X ∗|. Consider the basic splitting algorithm 5.2.1 at

the last iteration T , when we have found a set of elite points that satisfy all m

constraints; i.e., points in the target set X ∗. For the capture-recapture method

we screen out duplicates which gives us a set [X]
(s)
T ⊂ X ∗ of N

(s)
T distinct points.

Then (i) we execute step 3 of Algorithm 5.2.1 (the MCMC simulation) with

sample size N
(cap)
1 ; (ii) we screen out duplicates; and (iii) we record the resulting

set of N1 distinct points. Independently, we execute (i)-(iii) a second time,

starting from the points [X]
(s)
T , now with sample size N

(recap)
2 . After screening

out we record a set of N2 distinct points. Finally, we count the number R of

distinct points that occur in both recordings and deliver either estimator (5.11)

or (5.12).

To summarize, we give the algorithm.

93

Algorithm 5.3.1 (Splitting with capture-recapture algorithm for counting).

• Input: the counting problem (5.5); the bounding set X0; sample sizes N,N
(cap)
1 , N

(recap)
2 ;

splitting control parameters (ρt)t.

• Output: counting estimator (5.11) or (5.12).

1. Set a counter t = 1. Generate a sample set [X]0 of N points uniformly

distributed in X0. Compute the threshold m1, and determine the elite set of

points satisfying m1 constraints.

2. Screen out the elite set to obtain N
(s)
t distinct points uniformly distributed in

Xt.

3. Let bt = ⌊N/N
(s)
t ⌋. For all i = 1, 2, . . . , N

(s)
t , starting at the i-th screened elite

point run a Markov chain of length bt in Xt with gt = U(Xt) as its stationary

distribution. Extend N−N (s)
t bt randomly chosen sample paths with one point.

Denote the new sample set of size N by [X]t.

4. Increase the counter t = t+1. Compute the threshold mt, and determine the

elite set of points satisfying mt constraints.

5. If mt < m repeat from step 2 otherwise, set T = t and go to step 6.

6. Screen out the elite set to obtain N
(s)
T distinct points uniformly distributed in

XT = X ∗.

7. Let bT (1) = ⌊N (cap)
1 /N

(s)
T ⌋. For all i = 1, 2, . . . , N

(s)
T , starting at the i-th

screened elite point run a Markov chain of length bT (1) in XT with gT =

U(XT) as its stationary distribution. Extend N
(cap)
1 − N

(s)
T bT (1) randomly

chosen sample paths with one point. Screen out duplicates to obtain a set

[X]
(cap)
1 of N1 distinct points in X ∗.

8. Repeat step 7 with bT (2) = ⌊N (recap)
2 /N

(s)
T ⌋. After screening out, the remain-

ing set is [X]
(recap)
2 of N2 distinct points in X ∗.

9. Compute the number R of points in [X]
(cap)
1 ∩ [X]

(recap)
2 .

10. Deliver estimator (5.11) or (5.12).

In Section 5.4 we report numerical results of simulation experiments executed

by the splitting algorithm 5.2.1 and by the capture-recapture algorithm 5.3.1.

94

As a general observation we found that the performances of the corresponding

counting estimators depend on the choice of sample size N in the two algorithms,

and on the size of the target set X ∗. When we keep the sample N limited to

10000, then for |X ∗| sizes up to 106 the CAP-RECAP estimator (5.12) is more

accurate than the product estimator (5.10), that is

Var[|̂X ∗|cap] ≤ Var[|̂X ∗|product].

However, if 106 < |X ∗| ≤ 109, we propose to apply an extended version of the

capture-recapture method, as we will describe in the next section; and for larger

target sets (|X ∗| > 109), we propose to execute just the splitting algorithm

because the capture-recapture method performs poorly.

5.3.3 Extended Capture–Recapture Method for SAT

Recall that the regular CAP-RECAP method

1. Is implemented at the last iteration T of the splitting algorithm, that is

when some configurations have already reached the desired set X ∗.

2. It provides reliable estimators of |X ∗| if it is not too large, say |X ∗| ≤ 106.

(We assume sample sizes N ≤ 10000.)

In rare events counting problems, |X ∗| is indeed ≤ 106, nevertheless we present

below an extended CAP-RECAP version, which extends the original CAP-

RECAP for 2-3 orders more, that is, it provides reliable counting estimators

for 106 < |X ∗| ≤ 109. The enhancement is based on adding a random number

τ of random constraints to the original solution set X ∗ that was given in (5.5).

For reasons of exposition we consider the SAT problem only, since it is easy to

generate a random clause involving n literals.

Algorithm 5.3.2 (Extended CAP-RECAP for SAT).

• Input: the counting problem (5.5); the bounding set X0; sample sizes N ,

N
(cap)
1 , N

(recap)
2 , Nm, where N ≤ 10000; splitting control parameters (ρt)t;

c∗ a relatively small number, say 10−2 ≤ c∗ ≤ 10−3.

• Output: estimator of |X ∗|.

1. Execute Algorithm 5.2.1 and compute estimator |̂X ∗| given in (5.10).

2. If |̂X ∗| > 109, stop; else, if |̂X ∗| ≤ 106, execute steps 6-10 of Algorithm 5.3.1;

else continue with step 3.

95

3. Recall that Algorithm 5.2.1 stops at iteration T with an elite sample set

{X1, . . . ,XNT
} ⊂ XT = X ∗. Execute step 2 and step 3 of Algorithm 5.2.1;

i.e., screen out duplicates and run the MCMC simulations (target sample size

Nm) to obtain a sample set [X]T ⊂ XT of size Nm. Set auxiliary counter

j = 1.

4. Add one arbitrary (random) auxiliary clause to the model. Let NT+j be the

number of points in [X]T that satisfy all m+ j clauses.

5. If NT+j/Nm > c∗, increase auxiliary counter j = j + 1 and repeat from step

4. Else, set τ = j; denote XT+τ for the extended model with these new τ

auxiliary clauses; and define

ĉT+τ =
NT+τ

Nm
≤ c∗. (5.13)

6. Execute steps 6-10 of the capture-recapture Algorithm 5.3.1 for the CAP-

RECAP estimator ̂|XT+τ |cap of the size of the extended model.

7. Deliver estimator

|̂X ∗|ecap = ĉT+τ
−1 · ̂|XT+τ |cap. (5.14)

We call |̂X ∗|ecap the extended CAP-RECAP estimator. It is essential to bear in

mind that

• ̂|XT+τ |cap is a CAP-RECAP estimator rather than a splitting (product)

one.

• |̂X ∗|ecap does not contain the original estimators ĉ1, . . . , ĉT generated by

the splitting method.

• Since we only need here the uniformity of the samples at XT , we can run the

splitting method of Section 5.2.1 all the way with relatively small values of

sample size N and splitting control parameter ρ until it reaches the vicinity

of X ∗ (meaning that the points of the elite set satisfy m − r constraints,

where r = 1 or r = 2; and then switch to larger N and ρ.

• In contrast to the splitting estimator which employs a product of T terms,

formula (5.14) employs only a single c factor. Recall that this additional

ĉT+τ
−1

factor allows to enlarge the CAP-RECAP estimators of |X ∗| for
about two-three additional orders, namely from |X ∗| ≈ 106 to |X ∗| ≈ 109.

96

5.4 Numerical Results

Below we present numerical results for the splitting algorithm for counting. In

particular we consider the following problems:

1. The 3-satisfiability problem (3-SAT)

2. Graphs with prescribed degrees

3. Contingency tables

For the 3-SAT problem we shall also use the CAP-RECAP method when ap-

propriate. We shall show that typically CAP-RECAP outperforms the splitting

algorithm. The other two problems typically have too large solution sets to

be applied by CAP-RECAP. Clearly, if we would make artificially the associ-

ated matrix of the restriction coefficients (see (5.5)) very sparse, the number of

solutions could be made < 109 and CAP-RECAP would be applicable again.

However, in this paper we did not follow such untypical situation.

We shall use the following notations.

Notation 5.4.1. For iteration t = 1, 2, . . .

• Nt andN
(s)
t denote the actual number of elites and the number after screen-

ing, respectively;

• m∗
t andm∗t denote the upper and the lower elite levels reached, respectively

(the m∗t levels are the same as the mt levels in the description of the

algorithm);

• ρt is the splitting control parameter (we chose ρt ≡ ρ);

• ĉt = Nt/N is the estimator of the t-th conditional probability;

• product estimator |̂X ∗
t | = |X |

∏t
i=1 ĉi after t iterations.

5.4.1 The 3-Satisfiability Problem (3-SAT)

There are m clauses of length 3 taken from n boolean (or binary) variables

x1, . . . , xn. A literal of the j-th variable is either TRUE (xj = 1) or FALSE

(xj = 0 ⇔ x̄j = 1, where x̄j = NOT(xj)). A clause is a disjunction of literals.

We assume that all clauses consist of 3 literals. The 3-SAT problem consists

of determining if the variables x = (x1, . . . , xn) can be assigned in a such way

97

as to make all clauses TRUE. More formally, let X = {0, 1}n be the set of all

configurations of the n variables, and let Ci : X → {0, 1}, be the m clauses.

Then define ϕ : X → {0, 1} by

ϕ(x) =
m∧
i=1

Ci(x).

The original 3-SAT problem is to find a configuration of the xj variables for

which ϕ(x) = 1. In this work we are interested in the total number of such con-

figurations (or feasible solutions). Then as discussed in Section 5.2, X ∗ denotes

the set of feasible solutions. Trivially, there are |X | = 2n configurations.

The 3-SAT problems can also be converted into the family of decision prob-

lems (5.5) given in Section 5.2. Define the m × n matrix A with entries aij ∈
{−1, 0, 1} by

aij =

−1 if x̄j ∈ Ci,

0 if xj ̸∈ Ci and x̄j ̸∈ Ci,

1 if xj ∈ Ci.

Furthermore, let b be them-(column) vector with entries bi = 1−|{j : aij = −1}|.
Then it is easy to see that for any configuration x ∈ {0, 1}n

x ∈ X ∗ ⇔ ϕ(x) = 1⇔ Ax ≥ b.

Below we compare the efficiencies of the classic, the CAP-RECAP, and the

extended CAP-RECAP algorithms. Efficiency is measured by the reciprocal of

the product of the variance and the computational effort (see, e.g., [58]).

As an example we consider the estimation of |X ∗| for the 3-SAT problem

with an instance matrix A of dimension (122×515), meaning n = 122,m = 515.

In particular Table 5.1 presents the the performance of the splitting Algorithm

5.2.1 based on 10 independent runs using N = 25, 000 and ρ = 0.1, while Table

5.2 shows the dynamics of a run of the Algorithm 5.2.1 for the same data.

98

Table 5.1: Performance of splitting algorithm for the 3-SAT (122 × 515) model

with N = 25, 000 and ρ = 0.1.

Run nr. of its. |̂X ∗| CPU

1 33 1.41E+06 212.32
2 33 1.10E+06 213.21
3 33 1.68E+06 214.05
4 33 1.21E+06 215.5
5 33 1.21E+06 214.15
6 33 1.47E+06 216.05
7 33 1.50E+06 252.25
8 33 1.73E+06 243.26
9 33 1.21E+06 238.63
10 33 1.88E+06 224.36

Average 33 1.44E+06 224.38

The relative error, denoted by RE is 1.815E − 01. Notice that the relative

error of a random variable Z is calculated by the standard formula, namely

RE = S/ℓ̂,

where

ℓ̂ =
1

N

N∑
i=1

Zi, S2 =
1

N − 1

N∑
i=1

(Zi − ℓ̂)2.

99

Table 5.2: Dynamics of a run of the splitting algorithm for the 3-SAT (122×515)
model using N = 25, 000 and ρ = 0.1.

t |̂X ∗
t | Nt N

(s)
t m∗

t m∗t ĉt
1 6.53E+35 3069 3069 480 460 1.23E-01
2 8.78E+34 3364 3364 483 467 1.35E-01
3 1.15E+34 3270 3270 484 472 1.31E-01
4 1.50E+33 3269 3269 489 476 1.31E-01
5 2.49E+32 4151 4151 490 479 1.66E-01
6 3.37E+31 3379 3379 492 482 1.35E-01
7 3.41E+30 2527 2527 494 485 1.01E-01
8 6.19E+29 4538 4538 495 487 1.82E-01
9 9.85E+28 3981 3981 497 489 1.59E-01
10 1.31E+28 3316 3316 498 491 1.33E-01
11 1.46E+27 2797 2797 501 493 1.12E-01
12 4.61E+26 7884 7884 501 494 3.15E-01
13 1.36E+26 7380 7380 501 495 2.95E-01
14 3.89E+25 7150 7150 502 496 2.86E-01
15 1.06E+25 6782 6782 505 497 2.71E-01
16 2.69E+24 6364 6364 503 498 2.55E-01
17 6.42E+23 5969 5969 504 499 2.39E-01
18 1.42E+23 5525 5525 506 500 2.21E-01
19 3.03E+22 5333 5333 505 501 2.13E-01
20 5.87E+21 4850 4850 506 502 1.94E-01
21 1.06E+21 4496 4496 507 503 1.80E-01
22 1.71E+20 4061 4061 507 504 1.62E-01
23 2.50E+19 3647 3647 509 505 1.46E-01
24 3.26E+18 3260 3260 510 506 1.30E-01
25 3.62E+17 2778 2778 510 507 1.11E-01
26 3.68E+16 2539 2539 510 508 1.02E-01
27 3.05E+15 2070 2070 511 509 8.28E-02
28 2.17E+14 1782 1782 512 510 7.13E-02
29 1.21E+13 1398 1398 513 511 5.59E-02
30 5.00E+11 1030 1030 513 512 4.12E-02
31 1.49E+10 743 743 514 513 2.97E-02
32 2.39E+08 402 402 515 514 1.61E-02
33 1.43E+06 150 150 515 515 6.00E-03

We increased the sample size at the last two iterations from N = 25, 000 to

N = 100, 000 to get a more accurate estimator.

As can be seen from Table 5.1, the estimator |̂X ∗|product > 106, hence for this

instance the extended CAP-RECAP Algorithm 5.3.2 can also be used. We

shall show that the relative error (RE) of the extended CAP-RECAP estimator

|̂X ∗|ecap is less than that of |̂X ∗|product. Before doing so we need to find the ex-

tended 3-SAT instance matrix (122×515+τ), where τ is the number of auxiliary

clauses. Applying the extended CAP-RECAP Algorithm 5.3.2 with c∗ = 0.05,

we found that τ = 5 and thus the extended instance matrix is (122× 520). Re-

100

call that the cardinality |XT+τ | of the extended (122 × 520) model should be

manageable by the regular CAP-RECAP algorithm 5.3.1, that is, we assumed

that |XT+τ | < 106. Indeed, Table 5.3 presents the performance of the regular

CAP-RECAP algorithm for that extended (122 × 520) model. Here we used

again ρ = 0.1. As for the sample size, we took N = 1, 000 until iteration 28 and

then switched to N = 100, 000. The final CAP-RECAP estimator is obtained

by taking two equal samples, each of size N = 70, 000 at the final subset XT+τ .

Table 5.3: Performance of the regular CAP-RECAP for the extended (122×520)
model with N = 1, 000 (up to iteration 28), N = 100, 000 (from iteration 29),

N = 70, 000 (for the two capture-recapture draws), and ρ = 0.1.

Run nr. of its. |̂X ∗|cap CPU

1 34 5.53E+04 159.05
2 35 5.49E+04 174.46
3 35 5.51E+04 178.08
4 34 5.51E+04 166.36
5 34 5.52E+04 159.36
6 33 5.52E+04 152.38
7 33 5.54E+04 137.96
8 34 5.50E+04 157.37
9 35 5.51E+04 179.08
10 34 5.51E+04 163.7

Average 34.1 5.51E+04 162.78

The relative error of |̂X ∗|cap over 10 runs is 2.600E − 03.

Next we compare the efficiency of the regular CAP-RECAP algorithm 5.3.1

for the extended (122× 520) model (as per Table 5.3) with that of the splitting

algorithm 5.2.1 for this model. Table 5.4 presents the performance of the splitting

algorithm for ρ = 0.1 and N = 100, 000.

It readily follows that the relative error of the regular CAP-RECAP is about

30 times less than that of splitting. Notice in addition that the CPU time of

CAP-RECAP is about 6 times less than that of splitting. This is so since the

total sample size of the former is about 6 time less than of the latter. Using

that the relative error involves the square root of the variance, the efficiency

improvement by CAP-RECAP is about 5, 400.

101

Table 5.4: Performance of splitting algorithm for the 3-SAT (122 × 520) model

with N = 100, 000 and ρ = 0.1.

Run nr. of its. |̂X ∗| CPU

1 34 6.03E+04 900.28
2 34 7.48E+04 904.23
3 34 4.50E+04 913.31
4 34 5.99E+04 912.27
5 34 6.03E+04 910.44
6 33 4.94E+04 898.91
7 34 5.22E+04 931.88
8 34 5.74E+04 916.8
9 34 5.85E+04 919.63
10 34 5.72E+04 927.7

Average 33.9 5.75E+04 913.54

The relative error of |̂X ∗| over 10 runs is 1.315E − 01.

With these results at hand we can proceed with the extended CAP-RECAP and

compare its efficiency with splitting (as per Table 5.1) for the instance matrix

(122× 515). Table 5.5 presents the performance of the extended CAP-RECAP

estimator |̂X ∗|ecap for the (122 × 515) model. We set again ρ = 0.1. Regarding

the sample size we took N = 1, 000 for the first 31 iterations and then switched to

N = 100, 000 until reaching the level m = 515. Recall that the level m+τ = 520

and the corresponding CAP-RECAP estimator |̂X ∗|cap was obtained from the

set XT = X515 by adding τ = 5 more auxiliary clauses. In this case we used for

|̂X ∗|cap two equal samples each of length N = 100, 000.

Comparing the results of Table 5.1 with that of Table 5.5 it is readily seen

that the extended CAP-RECAP estimator |̂X ∗|ecap outperforms the splitting

one |̂X ∗|product in terms of efficiency. In particular, we have that both RE and

CPU times of the former are about 1.6 times less than of the latter. This means

that the overall efficiency improvement obtained by |̂X ∗|ecap versus |̂X ∗|product
is about 1.62 · 1.6 ≈ 4. Note finally that the total number of samples used in

the extended CAP-RECAP estimator |̂X ∗|ecap is about N = 31 × 1, 000 + 5 ×
100, 000 = 531, 000, while in its counterpart - the splitting estimator |̂X ∗|product
is about N = 33× 25, 000 = 825, 000.

102

Table 5.5: Performance of the extended CAP-RECAP estimator |̂X ∗|ecap for the

(122 × 515) with N = 1, 000 (up to iteration 31), N = 100, 000 (from iteration

31 and the two capture-rcapture draws), c∗ = 0.05, and ρ = 0.1.

Run nr. its. |̂X ∗|ecap CPU

1 33 1.73E+06 138.99
2 34 1.59E+06 154.64
3 34 1.55E+06 161.78
4 33 1.20E+06 163.53
5 34 1.69E+06 143.84
6 34 1.81E+06 151.1
7 34 1.29E+06 174.08
8 34 1.40E+06 143.27
9 33 1.66E+06 171.07
10 34 1.30E+06 154.71

Average 33.7 1.52E+06 155.70

The relative error of |̂X ∗|ecap over 10 runs is 1.315E − 01.

5.4.2 Random graphs with prescribed degrees

Random graphs with given vertex degrees have attained attention as a model for

real-world complex networks, including World Wide Web, social networks and

biological networks. The problem is basically finding a graph G = (V,E) with

n vertices, given the degree sequence d = (d1, . . . , dn) formed of nonnegative

integers. Following Blitzstein and Diaconis [6], a finite sequence (d1, . . . , dn) of

nonnegative integers is called graphical if there is a labeled simple graph with

vertex set {1, . . . , n} in which vertex i has degree di. Such a graph is called a

realization of the degree sequence (d1, . . . , dn). We are interested in the total

number of realizations for a given degree sequence, hence X ∗ denotes the set of

all graphs G = (V,E) with the degree sequence (d1, . . . , dn).

Similar to (5.5) for SAT we convert the problem into a counting problem.

To proceed consider the complete graph Kn of n vertices, in which each vertex

is connected with all other vertices. Thus the total number of edges in Kn is

m = n(n−1)/2, labeled e1, . . . , em. The random graph problem with prescribed

degrees is translated to the problem of choosing those edges of Kn such that

the resulting graph G matches the given sequence d. Set xi = 1 when ei is

chosen, and xi = 0 otherwise, i = 1, . . . ,m. In order that such an assignment

x ∈ {0, 1}m matches the given degree sequence (d1, . . . , dn), it holds necessarily

that
∑m

j=1 xj = 1
2

∑n
i=1 di, since this is the total number of edges. In other

103

words, the configuration space is

X =

x ∈ {0, 1}m :
m∑
j=1

xj =
1
2

n∑
i=1

di

 .

Let A be the incidence matrix of Kn with entries

aij =

0 if vi ̸∈ ej

1 if vi ∈ ej .

It is easy to see that whenever a configuration x ∈ {0, 1}m satisfies Ax = d,

the associated graph has degree sequence (d1, . . . , dn). We conclude that the

problem set is represented by

X ∗ = {x ∈ X : Ax = d}.

We first present a small example as illustration. Let d = (2, 2, 2, 1, 3) with n = 5,

and m = 10. After ordering the edges of K5 lexicographically, the corresponding

incidence matrix is given as

A =

1 1 1 1 0 0 0 0 0 0
1 0 0 0 1 1 1 0 0 0
0 1 0 0 1 0 0 1 1 0
0 0 1 0 0 1 0 1 0 1
0 0 0 1 0 0 1 0 1 1

It is readily seen that the following x = (0, 0, 1, 1, 1, 0, 1, 0, 1, 0)′, and x =

(1, 0, 0, 1, 1, 0, 0, 0, 1, 1)′ present two solutions of this example.

For the random graph problem we define the score function S : X → Z− by

S(x) = −
n∑

i=1

|deg(vi)− di|,

where deg(vi) is the degree of vertex i under the configuration x. Each configu-

ration that satisfies the degree sequence will have a performance function equal

to 0.

The implementation of the Gibbs sampler for this problem is slightly different

than for the 3-SAT problem, since we keep the number of edges in each realization

fixed to
∑

di/2. Our first algorithm takes care of this requirement and generates

a random x ∈ X .

Algorithm 5.4.1. Let (d1, . . . , dn) be the prescribed degrees sequence.

• Generate a random permutation of 1, . . . ,m.

104

• Choose the first
∑

di/2 places in this permutation and deliver a vector x

having one’s in those places.

The adaptive thresholds in the basic splitting algorithm are negative, increas-

ing to 0:

m1 ≤ m2 ≤ · · · ≤ mT−1 ≤ mT = 0.

The resulting Gibbs sampler (in Step 3 of the basic splitting algorithm starting

with a configuration x ∈ X for which S(x) ≥ mt) can be written as follows.

Algorithm 5.4.2 (Gibbs Algorithm for random graph sampling). For each edge

xi = 1, while keeping all other edges fixed, do:

1. Remove xi from x, i.e. make xi = 0.

2. Check all possible placements for the edge resulting a new vector x̄ condition-

ing on the performance function S(x̄) ≥ mt

3. With uniform probability choose one of the valid realizations.

We will apply the splitting algorithm to two problems taken from [6].

A small problem

For this small problem we have the degree sequence

d = (5, 6, 1, . . . , 1︸ ︷︷ ︸
11 ones

).

The solution can be obtained analytically and already given in [6]:

“To count the number of labeled graphs with this degree sequence,

note that there are
(
11
5

)
= 462 such graphs with vertex 1 not joined to

vertex 2 by an edge (these graphs look like two separate stars), and

there are
(
11
4

)(
7
5

)
= 6930 such graphs with an edge between vertices

1 and 2 (these look like two joined stars with an isolated edge left

over). Thus, the total number of realizations of d is 7392.”

As we can see from Table 5.6, the algorithm easily handles the problem. Table

5.7 presents the typical dynamics.

105

Table 5.6: Performance of the splitting algorithm for a small problem using

N = 50, 000 and ρ = 0.5.

Run nr. of its. |̂X ∗| CPU

1 10 7146.2 15.723
2 10 7169.2 15.251
3 10 7468.7 15.664
4 10 7145.9 15.453
5 10 7583 15.555
6 10 7206.4 15.454
7 10 7079.3 15.495
8 10 7545.1 15.347
9 10 7597.2 15.836
10 10 7181.2 15.612

Average 10 7312.2 15.539

The relative error of |̂X ∗| over 10 runs is 2.710E − 02.

Table 5.7: Typical dynamics of the splitting algorithm for a small problem using

N = 50, 000 and ρ = 0.5 (recall Notation 5.4.1 at the beginning of Section 5.4).

t |̂X ∗
t | Nt N

(s)
t m∗

t m∗t ĉt
1 4.55E+12 29227 29227 -4 -30 0.5845
2 2.56E+12 28144 28144 -4 -18 0.5629
3 1.09E+12 21227 21227 -6 -16 0.4245
4 3.38E+11 15565 15565 -4 -14 0.3113
5 7.51E+10 11104 11104 -4 -12 0.2221
6 1.11E+10 7408 7408 -2 -10 0.1482
7 1.03E+09 4628 4628 -2 -8 0.0926
8 5.37E+07 2608 2608 -2 -6 0.0522
9 1.26E+06 1175 1175 0 -4 0.0235
10 7223.9 286 280 0 -2 0.0057

A large problem

A much harder instance (see [6]) is defined by

d = (7, 8, 5, 1, 1, 2, 8, 10, 4, 2, 4, 5, 3, 6, 7, 3, 2, 7, 6, 1, 2, 9, 6, 1, 3, 4, 6, 3, 3, 3, 2, 4, 4).

In [6] the number of such graphs is estimated to be about 1.533× 1057 Table 5.8

presents 10 runs using the splitting algorithm.

106

Table 5.8: Performance of the splitting algorithm for a large problem using

N = 100, 000 and ρ = 0.5.

Run nr. its. |̂X ∗| CPU

1 39 1.66E+57 4295
2 39 1.58E+57 4223
3 39 1.58E+57 4116
4 39 1.53E+57 4281
5 39 1.76E+57 4301
6 39 1.75E+57 4094
7 39 1.46E+57 4512
8 39 1.71E+57 4287
9 39 1.39E+57 4158
10 39 1.38E+57 4264

Average 39 1.58E+57 4253

The relative error of |̂X ∗| over 10 runs is 8.430E − 02.

5.4.3 Binary Contingency Tables

Given are two vectors of positive integers r = (r1, . . . , rm) and c = (c1, . . . , cn)

such that ri ≤ n for all i, cj ≤ n for all j, and
∑m

i=1 ri =
∑n

j=1 cj . A binary

contingency table with row sums r and column sums c is a m× n matrix X of

zero-one entries xij satisfying
∑n

j=1 xij = ri for every row i and
∑m

i=1 xij = cj

for every column j. The problem is to count all contingency tables.

The extension of the proposed Gibbs sampler for counting the contingency

tables is straightforward. We define the configuration space X = X (r) ∪ X (c) as

the space where all column or row sums are satisfied:

X (c) =

{
X ∈ {0, 1}m+n :

m∑
i=1

xij = cj ∀j

}
,

X (r) =

X ∈ {0, 1}m+n :

n∑
j=1

xij = ri ∀i

 .

Clearly we can sample uniformly at random from X without any problem. The

score function S : X → Z− is defined by

S(X) =

−
∑m

i=1 |
∑n

j=1 xij − ri|, for X ∈ X (c),

−
∑n

j=1 |
∑m

i=1 xij − cj |, for X ∈ X (r),

that is, the difference of the row sums
∑n

j=1 xij with the target ri if the column

sums are right, and vice versa.

107

The Gibbs sampler is very similar to the one in the previous section concern-

ing random graphs with prescribed degrees.

Algorithm 5.4.3 (Gibbs algorithm for random contingency tables sampling).

Given a matrix realization X ∈ X (c) with score S(X) ≥ mt. For each column j

and for each 1-entry in this column (xij = 1) do:

1. Remove this 1, i.e. set x′ij = 0.

2. Check all possible placements for this 1 in the given column j conditioning on

the performance function S(X ′) ≥ mt (X
′ is the matrix resulting by setting

x′ij = 0, x′i′j = 1 for some xi′j = 0, and all other entries remain unchanged).

3. Suppose that the set of valid realization is A = {X ′|S(X ′) ≥ mt}. (Please

note that this set also contains the original realization X). Then with proba-

bility 1
|A| pick any realization at random and continue with step 1.

Note that in this way we keep the column sums correct. Similarly, when we

started with a matrix configuration with all row sums correct, we execute these

steps for each row and swap 1 and 0 per row.

Model 1

The date are m = 12, n = 12 with row and column sums

r = (2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2), c = (2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2).

The true count value is known to be 21, 959, 547, 410, 077, 200. Table 5.9 presents

10 runs using the splitting algorithm. Table 5.10 presents a typical dynamics.

Table 5.9: Performance of the splitting algorithm for Model 1 using N = 50, 000

and ρ = 0.5.

Run nr.its. |̂X ∗| CPU

1 7 2.15E+16 4.54
2 7 2.32E+16 4.55
3 7 2.23E+16 4.54
4 7 2.11E+16 4.58
5 7 2.05E+16 4.57
6 7 2.23E+16 4.54
7 7 2.02E+16 4.55
8 7 2.38E+16 4.58
9 7 2.06E+16 4.57
10 7 2.14E+16 4.55

Average 7 2.17E+16 4.56

108

The relative error of |̂X ∗| over 10 runs is 5.210E − 02.

Table 5.10: Typical dynamics of the splitting algorithm for Model 1 using N =

50, 000 and ρ = 0.5.

t |̂X ∗
t | Nt N

(s)
t m∗

t m∗t ĉt
1 4.56E+21 13361 13361 -2 -24 0.6681
2 2.68E+21 11747 11747 -2 -12 0.5874
3 1.10E+21 8234 8234 -2 -10 0.4117
4 2.76E+20 5003 5003 -2 -8 0.2502
5 3.45E+19 2497 2497 0 -6 0.1249
6 1.92E+18 1112 1112 0 -4 0.0556
7 2.08E+16 217 217 0 -2 0.0109

Model 2

Darwin’s Finch Data from Yuguo Chen, Persi Diaconis, Susan P. Holmes, and

Jun S. Liu: m = 12, n = 17 with row and columns sums

r = (14, 13, 14, 10, 12, 2, 10, 1, 10, 11, 6, 2), c = (3, 3, 10, 9, 9, 7, 8, 9, 7, 8, 2, 9, 3, 6, 8, 2, 2).

The true count value is known to be 67, 149, 106, 137, 567, 600. Table 5.11 presents

10 runs using the splitting algorithm.

Table 5.11: Performance of the splitting algorithm for Model 2 using N =

200, 000 and ρ = 0.5.

Run nr. its. |̂X ∗| CPU

1 24 6.16E+16 246.83
2 24 6.50E+16 244.42
3 24 7.07E+16 252.71
4 24 7.91E+16 247.36
5 24 6.61E+16 260.99
6 24 6.77E+16 264.07
7 24 6.59E+16 269.86
8 24 6.51E+16 273.51
9 24 7.10E+16 272.49
10 24 5.91E+16 267.23

Average 24 6.71E+16 259.95

The relative error of |̂X ∗| over 10 runs is 7.850E − 02.

109

5.5 Concluding Remarks

In this paper we applied the splitting method to several well-known counting

problems, like 3-SAT, random graphs with prescribed degrees and binary con-

tingency tables. While implementing the splitting algorithm, we discussed sev-

eral MCMC algorithms and in particular the Gibbs sampler. We show how

to incorporate the classic capture-recapture method in the splitting algorithm

in order to obtain a low variance estimator for the desired counting quantity.

Furthermore, we presented an extended version of the capture-recapture algo-

rithm, which is suitable for problems with a larger number of feasible solutions.

We finally presented numerical results with the splitting and capture-recapture

estimators, and showed the superiority of the latter.

Acknowledgement

The authors are grateful to two anonymous referees for their comments and
suggestions.

110

Chapter 6

Permutational Methods for
Performance Analysis of
Stochastic Flow Networks

Ilya Gertsbakh a, Reuven Rubinsteinb 1,
Yoseph Shpungin c and Radislav Vaisman d

a Department of Mathematics,
Ben Gurion University, Beer-Sheva 84105, Israel
elyager@bezeqint.net

b Faculty of Industrial Engineering and Management,
Technion, Israel Institute of Technology, Haifa, Israel
ierrr01@ie.technion.ac.il,

c Department of Software Engineering,
Shamoon College of Engineering, Beer-Sheva 84105, Israel
yosefs@sce.ac.il

d Faculty of Industrial Engineering and Management,
Technion, Israel Institute of Technology, Haifa, Israel
slvaisman@gmail.com

1Corresponding author (http://iew3.technion.ac.il/Home/ Users/ierrr01.phtml)
1† This research was supported by the BSF (Binational Science Foundation, grant No

2008482)

111

Abstract

In this paper we show how the permutation Monte Carlo method, orig-
inally developed for reliability networks, can be successfully adapted for
stochastic flow networks, and in particular for estimation of the probability
that the maximal flow in such a network is above some fixed level, called the
threshold. A stochastic flow network is defined as one, where the edges are
subject to random failures. A failed edge is assumed to be erased (broken)
and, thus, not able to deliver any flow. We consider two models; one where
the edges fail with the same failure probability and another where they fail
with different failure probabilities. For each model we construct a different
algorithm for estimation of the desired probability; in the former case it is
based on the well known notion of the D-spectrum and in the later one -
on the permutational Monte Carlo. We discuss the convergence properties
of our estimators and present supportive numerical results.

Keywords. Permutation, Performance Analysis, Reliability Networks,
Stochastic Flow Networks.

112

Contents

6.1 Introduction

The purpose of this paper is to investigate the probabilistic properties of
the maximal flow in a network with randomly failing edges. Edge failure
means that it is erased (broken) and is not able to deliver any flow. Because
of the randomness of these failures, the maximum flow from the source to
the sink is also a random variable. We call such a network, the stochastic
flow network.

Before proceeding let us define formally our network. The network is
a triple N = (V,E,C), where V is the set of vertices (nodes), |V| = n,
E is the set of edges, |E| = m, and C is the set of edge capacities C =
(c1; . . . ; cm), where ci is an item of type ci = {(a, b), wi} , where wi is the
maximal flow capacity from node a to node b along the directed edge (a, b).
In case that there are directed edges from a to b and from b to a, these
edges get different numbers, say r and s, and C will contain two items of
the above type: cr = {(a, b), wr} and cs = {(b, a), ws}.

Denote by s and t the source and sink nodes of the network. Denote next
by M the maximum flow when all edges are operational. Note that there
exist an extensive literature with several fast polynomial time algorithms
for finding the maximum flow in networks with perfect edges [75]. Unless
stated otherwise we shall use the Goldberg-Rao algorithm [43] with the

complexity O(min(|V | 23 ,
√
|E|)|E| log(|V |2

|E|) log(U)), where U is the largest

edge capacity in the network.
The main goal of this paper is to obtain the probability that the maximal

flow in a stochastic flow network is below some fixed level Φ = γM, (γ < 1),
called the threshold. We say that the network is in DOWN state if its
maximal flow is below Φ, otherwise it is in UP state. It is important to note
that if the maximal flow drops to zero, the network (s and t nodes) become
disconnected. Therefore, the flow model can be viewed as a generalization
of the s− t connectivity in the classic reliability model [35], which is based
on the permutational Monte Carlo (PMC) method.

There exists a vast literature on stochastic flow networks with a number
of clever algorithms. For a good survey see [60] and the references therein.
It is not our goal to evaluate the PMC method for flow networks versus
its alternatives, but rather to show the beauty of this method, discuss its

113

convergence properties and present supportive numerical results.
We consider the following two models:
Model 1. All edges fail independently with the same failure probability

q. For this model our goal is to find the probability P(DOWN ; q) that the
network is DOWN as a function of q, 0 < q ≤ 1.

Model 2. All edges fail independently, with arbitrary failure prob-
abilities q1, . . . , qm. For this model our goals is to find the probability
P(DOWN ; q) for fixed vector q = (q1, . . . , qm).

The rest of the paper is organized as follows. In Section 6.2 we consider
Model 1 and derive a closed expression for the function P(DOWN ; q). It is
based on the D-spectrum, which represents the distribution of the so-called
anchor for randomly generated permutations and which is approximated
via a Monte Carlo procedure. The D-spectrum has been widely used in the
literature on stochastic network reliability analysis [26, 25, 38, 33, 34, 35,
36, 37]. Numerically it is identical with the so-called signature introduced in
[87] and later on independently by [26] under the name Internal Distribution
(ID). Here we will also consider the main properties of the D-spectrum
and its usefulness to stochastic flow networks, as well as present numerical
results for a flow network.

Section 6.3 is devoted to Model 2 and in particular to estimation of
P(DOWN ;q) for non equal components of the vector q. Here we introduce
a specially designed evolution, also called construction or birth process,
first introduced in [26] and then widely used in network reliability analysis
[35, 53].

We describe in detail the procedure of obtaining permutations for this
process and construct an efficient Monte Carlo estimator for P(DOWN ;q).
A numerical example concludes this section.

Section 6.4 extends Model 2 to the case of random capacities. We
show that although the estimator of P(DOWN ;q) is not as accurate as
in the case of the fixed capacity vector C, the algorithm derived for fixed
C is also applicable here. A numerical example supporting our findings is
presented as well.

Section 6.5 presents concluding remarks and some directions for further
research.

6.2 Max Flow with Equal Failure Probabilities

Here we derive an analytic expression for P(DOWN, q) while considering
the Model 1, that is for the one with equal failure probabilities of the
edges. Our derivation is based on the notion of D-spectrum [35].

6.2.1 D-spectrum and its Properties

Denote network edges by e1, e2, . . . , em. Suppose that all edges are initially
operational and thus the network is UP . Let π = (ei1 , . . . , eim) be a per-

114

mutation of the network edges. Then the D-spectrum algorithm can be
described as follows:

Algorithm 6.2.1. (D-spectrum Algorithm) Given a network and a
set of terminal nodes s and t, execute the following steps.

1. Start turning the edges down (erase them) moving through the per-
mutation from left to right, and check the state (UP/DOWN) of the
network after each step.

2. Find the position of the first edge ir when the network switches from
UP to DOWN. This can be done, for example, by using the Goldberg-
Rao maximum flow polynomial algorithm (oracle) [13]. The serial
number r of this edge of π is called the anchor of π and denoted as
r(π).

3. Consider the set of all m! permutations and assign to each of them
the probability 1/m!

4. Define the event A(i) = {r(π) = i} and denote fi = P(A(i)). Obvi-
ously,

fi =
of permutations with r(π) = i

m!
. (6.1)

The set of {fi , i = 1, . . . ,m} defines a proper discrete density func-
tion. It is called the density D-spectrum, where ”D” stands for ”de-
struction”.

5. Define the cumulative D-spectrum or simply D-spectrum as

F (x) =
x∑

i=1

fi, x = 1, . . . ,m. (6.2)

Note that Algorithm 6.2.1 can be speeded up by using a bisection pro-
cedure for turning edges down instead of the sequential one-by-one. This
is implemented in our main permutational Algorithm 6.2.2 below.

The nice feature of the D-spectrum is that once F (x) is available one
can calculate directly the sought failure probability P(DOWN ; q) (see (6.4)
below). Indeed, denote by N (x) the number of network failure sets of size
x. Note that each such set is a collection of x edges whose failure result
in DOWN state of the network. So, if the network is DOWN when edges
Ax = {ej1 , . . . , ejx} are down (erased), and all other edges are operational,
we say that Ax is a failure set of size x. It is readily seen that

N (x) = F (x)

(
m

x

)
. (6.3)

115

This statement has a simple combinatorial explanation: F (x) is a frac-
tion of all failure sets of size x among all subsets of size x taken randomly
from the set of m components.

From (6.3) we immediately obtain our main result for Model 1.

P(DOWN ; q) =
m∑

x=1

N (x)qx(1− q)m−x. (6.4)

Indeed, (6.4) follows from the facts that

• Network is DOWN if and only if it is in one of its failure states.

• For fixed q each failure set of size x has the probability ρx = qx(1 −
q)m−x.

• All failure sets of size x have the probability N (x)ρx .

Example 6.2.1. Figure 6.1 represents a simple directed graph with n = 3
nodes denoted by s, b, t (s and t being the source and the sink), m = 3
edges denoted by sb, bt, st and a 3-dimensional flow capacity vector C =
(sb, bt, st) = (1, 2, 2).

��

�

� �

�

Figure 6.1: A network with e1 = (s, b), e2 = (b, t), e3 = (s, t) and capacity vector
C = (1, 2, 2)

It is easy to check that the maximal flow is M = 3. Assume that
Φ = 2, that is the network is DOWN when the max flow drops below
level 2. Let us find its D-spectrum. The total number of permutations
is 3!=6. If the permutation starts with edge e3, the anchor is r = 1.
In permutations (1, 3, 2) and (2, 3, 1) DOWN appears at the second step,
r = 2. In permutations having e3 on the third position, the flow becomes
0 at the third step. Thus f1 = f2 = f3 = 1/3 and F (1) = 1/3, F (2) =
2/3, F (3) = 1. Now by (6.3) we obtain that N (1) = 1, N (2) = 2, and

116

N (3) = 1. Indeed, in order for the network to be in the DOWN state,
there is one failure set of size one containing the edge {e3}, two failure sets
of size two containing the edges {e2, e3} and {e1, e3} and one failure set of
size 3 containing the edges {e1, e2, e3}.

Simple calculations of (6.4) yield that P(DOWN ; q) = q.

A nice feature of (6.4) is that onceN (x) is available we can calculate an-
alytically the probability P(DOWN ; q) simultaneously for multiple values
of q.

Remark 6.2.1. The D-spectrum is a purely combinatorial characteristic
of the network. It depends only on its topology, the edge capacity vector
C and the threshold value Φ. It does not depend on the probabilistic
mechanism which governs edge failure.

Note that instead of the destruction process one can use its dual version,
the so-called construction one. In the latter we start the system at DOWN
state and turn the edges from down to up one-by-one (or using bisection)
until the system becomes UP. We shall use the construction process in
Section 6.3.

Since network failure probability is a monotone function of its compo-
nent reliability, we immediately obtain the following

Corollary Let edges fail independently, and edge i fails with probability
qi. Suppose that for all i, qi ∈ [qmin, qmax] . Then, obviously,

P(DOWN ; q1, . . . , qm) ∈ [P(DOWN ; qmin),P(DOWN ; qmax)] (6.5)

This corollary may be useful for the case where exact information about
edge failure probabilities is not available and the only statement we can be
made is that the edges fail independently and that their failure probabilities
lie within some known interval.

6.2.2 Estimation of D-spectrum and P(DOWN ; q)

For m ≤ 10, the total number of permutations m! is not too large, and the
probabilities fi, i = 1, . . . ,m and P(DOWN ; q) might be computed by full
enumeration. For m > 10 we need to resort to Monte Carlo simulation. In
our numerical examples below we shall show that with a sample size of N =
106 of permutations one can estimate P(DOWN : q) with relative error not
exceeding 2% for flow networks with the number of edges m = 200− 300.
Note that the most time consuming part of the simulation process is to
check after edge destruction whether or not the system switches from UP
to DOWN. As mentioned this can be done by a maximum flow algorithm
(oracle), and in particular by the Goldberg-Rao algorithm, which finds the

location of permutation anchor in O(min(|V | 23 ,
√
|E|)|E| log(|V |2

|E|) log(U))

operations.

117

The Monte Carlo estimators of F (x) and P(DOWN ; q) is straightfor-
ward. Basically we apply Algorithm 6.2.1 N times. During each replication
we find the anchor r(π) of π. In analogy to (6.1) we estimate the density
f(x), x = 1, . . . ,m as follows

f̂(x) =
of permutations with r(π) = x

N
. (6.6)

Note that (6.6) differs from (6.1) that m! is replaced by N . Note also that

f̂(x) represents a histogram of f(x) in (6.1).
The corresponding estimators of F (x) and P(DOWN ; q) (see (6.2) and

(6.4)) are

F̂ (x) =
x∑

i=1

f̂i, x = 1, . . . ,m (6.7)

and

P̂(DOWN ; q) =
m∑

x=1

F̂ (x)

(
m

x

)
qx(1− q)m−x, (6.8)

respectively.
Below we present our main algorithm for estimating F (x) and P(DOWN ; q).

Algorithm 6.2.2. (Main D-spectrum Algorithm for Estimating
F (x) and P(DOWN ; q))

Given a network and a set of terminal nodes s and t, execute the
following steps.

1. Simulate a random permutation π = (π1, . . . , πm) of the edges 1, . . . ,m.

2. Set low = 1 and high = m

3. Set b = low + ⌈high−low
2
⌉

4. Consider π1, . . . , πb and π1, . . . , πb+1 and use Goldberg-Rao algorithm
to check if the network changed its state from UP to DOWN at index
b+ 1 and b respectively.
If so, denote by r = r(π) the final number of the anchor of π, cor-
responding to the non-operational network , output r(π) = b as the
anchor at which the network is in DOWN state and go to step 5.
If the network state at b is still UP set high = b else, if for both b
and b+ 1 the network is in the DOWN state, set low = b and repeat
step 3.

5. Output r(π) = b as the anchor at which the network is in DOWN
state.

6. Repeat steps 1-5 N times and deliver F̂ (x) and P̂(DOWN ; q) as per
(6.7) and (6.8), respectively.

118

6.2.3 Numerical Results

Below we present simulation results for the D-spectrum and P(DOWN ; q)
for the following two models (i) dodecahedron graph and (ii) Erdos - Renyi
graph.

(i) Dodecahedron graph with |V | = 20, |E| = 54 is depicted in Figure 6.2.
We set s = 1 ant t = 10.

1

2

3

4
5

7 8

9

10

11

12
13

14

16

17

18

20

15

19

6

Figure 6.2: The dodecahedron graph.

Table 6.1 presents the values of the edge capacities c1, . . . , c54. They
where generated (for each edge independently) using a discrete uniform
pdf U(5, 10).

Table 6.1: Edge capacities for the dodecahedron graph

e = (a, b) c(e) e = (a, b) c(a, b) e(a, b) c(a, b) e = (a, b) c(a, b)

(1,2) 5 (18,6) 8 (12,10) 7 (19,18) 5
(1,16) 6 (18,19) 10 (9,10) 7 (7,6) 8
(1,5) 5 (6,7) 8 (3,2) 5 (8,4) 9
(2,3) 9 (4,8) 5 (15,2) 7 (14,13) 7
(2,15) 9 (13,14) 7 (17,16) 8 (11,13) 7
(16,17) 6 (13,11) 6 (18,16) 7 (12,14) 6
(16,18) 7 (14,12) 6 (6,5) 8 (19,20) 5
(5,6) 6 (20,19) 5 (4,5) 8 (12,20) 9
(5,4) 8 (20,12) 10 (4,3) 9 (9,19) 9
(3,4) 10 (19,9) 9 (13,3) 5 (8,7) 6
(3,13) 6 (7,8) 7 (17,15) 7 (9,7) 6
(15,17) 10 (7,9) 9 (14,15) 8 (11,8) 7
(15,14) 7 (8,11) 9 (20,17) 6
(17,20) 6 (11,10) 8 (6,18) 8

Using the Goldberg-Rao algorithm we found that the maximum flow
with the perfect edges equals M = 16. For our simulation studies we

119

set the threshold level Φ = 14. In all our experiments below we took
N = 50, 000 samples.

Table 6.2 presents the D-spectrum estimator F̂ (x) as function of x for
the dodecahedron graph with Φ = 14 based on N = 5 · 104 replications.

Table 6.2: D-spectrum estimator F̂ (x) for the dodecahedron graph with Φ = 14

x F̂ (x) x F̂ (x) x F̂ (x) x F̂ (x)
1 0.0547 15 0.8899 29 0.99999 43 1
2 0.1148 16 0.9199 30 0.99999 44 1
3 0.1780 17 0.9435 31 0.99999 45 1
4 0.2475 28 0.9606 32 1 46 1
5 0.3212 19 0.9732 33 1 47 1
6 0.3993 20 0.9822 34 1 48 1
7 0.4804 21 0.9882 35 1 49 1
8 0.5592 22 0.9924 36 1 50 1
9 0.6359 23 0.9952 37 1 51 1
10 0.7072 24 0.9969 38 1 52 1
11 0.7701 25 0.9982 39 1 53 1
12 0.8263 26 0.9990 40 1 54 1
13 0.8721 27 0.9995 41 1
14 0.9086 28 0.9997 42 1

It follows from Table 6.2 that the network fails with probability equal
at least 0.7, 0.9 and 0.99, when the number x of failed edges exceeds 10,
14, and 22, respectively. It fails with probability one when x exceeds 31.

Recall that once F̂ (x) is available one can calculate analytically the

estimator P̂(DOWN ; q) of the true probability P(DOWN ; q) for any q by
applying (6.8).

Table 6.3 presents P̂(DOWN ; q) for different values of q. It also present
the corresponding relative error RE based on K = 10 independent runs of
the entire algorithm. The RE was calculated as

RE =
S

ℓ̃
, (6.9)

where

ℓ̂ = P̂(DOWN ; q), S2 =
1

K − 1

K∑
i=1

(ℓ̂i − ℓ̃)2 and ℓ̃ =
1

K

K∑
i=1

ℓ̂i.

Table 6.3: P̂(DOWN ; q) and RE for different values of q for the dodecahedron
graph

q 10−6 10−5 10−4 10−3 10−2 0.1 0.15

P̂(DOWN ; q) 2.99E-06 2.99E-05 2.99E-04 3.00E-03 3.05E-02 3.57E-01 5.54E-01
RE 1.84E-02 2.08E-02 1.84E-02 1.79E-02 1.41E-02 4.50E-03 2.96E-03

120

The CPU time for each P̂(DOWN ; q) equals to 6.6 seconds.
It follows from Table 6.3 that

• In order to guarantee network reliability 1− P̂(DOWN ; q) =0.9, the
probability q of edges failure must not exceed 0.1.

• A sample N = 5 · 104 guaranties relative error ≤ 1.9% for all q sce-
narios.

(ii) Erdos - Renyi graph, named for Paul Erdos and Alfred Renyi. Our
graph was generated according to what is called the G(n, p) Erdos - Renyi
random graph [27].

In the G(n, p) model, (n is fixed) a graph is constructed by connecting
nodes randomly. Each edge is included in the graph with probability p
independent from every other edge. Equivalently, all graphs with n nodes
and m edges have the same probability

pm(1− p)(
n
2)−m.

A simple way to generate a random graph in G(n, p) is to consider each of
the possible

(
n
2

)
edges in some order and then independently add each edge

to the graph with probability p. Note that the expected number of edges
in G(n, p) is p

(
n
2

)
, and each vertex has expected degree p(n−1). Clearly as

p increases from 0 to 1, the model becomes more dense in the sense that is
it is more likely that it will include graphs with more edges than less edges.

We considered an instance of Erdos-Renyi G(n, p) random graph with
p = 0.1 and |V | = 35 vertices. While generating it we obtained |E| = 109
connected edges. We set s = 1 and t = 35.

Similar to the dodecahedron graph, each capacity c1, . . . , c109 was gen-
erated independently using a discrete uniform U(5, 10) pdf. Using the
Goldberg-Rao algorithm we found that the maximum flow with the perfect
edges equals M = 30. For our simulation studies we set the threshold level
Φ = 27. Again, as before, we set N = 50, 000.

Tables 6.4 and 6.5 present data similar to these of Tables 6.2 and 6.3 for
the above Erdos-Renyi graph with |V | = 35 vertices and |E| = 109. Note

again that each value of P̂(DOWN ; q) and the corresponding values RE
were calculated based on 10 independent runs. The results of the tables
are self explanatory.

121

Table 6.4: The estimator F̂ (x) of the D-spectrum for the Erdos-Renyi graph
with Φ = 27

x F̂ (x) x F̂ (x) x F̂ (x) x F̂ (x)
1 0.0354 31 0.8931 61 0.99994 91 1
2 0.0722 32 0.9074 62 0.99996 92 1
3 0.1078 33 0.9200 63 0.99996 93 1
4 0.1436 34 0.9312 64 0.99997 94 1
5 0.1786 35 0.9414 65 0.99997 95 1
6 0.2122 36 0.9504 66 0.99998 96 1
7 0.2457 37 0.9584 67 0.99998 97 1
8 0.2798 38 0.9655 68 1 98 1
9 0.3128 39 0.9716 69 1 99 1
10 0.3469 40 0.9769 70 1 100 1
11 0.3785 41 0.9814 71 1 101 1
12 0.4100 42 0.9851 72 1 102 1
13 0.4420 43 0.9884 73 1 103 1
14 0.4735 44 0.9908 74 1 104 1
15 0.5059 45 0.9928 75 1 105 1
16 0.5362 46 0.9944 76 1 106 1
17 0.5669 47 0.9955 77 1 107 1
18 0.5955 48 0.9967 78 1 108 1
19 0.6239 49 0.9974 79 1 109 1
20 0.6526 50 0.9982 80 1
21 0.6812 51 0.9987 81 1
22 0.7076 52 0.9990 82 1
23 0.7319 53 0.9992 83 1
24 0.7563 54 0.9995 84 1
25 0.7797 55 0.9996 85 1
26 0.8015 56 0.9997 86 1
27 0.8223 57 0.9998 87 1
28 0.8422 58 0.9999 88 1
29 0.8608 59 0.9999 89 1
30 0.8777 60 0.9999 90 1

Table 6.5: P̂(DOWN ; q) and RE for different values of q for the Erdos-Renyi
graph

q 10−6 10−5 10−4 10−3 10−2 0.1 0.15

P̂(DOWN ; q) 4.05E-06 4.05E-05 4.05E-04 4.04E-03 3.98E-02 3.74E-01 5.45E-01
RE 1.68E-02 1.68E-02 1.67E-02 1.57E-02 9.54E-03 3.36E-03 2.32E-03

The CPU time for each P̂(DOWN ; q) equals to 22.4 seconds.
All numerical experiments were performed on Intel Core i5 650 3.20

GHz CPU having GB RAM.
We also estimated P(DOWN ; q) for the Erdos-Renyi models with sev-

eral hundreds edges. For example, setting |V | = 55 and p = 0.1 we gener-
ated a random graph with the number of connected edges |E| = 313. We
found that

• M = 28 and we set Φ = 25.

122

• In order to provide relative error RE ≤ 0.02 we need to take the
sample size N = 6 · 105

The CPU time was about 400 seconds.

6.3 Max Flow with Non-Equal Edge Failure Proba-
bilities

The simplest way to estimate P(DOWN, q) for different failure probability
vector q = (q1, . . . , qm) is to simulate the state vector X = (X1, . . . , Xm)
of edges i1, . . . , im failure from Ber(q) distribution with independent com-
ponents and then calculate for each realization of X = (X1, . . . , Xm) the
maximum flow in the network and the corresponding network state. This
naive Monte Carlo procedure is extremely time consuming, however.

To overcome this difficulty we shall adopt here the evolution process of
Elperin, Gertsbakh and Lomonosov [26] originally developed for reliability
network estimation.

6.3.1 Transformation of the Static Flow Model into a Dynamic

The main idea of the evolution process is to replace a failing edge i having
a Bernoulli Ber(qi) distribution by one with an exponentially distributed
birth time τi with birth rate λi = − ln(qi). More specifically, at time t = 0
edge i starts its birth process which terminates at some random moment
τi. Once this edge is “born” it stays forever in up state. The probability
that this event happens before time t = 1 is

P(τi ≤ 1) = 1− exp(−λi · 1) = 1− exp(ln qi) = 1− qi = pi. (6.10)

Thus, if we take a snapshot of the state of all edges at time instant t = 1 we
can see the static picture in the sense that edge i will be up with probability
pi = 1− qi and down with probability qi.

With this in mind, we can represent the edge birth process as one evolv-
ing in time in a form of a sequence of random sequential births
{Yj(k)}, j = 1, 2, . . . ,m, where Yj(·) is the instant of the j − th birth,

and k, k = 1, . . . ,m is the number of the born edge. Then the whole birth
history can be represented by the following sequence

0 < Y1(k1) < Y2(k2) < ... < Yj(kj) < ... < Ym(km). (6.11)

Note that here, in contrast to Model 1

• π = (k1, k2, . . . , km) represents an ordered sample reflecting the order
of edge birth sequence and not an arbitrary random permutation.

123

• It describes a construction process instead of a destruction one, namely
starting with the network in DOWN state and ending in UP state.

Since all birth times are exponential, it is easy to generate a single birth
”history”, also called the sample path or trajectory.

6.3.2 Permutational Algorithm for Estimating P(DOWN ;q)

Before presenting the algorithm for estimating P(DOWN ;q) we make the
following observations.

1. The time to the first birth is a random variable ξ1 distributed expo-
nentially with parameter Λ1 =

∑m
i λi. It follows that

• The first birth will occur at edge k1 with probability λk1/Λ1.

• At the instant ξ1 all edges except the born one are not yet born,
but because of the memoryless property they behave as if they all
are born at that instant ξ1. This means that the time interval ξ2
between the first and second births, given that edge k1 is already
born, is distributed exponentially with parameter Λ2 = Λ1−λk1 .

2. The second birth will occur at edge k2 with probability λk2/Λ1, and
so on. Clearly that given the edges k1, k2, . . . , ks are already born,
the time ξks+1 to the next birth will be exponentially distributed with
parameter Λs+1, which equals the sum of λ-s of all non born edges,
and with probability λj/Λs+1 the next birth will occur at edge j.

Based on the above we can design a simple permutational Monte Carlo
algorithm for estimating P(DOWN ;q).

Algorithm 6.3.1. (Permutational Algorithm for Estimating P(DOWN ;q)
Given a network and a set of terminal nodes s and t, execute the following
steps.

1. Generate the birth times of the edges τ1, . . . , τm , with τi ∼ exp(λi),
and rate λi = − ln(qi).

2. Arrange these birth times in increasing order obtaining the order
statistics τ(1), . . . , τ(m), then ignore the actual birth times retaining
only the order in which the edges are born. This yields a permutation
π = (π(1), . . . , π(m)) of the edge numbers under which their birth
times occur.

3. Similar to Algorithm 6.2.2, use a combination of the Goldberg-Rao
algorithm (oracle) and the bisection procedure to allocate the edge rα
whose birth brings the network UP. Call the sequence (π1, . . . , πα) =
ω.

124

4. Calculate analytically P(ξ1 + ξ2 + ...+ ξα ≤ 1|ω). Note that ξ1 + ξ2 +
...+ ξα has a hypo-exponential distribution. Note also that the event∑α

i=1 ξi ≤ 1 is equivalent to the network being UP, by the definition
of α.

5. Repeat N times Steps 1- 4, and estimate P(DOWN ;q) as

P̂(DOWN ;q) = 1− 1

N

N∑
i=1

P(
α∑

j=1

ξj ≤ 1|ωi). (6.12)

Note that

• The complexity of Algorithm 6.3.1 is governed by the Goldberg-Rao
oracle and is therefore

O(N log(m)[min(|V |
2
3 ,
√
|E|)|E| log(|V |

2

|E|
) log(U)]) (6.13)

This follows from the fact that a single run has complexity

O(log(m)[min(|V | 23 ,
√
|E|)|E| log(|V

2

|E|) log(U)]) and we performN such
runs.

• As for networks reliability the relative error of the estimator P̂(DOWN ;q)
is uniformly bounded with respect to the λi values, (see [25, 33]).

• Besides the permutation Algorithm 6.3.1 one could apply some other
alternatives, such as the turnip [26], cross-entropy [52] and splitting
[8, 9, 80].

Example 6.3.1. Example 6.2.1 continued
Consider again the network of Example 1 and assume that edge ei fails

with probability qi. Let Φ = 2, that is assume that network is UP if the
maximum flow is either 2 or 3. Figure 6.3 shows the tree of all five possible
trajectories of the evolution process. It starts moving from the root to the
UP state shown by double circles.

125

���� ���� ����

���� ���� ����

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

Figure 6.3: The evolution process for the network of Example 6.2.1

Let us consider one of them, namely the one corresponding to ω =
{1, 3}, meaning that the first birth occurs at edge e1 and the second at
edge e3. This trajectory will occur with probability

λ1

λ1 + λ2 + λ3

· λ3

λ2 + λ3

.

The movement along this trajectory from the root to the UP state lasts
ξ = ξ1+ξ2 units of time, where ξ1 ∼ exp(λ1+λ2+λ3) and ξ2 ∼ exp(λ2+λ3).
Computing P(ξ ≤ 1|ω) is a simple task.

6.3.3 Numerical Results

Here we apply the permutation Algorithm 6.3.1 to estimate P(DOWN ; q)
for the same two models in Section 6.2.

Tables 6.6 and 6.7 present data similar to Tables 6.3 and 6.5 while
assuming that all components of the vector q are equal. This was done
purposely with view to see how the performance of the permutation Algo-
rithm 6.3.1 compares with that of the D-Spectrum Algorithm 6.2.2.

It follows from comparison of Tables 6.6, 6.7 with Tables 6.3, 6.5 that

both produce almost identical P̂(DOWN ; q) values and they also close in
terms of RE and CPU times. The main difference is that with Algorithm

6.2.2 we was calculated P̂(DOWN ; q) simultaneously for different values
of q using a single simulation, while with Algorithm 6.3.1 we required to

calculate P̂(DOWN ; q) separately for each q value, that is using multiple
simulations.

126

Table 6.6: P̂(DOWN ; q) and RE for different values of q for the dodecahedron
graph

q 10−6 10−5 10−4 10−3 10−2 0.1 0.15

P̂(DOWN ; q) 2.99E-06 3.02E-05 3.00E-04 3.00E-03 3.06E-02 3.57E-01 5.54E-01
RE 2.08E-02 1.94E-02 1.53E-02 2.11E-02 1.09E-02 3.13E-03 2.81E-03

The CPU time for each P̂(DOWN ; q) equals to 8.6 seconds.

Table 6.7: P̂(DOWN ; q) and RE for different values of q for the Edrdos-Renyi
graph

q 10−6 10−5 10−4 10−3 10−2 0.1 0.15

P̂(DOWN ; q) 4.01E-06 4.00E-05 4.03E-04 3.99E-03 3.97E-02 3.73E-01 5.44E-01
RE 2.84E-02 1.64E-02 2.36E-02 2.74E-02 1.07E-02 3.84E-03 3.77E-03

The CPU time for each P̂(DOWN ; q) equals to 34 seconds.
Tables 6.8 and 6.9 present data similar to Tables 6.6 and 6.7, but for

different values of the components of the vector q. More specifically, define
α1 and α2 to be the minimal and the maximal failure probability, respec-
tively. Define next δ = (α2 − α1)/|E|. Then, we set qi = α1 + iδ for
i ∈ {0, . . . |E| − 1}. In all tables below we set α2 = q and α1 =

α2

10
= q

10
.

Table 6.8: P̂(DOWN ; q) and RE for different values of q for the dodecahedron
graph

q 10−6 10−5 10−4 10−3 10−2 0.1 0.15

P̂(DOWN ; q) 3.42E-07 3.50E-06 3.50E-05 3.55E-04 3.97E-03 8.04E-02 1.52E-01
RE 1.76E-02 2.01E-02 2.16E-02 2.21E-02 2.39E-02 1.32E-02 5.23E-03

The CPU time for each P̂(DOWN ; q) was 9 seconds.

Table 6.9: P̂(DOWN ; q) and RE for different values of q for the Edrdos-Renyi
graph

q 10−6 10−5 10−4 10−3 10−2 0.1 0.15

P̂(DOWN ; q) 2.16E-06 2.14E-05 2.16E-04 2.13E-03 2.14E-02 2.10E-01 3.11E-01
RE 2.54E-02 1.29E-02 2.95E-02 2.49E-02 1.71E-02 5.55E-03 5.47E-03

The CPU time for each P̂(DOWN ; q) was 34.8 seconds. The results are
self explanatory.

We also applied Algorithm 6.3.1 for Erdos-Renyi models with the size
of several hundreds edges. As for Algorithm 6.2.2 we

127

• Considered the model with p = 0.1, |V | = 55 and |E| = 313.

• In order to keep the RE ≤ 0.05 we required to increase the sample
size from N = 5 · 104 to N = 105 .

The CPU time was about 9 minutes for each q value.

6.4 Extension to Random Capacities

Algorithm 6.3.1 can be readily modified for the case where not only the
edges are subject of failure, but the capacity vector is random as well,
that is when the capacity ck of each edge k, k = 1, ...,m is a random
variable independent of edge failure Ber (q) distribution. We assume that
the capacity random vector is unbiased with respect to the true vector
C and has independent components with some known distribution F =
(F1, . . . ,Fm). Denote the joint distribution of Fk and Ber(1 − qk) by Rk,
that is Rk = Fk· Ber(1−qk), k = 1, . . . ,m and call it the modified capacity
distribution. In this case, only Step 1 of Algorithm 3.1 should be modified
as

Generate the birth times τ1, . . . , τm of the edges τi ∼ exp(λi), and put
λi = − ln(qi). Generate a capacity random vector Z = (Z1, . . . , Zm) ac-
cording to the modified capacity distribution R = (R1, . . . ,Rm), while the
rest of Algorithm 6.3.1 remains the same. Note that as soon the edge birth
times and the edge capacities were generated at step 1 all the remaining
steps do not change and the Goldberg-Rao algorithm is applied on those
capacities.

Clearly the variability of such a noise estimator P(DOWN ; q) increases
with the variability of Z. Our numerical results below support this.

6.4.1 Numerical Results

Wemodel each component Zk of the random capacity vectorZ = (Z1, . . . , Zm)
by setting Zk = ζkck(1 + εη), where ζk ∼ Ber(1 − qk) and η is a random
variable with Eη = 0 and Varη = σ2. Note that for ε = 0 (deterministic
capacities) we have Zk = ckζk and for perfect edges, Zk reduces to Zk = ck.
We assume for concreteness that η ∼ U(−0.5, 0.5).

Before proceeding with numerical results lets us discuss the choice of
the threshold level Φ for random capacities. Consider, for example the do-
decahedron graph. Recall that with deterministic capacities the maximal
flow was M = 16 and we selected Φ = 14 for our simulation studies. Ob-
serve also that in the case of random capacities (even with perfect edges)
the maximal flow is a random variable, which will fluctuate from repli-
cation to replication. Denote by M = (M1, . . . ,MN) the maximal flow
random vector corresponding to a simulation of length N . Clearly, that the
variability of the components of M = (M1, . . . ,MN) increases in ε and

128

it is quite easy to chose an ε (perhaps large enough) such that many the
components of M = (M1, . . . ,MN) will be below some fixed threshold Φ
and in particular below our earlier one, Φ = 14. It follows from above that
setting, say Φ = 14 for large ε is meaningless.

To resolve this difficulty we propose the following adaptive algorithm
based on what is called elite sampling [86] for finding a meaningful Φ.

Algorithm 6.4.1. (Adaptive Algorithm for Fining Φ in a Flow Net-
work with Random Capacities)

Given a network and a set of terminal nodes s and t, execute the
following steps.

1. Generate a sample of random capacity vectors Z1, . . . ,ZN . Calcu-
late the corresponding maximum flow valuesM1, . . . ,MN using the
Goldberg-Rao algorithm.

2. Order them from the smallest to the largest. Denote the ordered
values byM(1), . . . ,M(N). WriteM(1), . . . ,M(N) as

M(1), . . . ,M(e);M(e+1), . . . ,M(a);M(a+1), . . . ,M(N). (6.14)

Here

• M(a) ≤Ma ≤M(a+1),M(a) =
1
N

∑N
i=1Mi is the sample average

ofM1, . . . ,MN .

• M(e) corresponds to the sample (1− ρ)-quantile of the sequence
(6.14), namely M(e) = MNe and N e = ⌈(1− ρ)N⌉. In other
words M(e) corresponding to ρ% of the largest sample value in
the sequence (6.14) starting from the left.

3. Set Φ =M(e) and call it the adaptive threshold. Note that the “dis-
tance” |Ma(ε)−M(e)(ε)| betweenMa andM(e) increases in ε.

If not stated otherwise we assume that the sample quantile ρ = 0.05.
Tables 6.10 and 6.11 presentM(e) and |Ma−M(e)| as function of ε for

the dodecahedron and Erdos- Renyi graphs with ρ = 0.05.

Table 6.10: M(e) and |Ma −M(e)| as function of ε for the dodecahedron graph
with ρ = 0.05

ε 0.5 1 2 3 4 5 6
M(e) 15.516 15.033 14.063 13.099 12.119 11.145 10.168

|Ma −M(e)| 0.484 0.967 1.939 2.901 3.866 4.794 5.682

129

Table 6.11: M(e) and |Ma −M(e)| as function of ε for the Erdos-Renyi graph
with ρ = 0.05

ε 0.5 1 2 3 4 5 6
M(e) 29.440 28.880 27.762 26.645 25.518 24.390 23.231

|Ma −M(e)| 0.560 1.120 2.238 3.356 4.466 5.560 6.648

It follows from Tables 6.10 and 6.11 that

1. For ε ≤ 2 one can use our earlier (deterministic) threshold values
Φ = 14 and Φ = 27 for the dodecahedron and Erdos-Renyi graphs,
respectively and still be within the 5% of elites.

2. For ε > 2 one should use the appropriate threshold values given in
Tables 6.10 and 6.11. For example, for ε = 3 the thresholds are
Φ = 13.099 and Φ = 26, 645 for the dodecahedron and the Erdos-
Renyi graphs, respectively and for ε = 6 they are Φ = 10.146 and
Φ = 23.231, respectively.

We proceed below with the following 3 scenarios of ε: (i) ε = 0.5, (ii) ε = 3
and (iii) ε = 6. Note that (i) corresponds to the above case 1 (ε ≤ 2), while
(ii) and (iii) corresponds to the case 2 (ε > 2).

In all three experiments we set the sample size N = 5 · 104.
Experiment (i), ε = 0.5. It follows from Tables 6.10 and 6.11 that

in this case we can still use the original thresholds Φ = 14 and Φ = 27
chosen for the deterministic capacities for the dodecahedron and Erdos-
Renyi graphs, respectively. Based on that Tables 6.12 and 6.13 present
data similar to Tables 6.8 and 6.9 for ε = 0.5, with Φ = 14 and Φ = 27,
respectively.

Table 6.12: P̂(DOWN ; q) and RE for different values of q for the dodecahedron
graph with ε = 0.5

q 10−6 10−5 10−4 10−3 10−2 0.1 0.15

P̂(DOWN ; q) 9.76E-07 9.77E-06 9.98E-05 9.98E-04 1.02E-02 1.27E-01 2.11E-01
RE 2.48E-02 2.41E-02 2.51E-02 2.16E-02 2.02E-02 8.29E-03 5.53E-03

The CPU time for each P̂(DOWN ; q) equals to 6.53 seconds.

Table 6.13: P̂(DOWN ; q) and RE for different values of q for the Erdos-Renyi
graph with ε = 0.5

q 10−6 10−5 10−4 10−3 10−2 0.1 0.15

P̂(DOWN ; q) 2.45E-06 2.42E-05 2.45E-04 2.46E-03 2.44E-02 2.35E-01 3.43E-01
RE 1.77E-02 2.31E-02 2.34E-02 2.38E-02 2.64E-02 4.52E-03 3.84E-03

130

The CPU time for each P̂(DOWN ; q) equals to 26.1 seconds It is readily
seen that with N = 5 · 104 samples we obtained RE ≤ 2.5% in both cases.

Experiment (ii), ε = 3. The corresponding thresholds (see Tables
6.10 and 6.11) are Φ = 13.099 and Φ = 26, 645 for the dodecahedron and
the Erdos-Renyi graphs, respectively.

Based on that Tables 6.14 and 6.15 present data similar to Tables 6.12
and 6.13 for ε = 3 for the dodecahedron and the Erdos-Renyi graphs,
respectively.

Table 6.14: P̂(DOWN ; q) and RE for different values of q for the dodecahedron
graph with ε = 3 and Φ = 13.099

q 10−6 10−5 10−4 10−3 10−2 0.1 0.15

P̂(DOWN ; q) 8.61E-07 8.58E-06 8.55E-05 8.64E-04 8.58E-03 7.87E-02 1.12E-01
RE 2.33E-02 2.59E-02 3.64E-02 2.12E-02 2.08E-02 1.68E-02 8.21E-03

The CPU time for each P̂(DOWN ; q) equals to 2.64 seconds.

Table 6.15: P̂(DOWN ; q) and RE for different values of q for the Erdos-Renyi
graph with ε = 3 and Φ = 26, 645

q 10−6 10−5 10−4 10−3 10−2 0.1 0.15

P̂(DOWN ; q) 1.02E-06 1.02E-05 1.01E-04 1.01E-03 1.01E-02 9.84E-02 1.43E-01
RE 2.33E-02 3.22E-02 4.09E-02 4.30E-02 1.59E-02 8.16E-03 9.98E-03

The CPU time for each P̂(DOWN ; q) equals to 26.1 seconds It is readily
seen that with N = 5 · 104 samples we obtained the RE ≤ 2.5% in both
cases.

Experiment (iii), ε = 6. The corresponding thresholds (see Tables
6.10 and 6.11) are Φ = 10.168 and Φ = 23.231 for the dodecahedron and
the Erdos-Renyi graphs, respectively. Based on that Tables 6.16 and 6.17
present data similar to Tables 6.14 and 6.15 for ε = 6 for the dodecahedron
and the Erdos-Renyi graphs, respectively.

Table 6.16: P̂(DOWN ; q) and RE for different values of q for the dodecahedron
graph with ε = 6 and Φ = 10.168

q 10−6 10−5 10−4 10−3 10−2 0.1 0.15

P̂(DOWN ; q) 6.44E-07 6.46E-06 6.51E-05 6.37E-04 6.31E-03 5.98E-02 8.55E-02
RE 3.58E-02 3.33E-02 2.15E-02 3.23E-02 2.31E-02 9.60E-03 1.38E-02

The CPU time for each P̂(DOWN ; q) equals to 1.77 seconds.

131

Table 6.17: P̂(DOWN ; q) and RE for different values of q for the Erdos-Renyi
graph with ε = 6 and Φ = 23.231

q 10−6 10−5 10−4 10−3 10−2 0.1 0.15

P̂(DOWN ; q) 8.82E-07 9.01E-06 9.01E-05 9.10E-04 9.02E-03 8.89E-02 1.31E-01
RE 4.00E-02 2.68E-02 3.13E-02 2.42E-02 2.65E-02 1.46E-02 1.07E-02

The CPU time for each P̂(DOWN ; q) equals to 9.2 seconds. It is readily
seen that with N = 5 · 104 samples we obtained the RE ≤ 4.0% in both
cases.

We also estimated P(DOWN ; q) for the Erdos-Renyi models with sev-
eral hundreds edges with different ε values. In particular we considered our
previous model with p = 0.1, |V | = 55 and |E| = 313. We found that

• For ε = 3 one should set Φ = 24.634 in order to insure ρ = 0.05 (5%
elites).

• In order for the relative error RE ≤ 0.05 (with Φ = 24.634), we need
to increase the sample size from N = 5 · 104 to N = 5 · 105.

The CPU time for this scenario was about 25 minutes.

6.5 Concluding Remarks and Further Research

We show how the permutation Monte Carlo method originally developed
for reliability networks [26] can be successfully adapted for stochastic flow
networks, and in particular for estimation of the probability that the max-
imal flow in such a network is above some fixed level, called the threshold.
A stochastic flow network is defined as one, where the edges are subject
to random failures. A failed edge is assumed to be erased (broken) and,
thus, not able to deliver any flow. We consider two models; one where the
edges fail with the same failure probability and another where they fail
with different failure probabilities. For each model we construct a different
algorithm for estimation of the desired probability; in the former case it is
based on the well known notion of the D-spectrum and in the later one -
on the permutational Monte Carlo. We discuss the convergence properties
of our estimators and present supportive numerical results.

One of our directions of further research will be in obtaining efficient
Monte Carlo estimators based on network edge important measures (see
[38, 35]) and their applications to stochastic flow networks with a particular
emphasis on the optimal network design under some budget constraints.

Another direction will be an extension of our permutational technique
to a wider class of functionals associated with network edges. The cru-
cial property for the applicability of that methodology for computing the
probability that the maximal s− t flow M exceeds the threshold level Φ is

132

the monotonicity of the maximal s − t in the process of edge destruction
(construction). This means that the maximal s − t flow in the destruc-
tion process,can only decrease, or equivalently, the ”birth” of new edges
can lead only to a increase of the maximal s− t flow and similarly for the
construction one. But this “edge monotonicity” property holds true not
only for the network flow. Consider, for example, the total weight Wmax of
the maximal spanning tree of the network. Wmax decreases if the edges are
sequentially eliminated. Similar monotone behavior exhibit the minimal
distance between any pair of fixed nodes in the network, the total number
of s− t paths in it, and many other of its important combinatorial charac-
teristics.

ACKNOWLEDGMENT
We are thoroughly grateful to anonymous Reviewer for his/her valuable
constructive remarks and suggestions.

133

Chapter 7

Stochastic Enumeration
Method for Counting,
Rare-Events and Optimization

Radislav Vaisman

Faculty of Industrial Engineering and Management,

Technion, Israel Institute of Technology, Haifa , Israel

134

Abstract

We present a new generic sequential importance sampling algorithm,
called stochastic enumeration (SE) for counting #P-complete problems,
such as the number of satisfiability assignments and the number of perfect
matchings (permanent). We show that SE presents a natural generalization
of the classic one-step-look-ahead algorithm in the sense that it

• Runs in parallel multiple trajectories instead of a single one.

• Employs a polynomial time decision making oracle, which can be
viewed as an n-step-look-ahead algorithm, where n is the size of the
problem.

Our simulation studies indicate good performance of SE as compared with
the well-known splitting and SampleSearch methods.

Keywords. Counting, MCMC, Rare-Event, Self-Avoiding Walks, Satisfi-
ability, Sequential Importance Sampling, Splitting.

135

7.1 Introduction

Recently, rare-event and counting problems have attracted a wide range of
interest of computer scientists and applied probabilists.

The most popular methods for handling rare-event simulation and count-
ing are the classic splitting and importance sampling (IS).

The splitting method dates back to Kahn and Harris [50] and Metropo-
lis et al [65]. Since then hundreds of insightful papers have been written
on that topic. We refer the reader to [7, 8], [18]-[11], [68]-[40], [55, 56] and
also to the papers by Glasserman et al. [40], Cerou et al. [11] and Melas
[64], which contain extensive valuable material as well as a detailed list of
references. Recently, the connection between splitting for Markovian pro-
cesses and interacting particle methods based on the Feynman-Kac model
with a rigorous framework for mathematical analysis has been established
in Del Moral’s [68] monograph.

Importance sampling, and in particular its sequential version, forms
part of almost any standard book on Monte Carlo simulation. It is well
known, however (see for example [86]) that its straightforward application
may typically yield very poor approximations of the quantity of interest.
For example, it is shown by Gogate and Dechter [41], [42] that in graphical
models, and in particular in satisfiability models, it may generate many
useless zero-weight samples which are often rejected yielding an inefficient
sampling process.

In this paper we introduce a new generic sequential importance sam-
pling (SIS) algorithm, called stochastic enumeration (SE) for counting #P-
complete problems. SE represents a natural generalization of the classic
one-step-look-ahead (OSLA) algorithm in the following sense:

• It runs multiple trajectories in parallel, instead of a single one.

• It employs polynomial time decision making oracles, which can be
viewed as n-step-look-ahead algorithms, n being the size of the prob-
lem.

We shall also show that

1. SE reduces a difficult counting problem to a set of simple ones, ap-
plying at each step an oracle.

2. In contrast to the conventional splitting algorithm [82] there is very
little randomness involved in SE. As a result, it is typically faster than
splitting.

Note finally that use of fast decision making algorithms (oracles) for
solving NP-hard problems is very common in Monte-Carlo methods, see,
for example, the insightful monograph of Gertsbakh and Spungin [35] in
which Kruskal’s spanning trees algorithm is used for estimating network
reliability.

136

More examples of ”hard” (#P-complete) counting problems and ”easy”
(polynomial) decision making include:

1. How many different variable assignments will satisfy a given DNF
formula?

2. How many different variable assignments will satisfy a given 2-SAT
formula?

3. How many perfect matchings are there for a given bipartite graph?

It was known quite a long time ago that finding a perfect matching for a
given bipartite graph G(V,E) (decision making problem) can be solved in
polynomial O(|V ||E|) time, while the corresponding problem ”How many
perfect matchings does the given bipartite graph have?” is already #P-
complete. Note also that the problem of counting the number of perfect
matchings (or in directed graphs: the number of vertex cycle covers) is
known to be equivalent to the computation of the permanent of a matrix
[92].

Similarly, there is a trivial algorithm for determining if a DNF form is
satisfiable. Indeed, in this case examine each clause, and if one is found
that does not contain a variable and its negation, then it is satisfiable,
otherwise it is not. The counting version of this problem is #P-complete.

Many #P-complete problems have a fully-polynomial-time randomized
approximation scheme (FPRAS), which, informally, will produce with high
probability an approximation to an arbitrary degree of accuracy, in time
that is polynomial with respect to both the size of the problem and the
degree of accuracy required [67]. Jerrum, Valiant and Vazirani [49] showed
that every #P-complete problem either has an FPRAS, or is essentially
impossible to approximate; if there is any polynomial-time algorithm which
consistently produces an approximation of a #P-complete problem which
is within a polynomial ratio in the size of the input of the exact answer,
then that algorithm can be used to construct an FPRAS.

Our main strategy in this work is as in [35]: use fast polynomial decision
making oracles to solve #P-complete problems. In particular one can easily
incorporate into SE

• Breadth first search (BFS) or Dijkstra’s shortest path algorithm [17]
for counting the number of path in the networks.

• Hungarian decision making assignment problem method [54] for count-
ing the number of perfect matchings.

• Davis et al [19, 20] decision making algorithm for counting the number
of valid assignments in 2-SAT.

• Chinese postman(Eulerian cycle) decision making algorithm (finding
the shortest tour in a graph) for counting the total number of such

137

shortest tours. Recall that in an Eulerian cycle shortest tour problem
one has to visit each edge at least once.

We shall implement here the first three polynomial decision making
oracles.

As mentioned SE represents a natural extension of the classic one-step-
look-ahead OSLA. We shall show that OSLA-type algorithms (see Algo-
rithm 7.2.1) have the following two drawbacks:

(i) Its pdf g(x) is typically non-uniformly distributed on the set of its
valid trajectories, that is

g(x) ̸= 1

|X ∗|
,

where X ∗ is desired counting set and |X ∗| is its cardinality.
(ii) It typically runs into very many zeros even for moderate size n of

the problem. It is well known [61] that most of its trajectories of length
n ≥ 100 in OSLA Algorithm 7.2.1 become not self-avoiding. A similar
pattern was observed in other counting problems including satisfiability.

The exception is the OSLA algorithm of Rasmussen [73] for counting
the permanent. Rasmussen [73] proofs that if the aij entries of the per-
manent matrix A are Bernoulli outcomes, each generated randomly with
probability p = 1/2, then using the corresponding OSLA procedure one
gets a FPRAS estimator. This is quite a remarkable result!

In this paper we show that in contrast to OSLA the proposed SE method
handles both issues (i) and (ii) successfully. In particular, to overcome

1. Non-uniformity of g(x), SE runs in parallel multiple trajectories (see
Algorithm 7.5.1 below) instead of a single one.

2. Generation of many zeros (trajectories of zero length) it employs fast
(polynomial time) decision making oracles, which is equivalent of us-
ing an n-step-look-ahead algorithm instead of OSLA. For details see
Section 7.5 below.

The rest of the paper is organized as follows. Section 7.2 presents back-
ground on the OSLA method. Section 7.3 deals with the simplest extension
of OSLA, called nSLA, which uses an n-step-look-ahead strategy (based on
an oracle) instead of OSLA. Its advantage is that it does not lose trajecto-
ries; its main drawback is that its estimators have high variance. Section
7.4 deals with another extension of OSLA, called SE-OSLA, highlighting
the following points

1. The immediate advantage of SE-OSLA versus OSLA is that even for
a moderate number of multiple trajectories N (e), called elite samples
the variance is substantially reduced and the generated trajectories
are nearly uniformly distributed.

138

2. The SE-OSLA algorithm still has a major drawback in that it loses
most of the trajectories even for moderate n.

Section 7.5 is our main one; it deals with the SE method, which extends
both, the nSLA and SE-OSLA ones. We show that

• SE combines the nice features of both nSLA and SE-OSLA; as the
former it does not lose trajectories and as the latter its estimators
have much smaller variance as compared to the nSLA ones. it is
shown that

• The only difference between SE-OSLA and SE is that the former is
still based on OSLA, and the latter - on a polynomial time deci-
sion making oracle (algorithm), which is typically available for many
problems, such as finding a path in a network, a perfect matching in
a graph, etc.

Section 7.7 deals with application of SE to counting of #P-complete
problems, such as counting the number of trajectories in a network, number
of satisfiability assignments in a SAT problem and calculating the perma-
nent. Section 7.8 discus how to choose the main parameter, the number
of elites samples in the SE algorithm. In Section 7.9 we present numerical
results for SE-OSLA and SE. Here we show that SE outperforms the well
known splitting and SampleSearch methods. Our explanation for that is:
SE is based on SIS (sequential importance sampling), while its two coun-
terparts are based merely on regular IS (importance sampling). Section
7.10 presents some conclusions. Finally, the Appendix is devoted to some
auxiliary material.

7.2 The OSLA Method

Let |X ∗| be our counting quantity, such as the number of satisfiability as-
signments in a SAT problem with n literals, the number of perfect match-
ings (permanent) in a bipartite graph with n nods and the number of
SAW’s of length n. We wish to estimate |X ∗| by employing a SIS pdf g(x)
defined in Section 7.11.1 of Appendix . To do so we use the following one-
step-look-ahead (OSLA) procedure due to Rosenbluth and Rosenbluth [77],
which was originally introduced for SAW’s:

Procedure 1: One-Step-Look-Ahead

1. Initial step Start from the origin point y0. For example, in a two-
dimensional SAW, y0 = (0, 0) and an a network with source s and
think t, y0 = s. Set t = 1.

2. Main step Let νt be the number of neighbors of yt−1 that have not
yet been visited. If νt > 0, choose yt with probability 1/νt from its

139

neighbors. If νt = 0 stop generating the path and deliver an estimate

|̂X ∗| = 0.

3. Stopping rule Stop if t = n. Otherwise increase t by 1 and go to
step 2.

4. The estimator Return

g(x) =
1

ν1

1

ν2
· · · 1

νn
=

1

|̂X ∗|(x)
(7.1)

as a SIS pdf. Here

|̂X ∗| = ν1 . . . νn . (7.2)

Note that the procedure either generates a path x of fixed length n or
the path gets value zero (in case of νt = 0, for which g(x) =∞).

The OSLA counting algorithm now follows:

Algorithm 7.2.1 (OSLA Algorithm).

1. Generate independently M paths X1, . . . ,XM from SIS pdf g(x) via
the above OSLA procedure.

2. For each path Xk compute the corresponding |̂X ∗
k | as in (7.2). For

the other parts (which do not reach the value n) set |̂X ∗
k | = 0.

3. Return

¯|X ∗| = 1

M

M∑
i=k

|̂X ∗
k | . (7.3)

The efficiency of the one-step-look-ahead method deteriorates rapidly as
n becomes large. For example, it becomes impractical to simulate SAW’s of
length more than 200 and similar for the other counting problems. This is
due to the fact that if at any step t the point yt−1 does not have unoccupied

neighbors (νt = 0) then |̂X ∗| is zero and it contributes nothing to the final
estimate of |X ∗|.

Figure 7.1 depicts a SAW (with arrows) trapped after 15 iterations. One
can easily find from it the corresponding values νt, t = 1, . . . , 15 (using the
corresponding short lines without arrows) of each of the 15 points. They
are

ν1 = 4, ν2 = 3, ν3 = 3, ν4 = 3, ν5 = 3, ν6 = 3, ν7 = 2, ν8 = 3,

ν9 = 3, ν10 = 3, ν11 = 2, ν12 = 3, ν13 = 2, ν14 = 1, ν15 = 0.

140

Figure 7.1: SAW trapped after 15 iterations and its corresponding values νt, t =
1, . . . , 15

As for another situation where OSLA can be readily trapped consider
a directed graph in Figure 7.2 with source s and sink t.

� ��

�
�

�
�

�
�

�
�

�
� �

�

Figure 7.2: Directed graph

There are two ways from s to t, one via nodes a1, . . . , an and another
via nodes b1, . . . , bn. Figure 7.2 corresponds to n = 3. Note that all nodes
beside s and t are directly connected to a central node o, which has no
connection with t. Clearly in this case most of the random walks (with
probability 1− (1/2)n) will be trapped at node o.

7.3 Extension of OSLA: nSLA Method

A natural extension of the one-step-look-ahead (OSLA) procedure is the
k-step-look-ahead, where 2 ≤ k ≤ n one. It is crucial to note that for k = n
no path will be ever lost. This in turn implies that that νt > 0, ∀t.

Consider, for example, the SAW in Figure 7.1. Note that if we could
use three-step-look-ahead policy instead of OSLA we would rather move

141

after step number 13 (corresponding to point y13) down instead of up. By
doing so we would prevent the SAW being trapped after n = 15 iterations.

For many problems including SAW’s the n-step-look-ahead policy re-
quires additional memory and CPU and for that reason has limited appli-
cations. There exist, however a set of problems where the n-step-look-ahead
(nSLA) policy can be still easily implemented using polynomial algorithms
(oracles). As mentioned, relevant examples are counting perfect matchings
(permanent) in a graph, counting the number of paths in a network and
SAT counting.

Note that nSLA algorithm is identical to the OSLA Algorithm 7.2.1.
Its corresponding procedure is similar to OSLA Procedure 1. For com-
pleteness we present it below.

Procedure 2: n-Step-Look-Ahead

1. Initial step (Same as in Procedure 1).

2. Main step Employ an oracle and find νt ≥ 1 the number of neighbors
of yt−1 that have not yet been visited. Choose yt with probability
1/νt from its neighbors.

3. Stopping rule (Same as in Procedure 1).

4. The Estimator (Same as in Procedure 1).

To see how nSLA works in practice consider a simple example following
the main steps of the OSLA Algorithm 7.2.1.

Example 7.3.1. Let x = (x1, x2, x3) be a three dimensional vector with
binary components and let {000, 001, 100, 110, 111} be a set of its valid
combinations (paths). We have n = 3 and |X ∗| = 5. Note that since we
use an nSLA oracle instead of just OSLA we will have (in the former case)
that νi ∈ {1, 2}, i = 1, 2, 3 instead of νi ∈ {0, 1, 2}, i = 1, 2, 3 (in the
latter).

Figure 7.3 presents a tree corresponding to the set {000, 001, 100, 110, 111}.

142

�

�

� �

�

�

�

�

��

��� ��� ��� ��� ���

Figure 7.3: Tree corresponding to the set {000, 001, 100, 110, 111}.

According to nSLA Procedure 2 we start with the first binary variable
x1. Since x1 ∈ {0, 1} we employ the oracle two times; once for x1 = 0,
(by considering the triplet 0x2x3), and once for x1 = 1 (by considering
the triplet 1x2x3). The roll of the oracle is merely to provide a YES-NO
answer for each triplet 0x2x3 and x1 = 1, that is to check wether or not
there exist a valid assignment for x1x2x3 separately for x1 = 0 and x1 = 1.
Clearly, in our case the answer is YES in both cases, since an example of
0x2x3 is, say 000 and an example of 1x2x3 is, say 110. We have therefore
ν1 = 2. Following Procedure 2 we next flip a symmetric coin. Assume
that the outcome is 0. This means that we will proceed to path 0x2x3 and
will discard the path 1x2x3 (see Figure 7.4).

Consider next x2 ∈ {0, 1}. As for x1 we employ the oracle two times;
once for x2 = 0, (by considering the triplet 00x3), and once for x2 = 1
(by considering the triplet 01x3). In this case the answer is YES for the
case 00x3 (an example of 00x3 is, as before, 000) and NO for the case 01x3

(there is no valid assignment in the set {000, 001, 100, 110, 111} for 01x3

with x3 ∈ {0, 1}). We have therefore ν2 = 1.
We finally proceed with the oracle to x3 by employing it two times; once

for x3 = 0 and once for x3 = 1. In this case the answer is YES for both
cases, since we automatically obtain 000 and 001. We have ν3 = 2.

The resulting estimator is therefore

|̂X ∗| = ν1ν2ν3 = 2 · 1 · 2 = 4.

Figure 7.4 presents the sub-trees {000, 001} (in bold) generated by nSLA
using the oracle.

143

�

�

� �

�

�

�

�

��

��� ��� ��� ��� ���

Figure 7.4: The sub-trees {000, 001} (in bold) generated by nSLA using the
oracle

It is readily seen that similar to the above randomly generated trajecto-

ries 000 and 001, the one 100 results in to |̂X ∗| = 4, while the trajectories

110, 111 result in to |̂X ∗| = 8. Noting that the corresponding probabilities

for |̂X ∗| = 4 and |̂X ∗| = 8 are 1/4 and 1/8 and averaging over all 5 cases

we obtain the desired results |X ∗| = 5. The variance of |̂X ∗| is

Var|̂X ∗| = 1/5{3(4− 5)2 + 2(8− 5)2} = 21/2.

The main drawback of nSLA Procedure 2 is that its SIS pdf g(x) is
model dependent. Typically it is far away from the ideal uniform SIS pdf
g∗(x), that is

g(x) ̸= 1

|X ∗|
.

As result, the estimator of |X ∗| has a large variance. Note that g∗(x) = 1
|X ∗|

corresponds to zero variance SIS.
To see the non-uniformity of g(x) consider a 2-SAT model with clauses

C1 ∧ C2∧, . . . ,∧Cn, where Ci = xi ∨ x̄i+1 ≥ 1, i = 1, . . . , n. Figure 7.5
presents the corresponding graph with 4 literals and |X ∗| = 5.

144

� �

�

�

�

�

�

�

�

� �

�

�

�

���� ���� ���� ���� ����

Figure 7.5: A graph with 4 clauses and |X ∗| = 5.

In this case |X ∗| = n + 1, the ideal zero variance pdf g∗(x) = 1
|X ∗| =

1/(n+ 1), while the SIS pdf is

g(x) =

1/2, for (00, . . . , 00),

1/22, for (10, . . . , 00),

1/23, for (11, . . . , 00),

1/2n, for (11, . . . , 10) and (11, . . . , 11),

which is highly non-uniform.
To improve the non-uniformity of g(x) we will develop in Section 7.8

a modified version of nSLA, called stochastic enumeration (SE) algorithm.
In contrast to nSLA we will run in SE multiple trajectories instead of a
single one. Before doing so we present below for convenience a multiple
trajectory version of the OSLA Algorithm 7.2.1 for SAW’s.

7.4 Extension of OSLA: SE-OSLA Method for SAW’s

In this section we extend the OSLA method to multiple trajectories and
present the corresponding algorithm, called SE-OSLA. For clarity of repre-
sentation the SE-OSLA algorithm is given for self-avoiding walks (SAW’s).
Its adaptation for other counting problems is straightforward. In particu-
lar, we show that for SAW’s

• OSLA represents a particular case of SE-OSLA, when the number of

multiple trajectories, denoted by N
(e)
t and called the elite samples, is

N
(e)
t = 1, ∀t.

• In contrast to OSLA, which loses most of its trajectories (even for
modest n), with SE-OSLA we can reach quite large levels, say n =

145

10, 000, provided the number N
(e)
t of elite samples is not too small,

say N
(e)
t = 100, ∀t. As result one can generate very long SAW’s with

SE-OSLA.

7.4.1 SE-OSLA Algorithm for SAW’s

A self-avoiding walk (SAW) is a sequence of moves on a lattice that does
not visit the same point more than once. As such, SAWs are often used to
model the real-life behavior of chain-like entities such as polymers, whose
physical volume prohibits multiple occupation of the same spatial point.
They also play a central role in modeling of the topological and knot-
theoretic behavior of molecules such as proteins.

One of the main questions regarding the SAW model is: How many
SAWs are there of length n exactly? There is currently no known formula
for determining the number of self-avoiding walks, although there are rig-
orous methods for approximating them. Finding the number of such paths
is conjectured to be an NP-hard problem.

The most advanced algorithms for SAW’s are the pivot ones. They can
handle SAW’s of size 107, see [15], [62]. For a nice recent survey see [94].

Although empirically the pivot algorithm [15] specially designed for
SAW’s outperforms the SE-OSLA algorithm, we nevertheless present it
below in the interests of clarity of representation and motivation purposes.

For simplicity we assume that the walk starts at the origin and confine
ourselves to the 2-dimensional case. Each SAW is represented by a path
x = (x1, x2, . . . , xn−1, xn), where xi denotes the 2-dimensional position of
the i−th molecule of the polymer chain. The distance between adjacent
molecules is taken as 1.

A SAW of length n = 121 is given in Figure 7.6.

5 10 15 20 25 30

Figure 7.6: A SAW of length n = 121.

146

Algorithm 7.4.1 (SE-OSLA for SAW’s).

1. Iteration one

• Full Enumeration Select a small number n0, say n0 = 4 and
count via full enumeration all different SAW’s of size n0 starting
from the origin 00. Denote the total number of these SAW’s by

N
(e)
1 and call them the elite sample. For example, for n0 = 4 the

number of elites N
(e)
1 = 100. Set the first level to n0. Proceed

with the N
(e)
1 elites from level n0 to the next one n1 = n0 + r,

where r is a small integer (typically r = 1 or r = 2) and count via
full enumeration all different SAW’s at level n1 = n0+ r. Denote
the total number of such SAW’s by N1. For example, for n1 = 5
there are N1 = 284 different SAW’s.

• Calculation of the First Weight Factor Calculate

ν1 =
N1

N
(e)
1

(7.4)

and call it the first weight factor.

2. Iteration t, (t ≥ 2)

• Full Enumeration Proceed with N
(e)
t−1 elites from iteration t−1

to the next level nt−1 = nt−2 + r and derive for iteration t via
full enumeration all SAW’s at level nt−1 = nt−2 + r, that is of

all those SAW’s that continue the N
(e)
t−1 paths resulted from the

previous iteration. Denote by Nt the resulting number of such
SAW’s.

• Stochastic Enumeration Select randomly (without replacement)

N
(e)
t SAW’s from the set of Nt ones and call this step stochastic

enumeration.

• Calculation of the t-th Weight Factor. Calculate

νt =
Nt

N
(e)
t

(7.5)

and call it the t-th weight factor. It is important to note that for

N
(e)
t = 1 we have OSLA. Note that here as in OSLA νt can be

both ≥ 1 and = 0, and if νt = 0, we stop and deliver |̂X ∗| = 0.

3. Stopping Rule Proceed with iteration t, t = 1, . . . , n−n0

r
and calcu-

late

|̂X ∗| = N
(e)
1

n−n0
r∏

t=1

νt. (7.6)

147

Call |̂X ∗| the point estimator of |X ∗|. Note that for N (e)
t = 1 and r = 1

we have that |̂X ∗| = w, where w is defined in (7.2). Note that since

the number of levels is fixed, |̂X ∗| presents an unbiased estimator of
|X ∗| (see [7]).

4. Final Estimator Run SE-OSLA for M independent replications and
deliver

|̃X ∗| = 1

M

M∑
k=1

|̂X ∗
k | (7.7)

as an unbiased estimator of |X ∗|. Call |̃X ∗| the sample estimator of

|X ∗|. Note that for N
(e)
t = 1 we have that |̃X ∗| = ¯|X ∗|, where ¯|X ∗| is

defined in (7.3).

Typically one keeps in SE-OSLA the number of elites N
(e)
t fixed, say

N
(e)
t = N (e) = 100 while Nt varies from iteration to iteration.

Note that the sample variance of |̂X ∗| is

S2(|̃X ∗|) = 1

M − 1

M∑
k=1

(|̂X ∗
k | − |̃X ∗|)2 (7.8)

and the relative error is

RE(|̃X ∗|) = |̃X ∗|
S(|̃X ∗|)

. (7.9)

The first two iterations of Algorithm 7.4.1 for n0 = 1, r = 1 and N
(e)
t =

N (e) = 4 are given below.

Example 7.4.1. Iteration one

• Full Enumeration We set n0 = 1 and count (via full enumeration)
all different SAW’s of length n0 starting from the origin 00. We have

N
(e)
1 = 4 (see Figure 7.7).

We proceed (again via full enumeration) to derive from the N
(e)
1 = 4

elites all SAW’s of length n1 = 2 (there are N1 = 12 of them, see part
(a) of Figure 7.8).

• Calculation of the first weight factor. We have ν1 =
N1

N
(e)
1

= 12
4
= 3.

148

0

Figure 7.7: The First Four Elites N
(e)
1 = N (e) = 4

(a) (b)

0 0

Figure 7.8: First Iteration of Algorithm 7.4.1

Iteration two

• Stochastic Enumeration Select randomly without replacementN
(e)
2 =

4 elites from the set of N1 = 12 ones (see part (b) of Figure 7.8).

• Full Enumeration Proceed (via full enumeration) deriving from the

above N
(e)
2 = 4 elites all SAW’s of length n2 = 3 (again there are

N2 = 12 of them, see part (a)) of Figure 7.9.

• Calculation of the second weight factor. We have ν2 = N2

N
(e)
2

=

12
4
= 3.

149

(a) (b)

0 0

Figure 7.9: Second Iteration of Algorithm 7.4.1

We call Algorithm 7.4.1 SE-OSLA because it presents an extension of
OSLA in the sense that at each level nt we combine full enumeration with
stochastic one such that for the next level nt+1 = nt + r we perform full

enumeration between the randomly selected N
(e)
t elites and all possible

candidates.

Remark 7.4.1. It follows from Algorithm 7.4.1 that for r = 1, n0 = 0 and

N
(e)
t = 1, ∀t = 1, . . . , n the SE-OSLA estimator |̂X ∗| in (7.6) reduces to

the OSLA one. Thus, OSLA can be viewed as particular case of SE-OSLA

with N
(e)
t = 1. The crucial difference between OSLA and SE-OSLA is that

the former loses most of its trajectories after some modest number of steps,
while with SE-OSLA we can practically reach any desired level, provided

the number of elites N
(e)
t is of moderate size, say N

(e)
t ≤ 100, ∀t. As result

one can generate with SE-OSLA a very long SAW, say of length n = 10, 000
(see below) and count the number of SAW’s up to several thousands in
manageable CPU time (see the numerical results below). Note finally, that
since OSLA presents an importance sampling estimator, so does SE-OSLA.

Remark 7.4.2. We next support empirically Remark 7.4.1 stating that
SE-OSLA can generate very long SAW’s. To do so, we run the SE-OSLA

algorithm for several fixed values of N
(e)
t = N (e) and r = 1. In particular

Table 7.1 shows the length of the SAW trajectories, denoted by R, for
several N (e) scenarios, namely for N (e) = 1, 2, 5, 15, 25, 35. Each scenario
is based on 20 independent replications. Note that the values Rki, k =

1, . . . , 20; i = 1, . . . , 6, where the index i corresponds to N
(e)
1 = 1, N

(e)
2 =

2, N
(e)
3 = 5, N

(e)
4 = 15, N

(e)
4 = 25, N

(e)
4 = 35 are arranged in Table 7.1 in

the increasing order.
It readily follows from the results of Table 7.1 that

• The average R(N (e)) increases faster than N (e), that is R(N (e)) >
N (e).

150

• The average length Rk1 of SAW’s for OSLA (N (e) = 1) is about 65.
We found empirically that in this case only 1% of SAW’s reaches
R = 200.

Table 7.1: The length of the SAW’s Rki, k = 1, . . . , 20; i = 1, . . . , 6 for N (e)=1,
2, 5, 15, 25, 35

k Rk1 Rk2 Rk3 Rk4 Rk5 Rk6

1 10 26 73 322 791 1185
5 33 62 193 539 1757 2057
10 44 178 306 1205 3185 2519
15 79 299 436 1849 4099 5537
20 198 644 804 4760 6495 9531

Average 64.2 216.25 356.6 1503.25 3343 4080.6

Below we present the sequence (N
(e)
t , Nt), t = 1, . . . , R for one of the

runs with N
(e)
1 = 2 with the outcome R = 30.

(2, 6), (2, 6), (2, 6), (2, 6), (2, 6), (2, 6), (2, 5), (2, 5), (2, 5), (2, 4),
(2, 4), (2, 6), (2, 5), (2, 6), (2, 6), (2, 6), (2, 5), (2, 4), (2, 6), (2, 6),
(2, 6), (2, 5), (2, 4), (2, 4), (2, 3), (2, 4), (2, 3), (2, 2), (2, 2), (2, 0).

(7.10)

It is crucial to note that for general counting problems, like SAT’s,
Remark 7.4.1 does not apply in the sense that even for a relatively small
model size the SE-OSLA Algorithm 7.4.1 generates many zeros (trajectories
of zero length). For this reason it has limited applications.

To see this consider, for example, the set X ∗ defined by the following
product of clauses

(x1 + x̄2)(x̄1 + x̄2)(x1 + x3)(x2 + x̄3). (7.11)

It is not difficult to check that with N (e) = 1 SE-OSLA (which is fact
OSLA), fails to find the true value |X ∗| = 1 with probability 7/8, that is
it loses in average the unique trajectory with probability 0.88.

As for another example consider a 3-SAT model with an adjacency
matrix A = (20 × 80) and |X ∗| = 15. Running the SE-OSLA Algorithm
7.4.1 with N (e) = 2 we observed that it finds the 15 valid assignments
(satisfies all 80 clauses) only with probability 1.4 · 10−4. We found that as
the size of the models increases the percentage of valid assignments goes
fast to zero.

7.5 SE Method

Here we present our main algorithm, called stochastic enumeration (SE),
which extends both, the nSLA and the SE-OSLA Algorithms as follows.

151

• SE extends nSLA in the sense that it uses multiple trajectories instead
of a single one.

• SE extends SE-OSLA Algorithm 7.4.1 in the sense that it uses a poly-
nomial time decision making n-step-look-ahead oracle (algorithm) in-
stead of OSLA. The oracle will be incorporated into the Full Enu-
meration step of SE-OSLA Algorithm 7.4.1.

We present SE for the models where the components of the vector
x = (x1, . . . , xn) are assumed to be binary variables, such as SAT’s, and
where fast decision making oracles are available (see [19, 20] for SAT’s).
Its modification to arbitrary discrete variables is straightforward.

7.5.1 SE Algorithm

Consider SE-OSLA Algorithm 7.4.1 and assume for simplicity that r = 1

and that at iteration t − 1 the number of elites is, say, N
(e)
t−1 = 100. In

this case it is readily seen that in order to implement an oracle in the
Full Enumeration step at iteration t of SE-OSLA we have to run it

2N
(e)
t−1 = 200 times: 100 times for xt = 0 and 100 more times for xt = 1.

Note that for each fixed combination of (x1, . . . , xt) the oracle can be viewed
as an (n− t+ 1)-step look-ahead algorithm in the sense that it

• Sets first xt+1 = 0 and then makes a decision (YES-NO path) for the
remaining n− t+ 1 variables (xt+2, . . . , xn).

• Sets next xt+1 = 1 and then again makes a similar (YES-NO) decision
for the same set (xt+2, . . . , xn).

Algorithm 7.5.1 (SE Algorithm).

1. Iteration 1

• Full Enumeration (Similar to Algorithm 7.4.1). Let n0 be
the number corresponding to the first n0 variables x1, . . . , xn0 .
Count via full enumeration all different paths (valid assignments
in SAT) of size n0. Denote the total number of these paths (as-

signments) by N
(e)
1 and call them the elite sample. Proceed with

the N
(e)
1 elites from level n0 to the next one n1 = n0 + r, where

r is a small integer (typically r = 1 or r = 2) and count via full
enumeration all different paths (assignments) of size n1 = n0+ r.
Denote the total number of such paths (assignments) by N1.

• Calculation of the First Weight Factor (Same as in Algo-
rithm 7.4.1).

2. Iteration t, (t ≥ 2)

152

• Full Enumeration (Same as in Algorithm 7.4.1, except that it
is performed via the corresponding polynomial time oracle rather
than OSLA).

Recall that for each fixed combination of (x1, . . . , xt) the oracle
can be viewed as an (n− t+1)-step look-ahead algorithm in the
sense that it

– Sets first xt+1 = 0 and then makes a YES-NO decision for
the path associated with the remaining n − t + 1 variables
(xt+2, . . . , xn).

– Sets next xt+1 = 1 and then again makes a similar (YES-NO)
decision.

• Stochastic Enumeration (Same as in Algorithm 7.4.1).

• Calculation of the t-th Weight Factor. (Same as in Algo-
rithm 7.4.1). Recall that in contrast to SE-OSLA, where νt ≥ 0,
here νt ≥ 1.

3. Stopping Rule Same as in Algorithm 7.4.1.

4. Final Estimator Same as in Algorithm 7.4.1.

It follows that if N
(e)
t ≥ |X ∗|, ∀t, the SE Algorithm 7.5.1 will be exact.

Remark 7.5.1. The SE method can be viewed as a multi-lever splitting
with a specially chosen importance function [28]. Note that in the tradi-
tional splitting [7, 8], [82] one chooses quite an obvious importance func-
tion, say the number of satisfied clauses in a SAT problem or the length
of a walk in SAW. Here we simply decompose the rare event into non rare
events by introducing intermediate levels. In the proposed method we in-
troduce a random walk on a graph, starting at some node on the graph
and we try to find an alternative (better) importance function which can
be computed in polynomial time, and which provides a reasonable estimate
of the probability of the rare event. This is the same as to say that we are
choosing a specific dynamics on the graph, and we are trying to optimize
the importance function for this precise dynamics.

It is well known that the best possible importance function in dynamical
rare events environment driven by a non stationary Markov chain, is the
committor function [66]. It is also well known that its computing is at least
as difficult as the underlying rare event. In the SE approach, however we
roughly approximate the committor function using an oracle in the sense
that we can say now whether this probability is zero or not. For example, in
the SAT problem with already assigned literals, we can compute whether or
not they can lead to a valid solution. Note also that stating - the committor
is z means the probability of hitting the rare event, given that the Markov
chain starts at z. In particular, for SAT - the committor is 0 implies keeping
0, otherwise we take 1; for SAW, we may also have 1 on points for which
the committor is 0.

153

Figure 7.10 presents dynamics of the SE Algorithm 7.5.1 for the first
3 iterations in a model with n variables using N (e) = 1. There are 3
valid paths (corresponding to the dashed lines) reaching the final level n
(with the aid of an oracle), and 1 invalid path (corresponding to the line
depicted as ·− x. It follows from Figure 7.10 that the accumulated weights
are ν1 = 2, ν2 = 2, ν3 = 1.

�

�

�

�

�
�
��

�
�
��

�
�
��

Figure 7.10: Dynamics of the SE Algorithm 7.5.1 for the first 3 iterations

Note again that the SE estimator |̂X ∗| is unbiased for the same reason
as its SE-OSLA counterpart (7.6) is so; namely both can be viewed as
multiple splitting methods with fixed (non-adaptive) levels [8].

Below we show how SE works for several toy examples

Example 7.5.1. Consider the SAT model C1 ∧C2∧, . . . ,∧Cn, where Ci =
xi∨xi+1 ≥ 1, i = 1, . . . , n. Assume that n = 4. Suppose that we set n0 = 2,

r = 1, N
(e)
t = 3 and M = 1.

Iteration 1

• Full Enumeration Since n0 = 2, we handle first the variables x1

and x2. Using SAT solver we obtain the following three trajectories
(01x3x4, 10x3x4, 11x3x4), which can be extended to valid solutions.
(Note that 00x3x4 cannot be extended to a valid solution and is dis-

carded by the oracle). We have therefore N
(e)
1 = 3, that is still within

the allowed budget N
(e)
t = 3.

We proceed with oracle to x3, that is derive from the N
(e)
1 = 3 elites

all SAT assignments of length m1 = 3. By full enumeration we obtain
the trajectories (011x4, 010x4, 101x4, 110x4, 111x4). (Note that
100x3x4 cannot be extended to a valid solution and is discarded by
the oracle). We have therefore N1 = 5.

It is readily seen that for this model we have in general N
(e)
1 = Fn0−2

and N1 = Fn0−1, where n0 denotes the number of literals in the first

154

level and Fn denotes the Fibonacci sequence. In particular, if n0 =

12 we have N
(e)
1 = F10 = 88 and N1 = F11 = 133 different SAT

assignments,

• Calculation of the first weight factor. We have ν1 =
N1

N
(e)
1

= 5
3
.

Iteration two

• Stochastic Enumeration Since N1 > N
(e)
t = 3 we resort to sam-

pling by selecting randomly without replacement N
(e)
2 = 3 trajectories

from the set of N1 = 5. Suppose we pick (010x4, 101x4, 111x4).
These will be our working trajectories at the next step.

• Full Enumeration We proceed with oracle to handle x4, that is, de-

rive from the N
(e)
1 = 3 elites all valid SAT assignments of length n2 =

4. By full enumeration we obtain the trajectories (0101, 1010, 1011,
1110, 1111)). We have therefore again N2 = 5.

• Calculation of the second weight factor. We have ν2 =
N2

N
(e)
2

= 5
3
.

The SE estimator of the true |X ∗| = 8 based on the above two iterations

is |̂X ∗| = 3 · 5/3 · 5/3 = 25/3.

It is readily seen that if we set N
(e)
t = 5 instead of N

(e)
t = 3 we would

get the exact result, that is |̂X ∗| = 3 · 5/3 · 8/5 = 8.

Example 7.5.2. Consider the SAT model

(x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x2 ∨ x4).

Suppose again that n0 = 2, r = 1, N
(e)
t = 3 and M = 1.

Iteration 1
The same as in Example 7.5.1.
Iteration two

• Stochastic Enumeration We select randomly without replacement

N
(e)
2 = 3 elites from the set ofN1 = 5. Suppose we pick (010x4, 110x4, 111x4).

• Full Enumeration We proceed with oracle to handle x4, that is

derive from the N
(e)
1 = 3 elites all SAT assignments of length n2 =

4. By full enumeration we obtain the trajectories (0100, 0101, 1100,
1101, 1110, 1111)). We have therefore N2 = 6.

• Calculation of the second weight factor. We have ν2 =
N2

N
(e)
2

= 2.

The estimator of the true |X ∗| = 9 based on the above two iterations is

|̂X ∗| = 3 · 5/3 · 2 = 10.

It is readily seen that if we set again N
(e)
t = 5 instead of N

(e)
t = 3 we

would get the exact result, that is |X ∗| = 3 · 5/3 · 9/5 = 9.

155

It is also not difficult to see that as N (e) increases the variance of the SE
estimator |̂X ∗| in (7.6) decreases and for N (e) ≥ |̂X ∗| we have Var|̂X ∗| = 0.

Example 7.5.3. Example 7.3.1 continued Let again x = (x1, x2, x3)
be a three dimensional vector with {000, 001, 100, 110, 111} being the set
of its valid combinations. As before, we have n = 3, |X0| = 23 = 8 and
|X ∗| = 5. In contrast to Example 7.3.1, where N (e) = 1 we assume that
N (e) = 2.

We have N1 = 3 and ν1 = 3/2. Since N
(e)
k = N (e) = 2, k = 1, 2, 3

we proceed with the following 3 pairs (00, 10), (00, 11), (10, 11). They
result into (000, 001, 100), (000, 001, 110, 111), (100, 110, 111), respectively
with their corresponding pairs (N2 = 3, ν2 = 3/2), (N2 = 4, ν2 = 2),
(N2 = 3, ν2 = 3/2).

It is readily seen that the estimator of |X ∗| based on (000, 001, 100)

and (100, 110, 111) equals |̂X ∗| = 2 · 3/2 · 3/2 = 9/2, and the one based on

(000, 001, 110, 111) is |̂X ∗| = 6, respectively. Noting that their probabilities
are equal 1/3 and averaging over all 3 cases we obtain the desired results

|X ∗| = 5. The variance of |̂X ∗| is

Var|̂X ∗| = 1/3{2(9/2− 5)2 + 2(6− 5)2} = 1/2.

It follows from the above that by increasing N (e) from 1 to 2, the variance
decreases 21 times.

Figure 7.11 presents the sub-trees {100, 000, 001} (in bold) of the orig-
inal tree (based on the set {000, 001, 100, 110, 111}), generated using the
oracle with N (e) = 2.

�

�

� �

�

�

�

�

��

��� ��� ��� ��� ���

Figure 7.11: The sub-trees {100, 000, 001} (in bold) corresponding to N (e) = 2.

Figures 7.12, 7.13 and 7.14 present

• A tree with 5 variables.

• Sub-trees (in bold) corresponding to N (e) = 1.

156

• Sub-trees (in bold) corresponding to N (e) = 2,

respectively.

�

�

�

�

�

�

�

�

�

�

��� �

�

� �

��

�

�

�

�

�

�

�

� � �

�

�

���

��

Figure 7.12: A tree with 5 variables.

�

�

�

�

�

�

�

�

�

�

��� �

�

� �

��

�

�

�

�

�

�

�

� � �

�

�

���

��

Figure 7.13: Sub-trees (in bold) corresponding to N (e) = 1.

157

�

�

�

�

�

�

�

�

�

�

��� �

�

� �

��

�

�

�

�

�

�

�

� � �

�

�

���

��

Figure 7.14: Sub-trees (in bold) corresponding to N (e) = 2.

As mentioned earlier the major advantage of SE Algorithm 7.5.1 versus
its nSLA counterpart is that the uniformity of g(x) in the former increases
in N (e). In other words g(x) becomes ”closer” to the ideal pdf g∗(x).
We next demonstrate numerically this phenomenon while considering the
following two simple models:

(i) A 2-SAT model with clauses C1 ∧ C2∧, . . . ,∧Cn, where Ci = xi ∨
x̄i+1 ≥ 1, i = 1, . . . , n (see Figure 7.5 for 4 literals and |X ∗| = 5).

Straightforward calculation yield that for this particular case (|X ∗| = 5)
variance reduction obtained from using N (e) = 2 instead of N (e) = 1 is
about 150 times.

(i) A graph having |X ∗| = m paths and such that the length of its k-th
path, k = 1, . . . ,m - is k. Figure 7.15 presents such a graph with |X ∗| = 5
paths and s− t being the source and sink, respectively.

�

�

Figure 7.15: A graph with |X ∗| = 5 paths.

158

(i) Table 7.2 presents the efficiency of the SE Algorithm 7.5.1 for for
the 2-SAT model with |X ∗| = 100 for different values of N (e) and M . The
comparison was done for

(N (e) = 1, M = 500), (N (e) = 5, M = 100), (N (e) = 10, M = 50),

(N (e) = 25, M = 20), (N (e) = 50, M = 10) (N (e) = 75, M = 5),

(N (e) = 100, M = 1).
(7.12)

Table 7.2: The efficiencies of the SE Algorithm 7.5.1 for the 2-SAT model with
|X ∗| = 100

(N (e), M) |̃X ∗| RE

(N (e) = 1, M = 500) 11.110 0.296
(N (e) = 5, M = 100) 38.962 0.215
(N (e) = 10, M = 50) 69.854 0.175
(N (e) = 25, M = 20) 102.75 0.079
(N (e) = 50, M = 10) 101.11 0.032
(N (e) = 75, M = 5) 100.45 0.012
(N (e) = 100, M = 1) 100.00 0.000

Note also that the relative error RE was calculated as

RE =
(1/10

∑10
i=1(|̃X ∗

i | − 100)2)1/2

100
.

Similar results where obtained for the graph in Figure 7.15 with |X ∗| =
100 paths.

As expected for small N
(e)
t (1 ≤ N

(e)
t ≤ 10) the relative error RE of the

estimator |̃X ∗| is large and it underestimates |X ∗|. Starting from N
(e)
t = 25

the estimator stabilizes. Note that for N
(e)
t = 100 the estimator is exact

since |X ∗| = 100. Recall that the optimal zero variance SIS pdf over the
following n+ 1 paths

(00 · · · 00), (10 · · · 00), (11 · · · 00), . . . , (11 · · · 10), (11 · · · 11)

is g∗(x) = 1/(n+ 1).
The variance of the SE method can be reduced by using the so-called

empirical length-distribution method due to [76], which is described below.

Remark 7.5.2. Empirical length- distribution method. We demon-
strate it for counting the number of paths in a network. Its modification
for some other counting and rare-event estimation models is simple.

159

Denote the length of a path x by |x|. Note that this is not the length
of the vector, but rather less than it by one. We first simulate a pilot
run of N0 samples using the SE Algorithm 7.5.1 to find an estimate of the
length-distribution r = (r1, . . . , rn−1), where

rk =
number of paths of length k

number of paths of length > k
. (7.13)

We can visualize rk in the following way: suppose a path x chosen at
random from X ∗, and suppose that for some k we would then expect xk+1

to be the vertex n with probability rk. We estimate r as

r̂k =

∑N0

j=1 I{|X i| = k}I{X i ∈ X ∗}/f(X i)∑N0

j=1 I{|X i| ≥ k}I{X i ∈ X ∗}/f(X i)
, (7.14)

where X ∼ f(x). We then use r̂ = (r̂1, . . . , r̂n−1) to generate paths simi-
larly to the SE Algorithm 7.5.1 except that at each step t where we choose
the next vertex to be n with probability r̂t, and then choose a different ran-
dom available vertex with probability 1− r̂t. If there are no other available
vertices we just choose the next vertex to be n. To ensure that f(x) > 0
for all x ∈ X ∗, it is sufficient that 0 < r̂k < 1, for all k. If we obtain rk
= 0 or 1 for some k, then we just replace it with 1/|̂X ∗| or 1 − 1/|̂X ∗|,
respectively, where |̂X ∗| is the estimate of |X ∗| from the SE pilot run.

The drawback of r̂ in (7.14) is that it represents an empirical uncondi-
tional marginal IS distribution rather than a empirical conditional one.

Our simulation studies show that with the empirical length-distribution
method one can get variance reduction by a factor of about 5.

7.6 Backward Method

Here we describe a new counting method, called the backward method,
which appears to be very efficient, provided the number of solutions is not
too large, say |X ∗| ≤ 109. We demonstrate it for SAT’s. Its name derives
from the fact that we model the SAT problem as a tree and move backwards
from the branches toward its root. It is assumed that we have access to a
SAT solver of the oracle type that can decide whether or not there exists
a valid assignment to a fixed n-dimensional vector x = (x1, x2, . . . , xn) of
some given instance matrix A = n×m.

The underlying idea is straightforward. As usual, denote by X0 =
{0, . . . , 2n − 1} the entire space and let X ∗ ⊆ X0 be the set of valid so-
lutions. In terms of our binary tree graph, this means that we have 2n

branches. Our procedure starts moving to the right from the leftmost
point 0 = (0, . . . 0) searching for a valid solution using a SAT solver.

160

Procedure 1: SAT-SOLVE (x) where x = (x1, . . . , xk)
Input: Some partial assignment (possibly empty) of variables x = xi1 , . . . , xik

ij ∈ {1, . . . , n}, xij ∈ {0, 1} and k ≤ n
Output: The solution found by the solver. If no solution exists, output ∅.

The following procedure determines the closest rightmost solution to an
arbitrary initial vector x = (x1, . . . , xn) in X0 = {0, . . . , 2n − 1}.

Procedure 2: FIND-NEXT-RIGHT-SOLUTION(xi)
Input: Given an initial vector xi = (xi,1, . . . , xi,n) (not necessarily a valid
solution)
Output: the first valid solution xi+1 on the right side of xi if exists, else
return ∅.

For given x0 = (x0,1, . . . , x0,n) proceed as follows

1. solutionFound ←− ∅

2. index←− n− 1

3. tmp←− (x0,1, . . . , x0,n)

4. While solutionFound = ∅ OR index = 0 DO:

(a) Go up in the tree to node tmp←− (tmp0,1, . . . , tmp0,index)

(b) solutionFound ←− SAT− SOLVE(tmp0,1, . . . , tmp0,index, 1)

(c) IF(solutionFound = ∅) THAN index ←− index− 1

(d) IF(solutionFound ̸= ∅) THAN
i. IF solutionFound ≤ x0 THAN solutionFound = ∅

5. tmp←− (tmp0,1, . . . , tmp0,index)

6. solutionFound ←− ∅

7. While length of binary string tmp < n DO:

(a) tmp0 = (tmp0,1, . . . , tmp0,index, 0)

(b) tmp1 = (tmp0,1, . . . , tmp0,index, 1)

(c) solutionFound ←− SAT− SOLVE(tmp0)

(d) IF(solutionFound = ∅) THAN tmp ←− tmp1

(e) ELSE tmp ←− tmp0

8. x1 ←− tmp

9. IF(x1 ≤ x0) THAN x1 = ∅

161

10. Output x1

Procedure 3: Backward Algorithm
Output: The number of solutions X.

1. X ←− 0

2. x←− {0, . . . , 0}

3. x←− FIND-NEXT-RIGHT-SOLUTION(x)

4. While x ̸= ∅

(a) X ←− X + 1

(b) x←− FIND-NEXT-RIGHT-SOLUTION(x)

5. Output X

It is important to note that the running time of Procedure 2 is
bounded by O(2log(2n) · (SAT− SOLVE)). Assuming that Procedure
1 is also fast enough, we can see that the total running time is polynomial
in n. If |X ∗| is also polynomial in n, then so is the full enumeration using
the backward method.

Figure 7.16 demonstrates Procedure 2 in action. In particular, the
backward algorithm starts from 000 and has to climb all the way up to
node 0. Next, the algorithm ”tries” to go ”as far left as possible” from 0
in order to find the solution closest to 000. Accordingly the SAT solver
identifies the first valid solution (to the right of 000 and to the left of 0),
which corresponds to 010. It also follows that in order to find the next
solution (to the right of 010) corresponding to 100, the SAT solver has to
climb all the way from 010 up to the node Root.

�����

�������	
��
��������������

����

�

�� ��

�

����

����

��� ��� ��� ��� ��� ��� ��� ���

Figure 7.16: Procedure 2

162

7.7 Applications of SE

Below we present several possible applications of SE. As usual we assume
that there exist an associated polynomial time decision making oracle.

7.7.1 Counting the Number of Trajectories in a Network

We show how to use SE for counting the number of trajectories (paths) in
a network with a fixed source and sink. We demonstrate this for N (e) = 1.
The modification to N (e) > 1 is straightforward.

Consider the following two toy examples.

Example 7.7.1. Bridge Network Consider the undirected graph in Fig-
ure 7.17.

�
�

�
�

�
�

�
�

�
�

� �

�

�

Figure 7.17: Bridge network: number of path from A to B.

Suppose we wish to count the 4 trajectories

(e1, e4), (e1, e3, e5), (e2, e3, e4), (e2, e5) (7.15)

between the source node s and sink node t.

1. Iteration 1 Starting from s we have two nodes e1 and e2 and the as-
sociated vector (x1, x2). Since each x is binary we have the following
four combination (00), (01), (10), (11). Note that only the trajec-
tories (01), (10) are relevant here since (00) can not be extended to
node t, while the trajectory (11) is redundant given (01), (10). We
have thus N1 = 2 and ν1 = 2.

2. Iteration 2 Assume that we selected randomly the path (01) among
the two, (01) and (10). By doing so we arrive at the node b containing

163

the edges (e2, e3, e5). According to SE only the edges e3 and e5 are rele-
vant. As before, their possible combinations are (00), (01), (10), (11).
Arguing similarly to Iteration 1 we have that N2 = 2 and ν2 = 2.
Consider separately the 2 possibilities associated with edges e5 and
e3.

(i) Edge e5 is selected. In this case we can go directly to the sink node

t and thus deliver an exact estimator |̂X ∗| = ν1ν2 = 2 · 2 = 4. The
resulting path is (e2, e5).

3. Iteration 3

(ii) Edge e3 is selected. In this case we go to t via the edge e4. It is

readily seen that N3 = 1, ν3 = 1. We have again |̂X ∗| = ν1ν2ν3 =
2 · 2 · 1 = 4. The resulting path is (e2, e3, e4).

Note that if we select the combination (10) instead of (01) we would get

again N2 = 2 and ν2 = 2, and thus again an exact estimator |̂X ∗| = 4.
If instead of (7.15) we would have a directed graph with the following

3 trajectories
(e1, e4), (e1, e3, e5), (e2, e5), (7.16)

then we obtain (with probability 1/2) an estimator |̂X ∗| = 2 for the path

(e2, e5) and (with probability 1/4) an estimator |̂X ∗| = 4, for the paths
(e1, e4) and (e1, e3, e5), respectively.

Example 7.7.2. Extended Bridge

�
�

�
�

�
�

�
�

�
�

�

�

� �

�
�

�
�

�

�

Figure 7.18: Extended bridge

We have the following 7 trajectories

(e1, e4, e7), (e1, e3, e6), (e1, e3, e5, e7), (e1, e4, e5, e6),

(e2, e6) (e2, e5, e7), (e2, e3, e4, e7).
(7.17)

164

1. Iteration 1 This iteration coincides with Iteration 1 of Example
7.7.1. We have N1 = 2 and ν1 = 2.

2. Iteration 2 Assume that we selected randomly the combination (01)
from the two, (01) and, (10). By doing so we arrive at node b con-
taining the edges (e2, e3, e5, e6). According to SE only (e3, e5, e6) are
relevant. Of the 7 combinations, only (001), (010), (100) are rel-
evant; there is no path through (000), and the remaining ones are
redundant since they result into the same trajectories as the above
three. Thus we have N2 = 3 and ν2 = 3. Consider separately the 3
possibilities associated with edges e6, e5 and e3.

(i) Edge e6 is selected. In this case we can go directly to the sink

node t and thus deliver |̂X ∗| = ν1ν2 = 2 · 3 = 6. The resulting path
is (e2, e6). Note that if we select either e5 or e3, there being no direct
access to the sink t.

3. Iteration 3

(ii) Edge e5 is selected. In this case we go to t via the edge e7. It is

readily seen that N3 = 1, ν3 = 1. We have again |̂X ∗| = ν1ν2ν3 =
2 · 3 · 1 = 6. The resulting path is (e2, e5, e7).

(iii) Edge e3 is selected. By doing so we arrive at node a (the inter-
section of (e1, e3, e4). The only relevant edge is e4. We have N3 =
1, ν3 = 1.

4. Iteration 4 We proceed with the path (e2, e3, e4), which arrived to
point c, the intersection of (e4, e5, e7). The only relevant edge among

(e4, e5, e7) is e7. We have N4 = 1, ν4 = 1 and |̂X ∗| = ν1ν2ν3ν4 =
2 · 3 · 1 · 1 = 6. The resulting path is (e2, e3, e4, e7).

Figure 7.19 presents the sub-tree (in bold) corresponding to the path
(e2, e3, e4, e7) for the extended bridge in Figure 7.18.

165

�
�

�
�

�
�

�
�

�
�

�

�

� �

�
�

�
�

�

�

Figure 7.19: Sub-tree (in bold) corresponding to the path (e2, e3, e4, e7).

It is readily seen that if we choose the combination (10) instead of (01)

we obtain |̂X ∗| = 8 for all four remaining cases.
Below we summarize all 7 cases.

Path Probability Estimator
(e1, e4, e7) 1/2 · 1/2 · 1/2 8
(e1, e3, e6) 1/2 · 1/2 · 1/2 8
(e1, e3, e5, e7) 1/2 · 1/2 · 1/2 · 1 8
(e1, e4, e5, e6) 1/2 · 1/2 · 1/2 · 1 8
(e2, e6) 1/2 · 1/3 6
(e2, e5, e7) 1/2 · 1/3 · 1 6
(e2, e3, e4, e7) 1/2 · 1/3 · 1 · 1 6

Averaging over the all cases we obtain |̂X ∗| = 4 · 1/8 · 8 + 3 · 1/6 · 6 = 7
and thus, the exact value.

Consider now the case N (e) > 1. In particular consider the graph in
Figure 7.18 and assume that N (e) = 2. In this case at iteration 1 of SE
Algorithm 7.5.1 both edges e1 and e2 will be selected. At iteration 2 we have
to chose randomly 2 nodes out of the four ones e3, e4, e5, e6. Assume
that e4 and e5 are selected. Note that by selecting e5 we completed an
entire path which path se2e6t. Note, however, that the second path which
goes through the edges e3, e4 will be not yet completed, since finally
it can be either se3e4e7t or se3e4e5e6t. In both cases the shorter path
se2e6t must be synchronized (length-wise) with the longer ones se3e4e7t or
se3e4e5e6t in the sense that depending on weather se3e4e5e6t or se3e4e7t is
selected we have to insert into se2e6t either one auxiliary edge from e6 to

t (denoted e6e
(1)
6) or two auxiliary ones from e6 to t (denoted by e6e

(1)
6 and

e
(1)
6 e

(2)
6). The resulting path (with auxiliary edges) will be either se2e6e

(1)
6 t

or se2e6e
(1)
6 e

(2)
6 t.

166

It follows from above that while adopting Algorithm 7.5.1 with N (e) >
1 for counting the number of paths in a general network one will have
to synchronize on-line all its paths with the longest one by adding some
auxiliary edges until all paths will match length-wise with the longest one.

SE for Estimation of Probabilities in a Network

Algorithm 7.5.1 can be readily modified for the estimation of different prob-
abilities in a network, such as the probability that the length S(X) of a
randomly chosen path X is greater than a fixed number γ, i.e.

ℓ = P{S(X) ≥ γ}.

Assume first that the length of each edge equals unity. Then the length
S(x) of a particular path x equals to the number of edges from s to t

on that path. The corresponding number of iterations is S(x)−n0

r
and the

corresponding probability is

ℓ = P{S(X)− n0

r
≥ γ} = E{IS(X)−n0

r
≥γ
}.

Clearly, there is no need to calculate here the weights νt. One only needs
to trace the length S(xj) of each path xj, j = 1, . . . , N (e).

In case where the lengths of the edges are different from one, S(x)
presents the sum of the length of edges associated with that path x.

Algorithm 7.7.1 (SE for Estimation Probabilities).

1. Iteration 1

• Full Enumeration (Same as in Algorithm 7.5.1).

• Calculation of the First Weight Factor (Redundant). In-
stead, store the lengths of the corresponding edges η1,1, . . . , η1,N(e) .

2. Iteration t, (t ≥ 2)

• Full Enumeration (Same as in Algorithm 7.5.1.

• Stochastic Enumeration (Same as in Algorithm 7.5.1).

• Calculation of the t-th Weight Factor. (Redundant). In-
stead, store the lengths of the corresponding edges ηt,1, . . . , ηt,N(e) .

3. Stopping Rule Proceed with iteration t, t = 1, . . . , n−n0

r
and calcu-

late
Ij = I

{
S(Xj)−n0

r
≥γ}

, j = 1, . . . , N (e), (7.18)

where as before, S(x) is the length of path x presenting the sum of
the length of the edges associated with x.

167

4. Final Estimator Run Algorithm 7.7.1 for M independent replica-
tions and deliver

ℓ̃ =
1

MN (e)

M∑
k=1

N(e)∑
j=1

I
{
S(Xjk)−n0

r
≥γ}

(7.19)

as an unbiased estimator of ℓ.

We performed various numerical studies with Algorithm 7.7.1 and found
that it performs properly, provided that γ is chosen such that ℓ is not a
rare event probability; otherwise one needs to use the importance sample
method. For example, for a random Erdos-Renyi graph with 15 nodes and
50 edges we obtained via full enumeration that number of valid paths is
643,085 and the probability ℓ = P{S(X) ≥ γ} that the length S(X) of
a randomly chosen path X is greater than γ = 10 is ℓ = 0.8748. From
our numerical results with N (e) = 100 and M = 100 based on 10 runs we
obtained with Algorithm 7.7.1 an estimator ℓ̂ = 0.8703 with the relative
error about 1%.

7.7.2 Counting the Number of Perfect Matching (Permanent)
in a Graph

Here we deal with application of SE to calculation of the number of match-
ings in a graph with particular emphasis on the number of perfect matchings
in a bipartite graph. It is well known [69] that the latter number coincides
with the permanent of the corresponding 0− 1 matrix A. More precisely,
let Qi denote the set of matchings of size i in the graph G. Assume that
Qn is non-empty, so that

• G has a perfect matching of vertices V1 and V2.

• The number of perfect matchings |Qn| in G equals the permanent A,
that is, |Qn| = per(A), defined as

per(A) = |X ∗| =
∑
x∈X

n∏
i=1

aixi
, (7.20)

X is the set of all permutations x = (x1, . . . , xn) of (1, . . . , n) and the
elements aij can be written as

aij =

1, if the nodes v1i and v2j are in E

0, otherwise.

Remark 7.7.1. Recall that a graph G = (V,E) is bipartite if it has no
circuits of odd length. It has the following property: the set of vertices

168

V can be partitioned in two independent sets, V1 = (v11, . . . , v1n) and
V2 = (v21, . . . , v2n) such that each edge in E has one vertex in V1 and one
in V2. A matching of a graph G = (V,E) is a subset of the edges with
the property that no two edges share the same node. In other words, a
matching is a collection of edges M ⊆ E such that each vertex occurs at
most once in M . A perfect matching is a matching of size n.

Example 7.7.3. Consider the following adjacency matrix

A =

0 1 0 0 0 1
1 0 1 0 1 0
0 1 0 1 0 0
0 0 1 0 1 0
0 1 0 1 0 1
1 0 0 0 1 0

 . (7.21)

The associated bipartite graph is given in Figure 7.20.

�
�

�
�

�
�

�
�

�
�

�
�

Figure 7.20: The bipartite graph.

It has the following three perfect matchings

M1 = [(a1, b1), (a2, b2), (a3, b3)],

M2 = [(a1, b3), (a3, b2), (a2, b1)],

M3 = [(a1, b3), (a3, b1), (a2, b2)].

(7.22)

We shall show how SE works for N (e) = 1. Its extension to N (e) > 1 is
simple.

We say that an edge is active if the outcome of the corresponding vari-
able is 1 and passive otherwise.

(a) Iteration 1 Let us start from node 1. Its degree is 2, the correspond-
ing edges are (a1, b1) and (a1, b3). Possible outcomes of the two asso-
ciated Bernoulli (p = 1/2) random variables are (00), (01), (10), (11).

169

Note that only (01) and (10) are relevant since neither (00) nor (11)
define a perfect matching. Note also that (10) means that edge (a1, b1)
is active and (a1, b3) is passive, while (01) means the other way around.
Since (employing the oracle) we obtain that each of the combinations
(01) and (10) is valid and since starting from (a1, b1) and (a1, b3) we
generate two different perfect matchings (see (7.22)), we have that
N1 = 2, ν1 = 2.

We next proceed separately with the outcomes (10) and (01).

• Outcome (10)

(b) Iteration 2 Recall that the outcome (10) means that (a1, b1)
is active. This automatically implies that all three neighboring
edges (a1, b3), (a3, b1), (a2, b1) must be passive. Using the perfect
matching oracle we will arrive at the next active edge, which is
(a2, b2). Since the degree of node 3 is two and since (a2, b1) must
be passive we have that N2 = 1, ν2 = 1.

(c) Iteration 3 Since (a2, b2) is active (a3, b2) must be passive. The
degree of node 5 is three, but since (a3, b2) and (a3, b1) are passive
(a3, b3) must be the only available active edge. This implies that

N3 = 1, ν3 = 1. The final estimator of |X ∗| = 3 is |̂X ∗| = 2·1·1 =
2.

• Outcome (01)

(b) Iteration 2 Since (01) means that (a1, b3) is active we automatically
set the neighboring edges (a1, b1), (a3, b3) as passive. Using an oracle
we shall arrive at node 5 which has degree three. Since (a1, b1) is
passive it is easily seen that each edge, (a3, b1) and (a3, b2), will become
active with probability 1/2. This means that with (a3, b1) and (a3, b2)
we are in a similar situation (in the sense of active-passive edges) to
that of (a1, b1), and (a1, b3). We thus have for each caseN2 = 2, ν2 = 2.

(c) Iteration 3 It is readily seen that both cases (a3, b1), and (a3, b2) lead
to N3 = 1, ν3 = 1. The resulting perfect matchings (see (7.22)) and
the estimator of |X ∗| are

M3 = [(a1, b3), (a3, b1), (a2, b2)],

M2 = [(a1, b3), (a3, b2), (a2, b1)]
(7.23)

and
|̂X ∗| = 2 · 2 · 1 = 4,

respectively.

Since each initial edge (a1, b1) and (a1, b3) at Iteration 1 is chosen
with probability 1/2, by averaging over both cases we obtain the exact
result, namely |X ∗| = 3.

170

It is not difficult to see that

1. If we selectN (e) = 2 instead ofN (e) = 1 we obtain |̂X ∗| = 3/2·2·1 = 3,
that is the exact value |X ∗| = 3.

2. Since |X ∗| = 3, the optimal zero variance importance sampling pdf
g∗(x) = 1/3. Its corresponding conditional probabilities (forN (e) = 1,
starting at node 1) are given below:

g∗ =

0 1/3 0 0 0 2/3
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 (1,1) 0
0 1/2 0 1/2 0 1
0 0 0 0 0 0

 . (7.24)

The plain and bold numbers in (7.24) correspond to the trajectories
starting at edges (a1, b1) and (a1, b3), respectively. Also, the notation
(1,1) means that the two perfect matching trajectories (one starting
at (a1, b1) and one at (a1, b3), each with probability 1) pass through
node (a2, b2).

7.7.3 Counting SAT’s

The most common SAT problem comprises the following two components:

• A set of n Boolean variables {x1, . . . , xn}, representing statements
that can either be TRUE (=1) or FALSE (=0). The negation (logical
NOT) of a variable x is denoted by x. For example, TRUE = FALSE.

• A set of m distinct clauses {C1, C2, . . . , Cm} of the form Cj = zj1 ∨
zj2 ∨ · · · ∨ zjq , where the z’s are literals and ∨ denotes the logical OR
operator. For example, 0 ∨ 1 = 1.

The binary vector x = (x1, . . . , xn) is called a truth assignment, or
simply an assignment. Thus, xi = 1 assigns truth to xi and xi = 0 assigns
truth to xi, for each i = 1, . . . , n.

Denoting the logical AND operator by ∧, we can represent the above SAT
problem via a single formula as

F = C1 ∧ C2 ∧ · · · ∧ Cm,

where the Cj’s consist of literals connected with only ∨ operators. The
SAT formula is then said to be in conjunctive normal form (CNF).

Note that although for general SAT’s the decision making is an NP-hard
problem, there are several very fast heuristics for this purpose. The most
popular one is the famous DPLL solver (oracle) [19], on which two main
heuristic algorithms are based for approximate counting with emphasis on
SAT’s. The first, called ApproxCount and introduced by Wei and Selman

171

in [98], is a local search method that uses Markov Chain Monte Carlo
(MCMC) sampling to approximate the true counting quantity. It is fast
and has been shown to yield good estimates for feasible solution counts, but
there are no guarantees as to uniformity of the MCMC samples. Gogate and
Dechter [41], [42] recently proposed an alternative counting technique called
SampleMinisat, based on sampling from the so-called backtrack-free search
space of a Boolean formula through SampleSearch. An approximation
of the search tree thus found is used as the importance sampling density
instead of a uniform distribution over all solutions. They also derived a
lower bound for the unknown counting quantity. Their empirical studies
demonstrate the superiority of their method over its competitors.

7.8 Choosing a Good Number N (e) of Elites

Assume that we have a fixed budget K = N (e) ×M to estimate |X ∗|. We

want to chose M such that the variance of |̃X ∗|(M) (with respect to M)
is minimized. One would be tempted to choose M = 1, since it is indeed
optimal for the above 2-SAT model with clauses Ci = xi ∨ x̄i+1 ≥ 1, i =
1, . . . , n and |X ∗| = n + 1 (see Table 7.2). Recall that by setting M = 1

and choosing N (e) = n+1 we obtained |̃X ∗| = 0. If the budget K < n+1,
we would still chose N (e) = K and obtain maximum variance reduction
(see Table 7.2). Indeed, we found numerically that choosing M = 1 is also
typically the best policy for randomly generated SAT’s models. For other
randomly generated counting problems, such as counting the number of
perfect matchings (permanent) and the number of paths in a network, we
found, however, that M = 1 is not necessary the best choice. In fact, we
found that the best M can vary from 1 till K (N (e) = 1). The reason
is that in contrast to the case N (e) = 1, where all generated paths are
independent, they are typically not so for the case N (e) > 1. The dependent
paths might be positively correlated and as result the variance can blow up
as compared to the independent case N (e) = 1. To see this consider Figure
7.18 of the extended bridge and assume that N (e) = 2. Since N (e) = 2 we
arrive at iteration 1 to both nodes a and b.We have here N1 = 5 (edges
e3, e4 for node a and edges e3, e5, e6 for node b). At iteration 2 we have
to choose randomly N (e) = 2 elites out of N1 = 5. Since the edge e3 is
common for both paths, that is for paths going through edges e1e3 and
e2e3, respectively, there is a positive probability that e3 will be common in
both paths. Clearly, these two paths will be positively correlated.

Although we found numerically that for randomly generated graphs the
relative error fluctuates only 2-3 times by varying M from 1 till K we
suggest to perform several small pilot runes with several different values of
M and selected the best one.

172

7.9 Numerical Results

Here we present numerical results with the SE-OSLA and SE algorithms.
In particular, we use SE-OSLA Algorithm 7.4.1 for counting SAW’s. The
reason for doing so is that we are not aware of any polynomial decision mak-
ing algorithm (oracle) for SAW’s. For the remaining problems we use the
SE Algorithm 7.5.1, since polynomial decision making algorithms (oracles)
are available for them. If not stated otherwise we use r = 1.

To achieve high performance of SE Algorithm 7.5.1 we set M as sug-
gested to follow Section 7.8. In particular

1. For SAT models to set M = 1. Note that by doing so, N (e) = K,
where K is the allowed budget. Also in this case N (e) is the only
parameter of SE. For the instances, where we occasionally obtained
(after simulation) an exact |X ∗|, that is where |X ∗| is relatively small
and where we originally set N (e) ≥ |X ∗|, we purposely reset N (e) (to

be fair with the other methods) by choosing a new N
(e)
∗ , satisfying

N
(e)
∗ < |X ∗| and run SE again. By doing so we prevent SE from being

an ideal (zero variance) estimator.

2. For other counting problems, such as counting the number of perfect
matchings (permanent) and the number of paths in a network, to
perform small pilot runes with several values of M and select the best
one.

We use the following notations

1. N
(e)
t denotes the number of elites at iteration t.

2. nt denote the level reached at iteration t.

3. νt = N
(e)
t /Nt.

7.9.1 Counting SAW’s

Note that since SAW is symmetric, we can confine ourselves to a single
octant and thus save CPU time.

Tables 7.3 and 7.4 present the performance of the SE-OSLA Algorithm
7.4.1 for SAW for n = 500 and n = 1, 000 respectively, with r = 2, n0 = 4

and M = 20 (see (7.7)). This corresponds to the initial values N
(e)
0 = 100

and N1 = 780, (see also iteration t = 0 in Table 7.5).

173

Table 7.3: Performance of SE-OSLA Algorithm 7.4.1 for SAW with n = 500

Run N0 Iterations |X̃ ∗| CPU (sec.)
1 248 4.799E+211 130.55
2 248 4.731E+211 130.49
3 248 4.462E+211 132.36
4 248 4.302E+211 136.22
5 248 5.025E+211 132.19
6 248 5.032E+211 131.79
7 248 4.397E+211 132.18
8 248 4.102E+211 131.60
9 248 4.820E+211 131.98
10 248 4.258E+211 131.73

Average 248 4.593E+211 132.11

Based on those runs, we found that RE = 0.0685.

Table 7.4: Performance of of the SE-OSLA Algorithm 7.4.1 for SAW for n =
1, 000

Run N0 Iterations |X̃ ∗| CPU (sec.)
1 497 2.514E+422 4008
2 497 2.629E+422 3992
3 497 2.757E+422 3980
4 497 2.354E+422 3975
5 497 2.200E+422 3991
6 497 2.113E+422 3991
7 497 2.081E+422 3970
8 497 2.281E+422 3983
9 497 2.504E+422 3982
10 497 2.552E+422 3975

Average 497 2.399E+422 3985

Based on those runs, we found that RE = 0.0901.

Table 7.5 presents dynamics of one of the runs of the SE-OSLA Algo-
rithm 7.4.1 for n = 500. We used the following notations

1. N
(e)
t denotes the number of elites at iteration t.

2. nt denote the level reached at iteration t.

3. νt = N
(e)
t /Nt.

174

Table 7.5: Dynamics of a run of the SE-OSLA Algorithm 7.4.1 for n = 500

t nt N
(e)
t Nt ν̂t |̂X ∗

t |
0 4 100 100 1 100
1 6 100 780 7.8 780
2 8 100 759 7.59 5.920E+03
3 10 100 746 7.46 4.416E+04
4 12 100 731 7.31 3.228E+05
5 14 100 733 7.33 2.366E+06
50 104 100 699 6.99 4.528E+44
100 204 100 695 6.95 7.347E+86
150 304 100 699 6.99 1.266E+129
200 404 100 694 6.94 1.809E+171
244 492 100 693 6.93 2.027E+208
245 494 100 693 6.93 1.405E+209
246 496 100 696 6.96 9.780E+209
247 498 100 701 7.01 6.856E+210
248 500 100 700 7 4.799E+211

7.9.2 Counting the Number of Trajectories in a Network

Model 1: from Roberts and Kroese [76] with n = 24 nodes
Table 7.6 presents the performance of the SE Algorithm 7.5.1 for the

Model 1 taken from Roberts and Kroese [76] with the following adjacency
(24× 24) matrix.

0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 1 1 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 1 0 0
0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0
0 0 1 1 0 1 0 0 1 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0
1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0
0 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 1 0
0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 1 1
1 0 0 1 1 0 1 1 1 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0
0 1 1 0
1 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0

(7.25)

We set N
(e)
t = 50 and M = 400 to get a comparable running time.

175

Table 7.6: Performance of SE Algorithm 7.4.1 for the Model 1 graph with

N
(e)
t = 50 and M = 400.

Run N0 Iterations |X̃ ∗| CPU
1 18.87 1.81E+06 4.218
2 18.83 1.93E+06 4.187
3 18.83 1.98E+06 4.237
4 18.83 1.82E+06 4.232
5 18.79 1.90E+06 4.225
6 18.83 1.94E+06 4.231
7 18.86 1.86E+06 4.207
8 18.77 1.87E+06 4.172
9 18.79 1.90E+06 4.289
10 18.81 1.92E+06 4.287

Average 18.82 1.89E+06 4.229

Based on those runs, we found that RE = 0.0264. Comparing the
results of Table 7.6 with these in [76] it follows that the former is about
1.5 times faster than the latter.

Model 2: Large Model (n = 200 vertices and 199 edges)
Table 7.7 presents the performance of the SE Algorithm 7.5.1 for the

Model 3 with N
(e)
t = 100 and M = 500.

Table 7.7: Performance of SE Algorithm 7.4.1 for the Model 2 with N
(e)
t = 100

and M = 500.

Run N0 Iterations |X̃ ∗| CPU
1 58.93 1.53E+07 157.37
2 58.86 1.62E+07 153.92
3 58.96 1.69E+07 153.90
4 59.09 1.65E+07 154.50
5 58.73 1.57E+07 153.38
6 58.96 1.57E+07 153.71
7 59.13 1.67E+07 153.91
8 58.43 1.51E+07 153.14
9 59.08 1.62E+07 153.87
10 58.90 1.59E+07 154.81

Average 58.91 1.60E+07 154.25

We found for this model that RE = 0.03606.
We also counted the number of paths for Erdos-Renyi random graphs

with p = lnn/n (see Section 7.11.3) We found that SE performs reliable
(RE≤ 0.05) for n ≤ 200, provided the CPU time is limited by 5-15 minutes.

Table presents the performance of SE Algorithm 7.5.1 for the Erdos-

Renyi random graph with n = 200 using N
(e)
t = 1 and M = 30, 000.

176

Table 7.8: Performance of SE Algorithm 7.5.1 for the Erdos-Renyi random graph

(n = 200) with N
(e)
t = 1 and M = 30, 000.

Run N0 Iterations |X̃ ∗| CPU
1 80.08 1.43E+55 471.0
2 80.43 1.39E+55 499.0
3 80.51 1.41E+55 525.0
4 80.76 1.38E+55 507.9
5 80.43 1.45E+55 505.5

Average 80.44 1.41E+55 501.7

We found that the RE is 2.04E-02.

Remark 7.9.1. The SE method has some limitation, in particular when
dealing with non-sparse instances. In this case one has to use in SE the
full enumeration step (“consult” the oracle) very many times. As results
the CPU time of SE might increase dramatically. Consider for example,
the extreme case, a complete graph Kn. The exact number of s-t paths
between any 2 vertices is given by:

K(n) =
∑n−2

k=0
(n−2)!

k!
Table 7.9 presents the performance of the SE Algorithm 7.5.1 for K25

with N
(e)
t = 50 and M = 100. The exact solution is 7.0273E + 022

Table 7.9: Performance of SE Algorithm 7.4.1 for K25 with N
(e)
t = 50 and

M = 100.

Run N0 Iterations |X̃ ∗| CPU
1 23.00 7.07E+22 28.71
2 23.00 6.95E+22 28.99
3 23.00 7.10E+22 28.76
4 23.00 7.24E+22 28.33
5 23.00 7.03E+22 27.99
6 23.00 6.75E+22 28.32
7 23.00 7.18E+22 29.25
8 23.00 7.15E+22 29.51
9 23.00 6.85E+22 28.20
10 23.00 7.34E+22 28.12

Average 23.00 7.07E+22 28.62

For this model we found that RE = 0.0248, so the results are still good.
However, as n increases, the CPU time grows rapidly. For example, for

K100 we found that while using N
(e)
t = 100 and M = 100 the CPU time is

about 5.1 hours.

177

7.9.3 Counting the Number of Perfect Matchings (Permanent)
in a Graph

As before we present here numerical results for two models, one small and
one large.

Model 1: (Small Model)
Consider the following A = 30× 30 matrix with true number of perfect

matchings (permanent) is |X ∗| = 266 obtained using full enumeration.

1 0
0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 0 0 0
0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0
0 1 0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
1 0 1 1 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 0 0 1

Table 7.10 present performance of SE Algorithm 7.5.1 for (N

(e)
t = 50

and M = 10). We found that the relative error is 0.0268.

Table 7.10: Performance of the SE Algorithm 7.5.1 for the Model 1 with N
(e)
t =

50 and M = 10.

Run N0 Iterations |X̃ ∗| CPU
1 24 264.21 2.056
2 24 269.23 2.038
3 24 270.16 2.041
4 24 268.33 2.055
5 24 272.10 2.064
6 24 259.81 2.034
7 24 271.62 2.035
8 24 269.47 2.050
9 24 264.86 2.059
10 24 273.77 2.048

Average 24 268.36 2.048

Applying splitting algorithm for the same model using N = 15, 000 and
ρ = 0.1, we found that the relative error is 0.2711. It follows that SE is
about 100 times faster than splitting.

Model 2 with 100× 100 (Large Model)

178

Table 7.11 presents the performance of the SE Algorithm 7.5.1 for

Model 2 matrix N
(e)
t = 100 and M = 100.

Table 7.11: Performance of SE Algorithm 7.5.1 for the for Model 2 with

N
(e)
t = 100 and M = 100.

Run N0 Iterations |X̃ ∗| CPU
1 93 1.58E+05 472.4
2 93 1.77E+05 482.8
3 93 1.77E+05 472.4
4 93 1.65E+05 482.0
5 93 1.58E+05 475.7
6 93 1.78E+05 468.9
7 93 1.76E+05 469.3
8 93 1.73E+05 480.9
9 93 1.74E+05 473.7
10 93 1.78E+05 472.0

Average 93 1.71E+05 475.0

The relative error is 0.0434.
Model 3: Erdos-Renyi graph with n = 100 edges and p = 0.07
Table 7.12 presents the performance of the SE Algorithm 7.5.1 for the

Erdos-Renyi graph with n = 100 edges and p = 0.07. We set N
(e)
t = 1 and

M = 20, 000.

Table 7.12: Performance of SE Algorithm 7.5.1 for the Erdos-Renyi graph using

N
(e)
t = 1 and M = 20, 000.

Run N0 Iterations |X̃ ∗| CPU
1 50 3.60E+07 3.29E+02
2 50 3.40E+07 3.50E+02
3 50 3.54E+07 3.30E+02
4 50 3.61E+07 3.40E+02
5 50 3.60E+07 3.33E+02
6 50 3.79E+07 3.27E+02
7 50 3.58E+07 3.33E+02
8 50 3.42E+07 3.35E+02
9 50 3.88E+07 3.25E+02
10 50 3.55E+07 3.19E+02

Average 50 3.60E+07 332.09179

We found that the relative error is 0.0387.
We also applied the SE algorithm for counting general matchings in a

bipartite graph. The quality of the results was similar to that for paths
counting in a network.

179

7.9.4 Counting SAT’s

Here we present numerical results for several SAT models. We set r = 1
in the SE algorithm for all models. Recall that for 2-SAT we can use
a polynomial decision making oracle [19], while for K-SAT (K > 2)- an
heuristic based on the DPLL solver [20, 19]. Note that the SE Algorithm
7.5.1 remains exactly the same when a polynomial decision making oracle
is replaced by an heuristic one, like the DPLL solver. Running both SAT
models we found that the CPU time for 2-SAT is about 1.3 times faster
then for K-SAT (K > 2).

Table 7.13 presents the performance of the SE Algorithm 7.5.1 for the

3-SAT 75× 325 model with exactly 2258 solutions. We set N
(e)
t = 20 and

M = 100.

Table 7.13: Performance of SE Algorithm 7.5.1 for the 3-SAT 75× 325 model.

Run N0 Iterations |X̃ ∗| CPU
1 75 2359.780 2.74
2 75 2389.660 2.77
3 75 2082.430 2.79
4 75 2157.850 2.85
5 75 2338.100 2.88
6 75 2238.940 2.75
7 75 2128.920 2.82
8 75 2313.390 3.04
9 75 2285.910 2.81
10 75 2175.790 2.85

Average 75 2247.077 2.83

Based on those runs, we found that RE = 0.0448.

Table 7.14 presents performance of the SE Algorithm 7.5.1 for the 3-

SAT 75× 270 model. We set N
(e)
t = 100 and M = 100. The exact solution

for this instance is X ∗ = 1, 346, 963 and is obtained via full enumeration
using the backward method. It is interesting to note that for this instance
(with relatively small |X ∗|) the CPU time of the exact backward method
is 332 second (compare with average 16.8 second time of SE in Table 7.14).

180

Table 7.14: Performance of SE Algorithm 7.5.1 for the 3-SAT 75× 270 model.

Run N0 Iterations |X̃ ∗| CPU
1 75 1.42E+06 16.88
2 75 1.37E+06 16.91
3 75 1.31E+06 17.24
4 75 1.35E+06 17.38
5 75 1.31E+06 16.75
6 75 1.32E+06 16.81
7 75 1.32E+06 16.51
8 75 1.25E+06 16.27
9 75 1.45E+06 16.3
10 75 1.33E+06 16.95

Average 75 1.35E+06 16.80

Based on those runs, we found that RE = 0.0409.

Table 7.15 presents the performance of the SE Algorithm 7.5.1 for a

3-SAT 300× 1080 model. We set N
(e)
t = 300 and M = 300.

Table 7.15: Performance of SE Algorithm 7.5.1 for SAT 300× 1080 model with

N
(e)
t = 300, M = 300 and r = 1.

Run N0 Iterations |X̃ ∗| CPU
1 300 3.30E+24 2010.6
2 300 3.46E+24 2271.8
3 300 3.40E+24 2036.8
4 300 3.42E+24 2275.8
5 300 3.39E+24 2022.4
6 300 3.35E+24 2267.8
7 300 3.34E+24 2019.6
8 300 3.34E+24 2255.4
9 300 3.32E+24 2031.7
10 300 3.33E+24 2149.6

Average 300 3.36E+24 2134.1

Based on those runs, we found that RE = 0.0266.

Note that in this case the estimator of |X ∗| is very large and, thus
full enumeration is imposable. We made, however, the exact solution |X ∗|
available as well. It is |X ∗| = (1, 346, 963)4 = 3.297E + 24, and is ob-
tained using a specially designed procedure (see Remark 7.9.2 below) for
SAT instances generation. In particular the instance matrix 300 × 1080
was generated from the previous one 75×270, for which |X ∗| = 1, 346, 963.

181

Remark 7.9.2. Generating an instance with an available solution We shall
show that given a small instance with a known solution |X ∗| we can gen-
erate an associated instance of any size and still obtain it exact solution.
Suppose without loss of generality that we have k instances (of relatively
small sizes) with known |X ∗

i |, i = 1, . . . , k. Denote those instances by
I1, . . . , Ik, their dimensionality by (n1,m1), . . . , (nk,mk) and their corre-
sponding solutions by |X ∗

1 |, ..., |X ∗
k |. We will show how to construct a new

SAT instance that will have a size (
∑k

i=1 ni,
∑k

i=1 mi) and it’s exact solu-

tion will be equal to
∏k

i=1 |X ∗
i |. The idea is very simple. Indeed, denote the

variables of I1 by x1, . . . , xn1 . Now take the second instance and rename
it’s variables from x1, . . . , xn2 to xn1+1, . . . , xn2+n1 , i.e to each variable in-
dex of I2 we add n1 new variables. Continue in the same manner with
the rest of the instances. It should be clear that we have now an instance
of size (

∑k
i=1 ni,

∑k
i=1mi). Let us look next at some particular solution

X1, . . . , Xn1 , Xn1+1, . . . , Xn1+n2 , . . . , X∑k
i=1 ni

of this instance. This solution

consist of independent components of sizes n1, . . . , nk, and it is straight for-
ward to see that the total number of those solutions is

∏k
i=1 |X ∗

i |. It follows
therefore that one can easily construct a large SAT instance from a set of
small ones and still have an exact solution for it. Note that the above
300× 1080 instance with exactly (1, 346, 963)4 solutions was obtained from
the 4 identical instances of size 75× 270, each with exactly 1,346,963 solu-
tions.

We also performed experiments with different values of r. Table 7.16
summarizes the results. In particular it presents the relative error (RE)
for r1 = 1, r3 = 3 and r5 = 5 with SE run for a predefined time period
for each instance. We can see that changing r does not affect the relative
error.

Table 7.16: The relative errors as function of r.

Instance r = 1 r = 2 r = 3

20x80, N
(e)
t =3, M = 100 2.284E-02 1.945E-02 2.146E-02

75x325, N
(e)
t = 20, M = 100 5.057E-02 4.587E-02 5.614E-02

75x270, N
(e)
t = 100, M = 100 4.449E-02 4.745E-02 4.056E-02

Comparison of SE with Splitting and SampleSearch

Here we compare SE with splitting and SampleSearch for several 3-SAT
instances. Before doing so we need the following remarks.

Remark 7.9.3. SE versus splitting Note that

1. In the splitting method [82] the rare event ℓ is presented a as

ℓ = E
[
I{∑m

j=1 Cj(X)=m}
]
, (7.26)

182

where X has a uniform distribution on a finite n-dimensional set X0,
and m is the number of clauses Cj, j = 1, . . . ,m To estimate X ∗ the
splitting algorithm generates an adaptive sequence of pairs

{(m0, g
∗(x,m0)), (m1, g

∗(x,m1)), (m2, g
∗(x,m2)), . . . , (mT , g

∗(x,mT))},
(7.27)

where g∗(x,mt), t = 0, 1, . . . , T is uniformly distributed on the set
Xt and such that X0 ⊃ X1 ⊃ · · · ⊃ XT = X ∗. It is crucial to note,
however, that

2. In contrast to splitting which samples from a sequence of n-dimensional
pdf’s g∗(x,mt) (see (7.27)) sampling in the SE Algorithm 7.5.1 is min-

imal; it resort to sampling only n times. In particular SE draws N
(e)
t

balls (without replacing) from an urn containing Nt ≥ N
(e)
t , t =

1, . . . , n ones.

3. Splitting relies on the time-consuming MCMC method and in partic-
ular on the Gibbs sampler, while SE dispenses with them and is thus
substantially simpler and faster. For more details on splitting see [82].

4. The limitation of SE relative to splitting is that the former is suitable
for counting, where only fast (polynomial) decision making oracles are
available, while splitting dispenses with them. In addition it is not
suitable for optimization and rare-events as splitting does.

Remark 7.9.4. SE versus SampleSearch
The main difference between "SampleSearch" [41, 42] and SE is that

the former approximates an entire #P-complete counting problem like SAT
by incorporating IS in the oracle. As a result, it is only asymptotically un-
biased. Wei and Selman’s [98] ApproxCount is similar to "SampleSearch"

in that it uses an MCMC sampler instead of IS. In contrast to both the
above, SE reduces the difficult counting problem to a set of simple ones,
applying the oracle each time directly (via the Full Enumeration step)

to the elite trajectories of size N
(e)
t . Note also that unlike both the above,

there is no randomness involved in SE as far as the oracle is concerned
in the sense that once the elite trajectories are given, the oracle generates
(via Full Enumeration) a deterministic sequence of new trajectories of

size Nt. As a result, SE is unbiased for any N
(e)
t ≥ 1 and is typically more

accurate than "SampleSearch". Our numerical results below confirm this.

Table 7.17 presents a comparison of the efficiencies of SE (at r = 1) with
those of SampleSearch and splitting (SaS and Split columns respectively)
for several SAT instances. We ran all three methods for the same amount
of time (Time column).

183

Table 7.17: Comparison of the efficiencies of SE, SampleSearch and standard
splitting

Instance Time SaS SaS RE SE SE RE Split Split RE
20x80 1 sec 14.881 7.95E-03 15.0158 5.51E-03 14.97 3.96E-02
75x325 137 sec 2212 2.04E-02 2248.8 9.31E-03 2264.3 6.55E-02
75x270 122 sec 1.32E+06 2.00E-02 1.34E+06 1.49E-02 1.37E+06 3.68E-02
300x1080 1600 sec 1.69E+23 9.49E-01 3.32E+24 3.17E-02 3.27E+24 2.39E-01

It is readily seen that in terms of speed (which equals to (RE)2) SE
is faster than SampleSearch, by about 2-10 times and than the standard
splitting in [82] by about 20-50 times. Similar comparison results were
obtained for other models including perfect matching. Our explanation is
that SE is an SIS method, while SampleSearch and splitting are not - in the
sense that SE samples sequentially with respect to coordinates x1, . . . , xn,
while the other two sample (random vectors X from the IS pdf g(x)) in
the entire n-dimensional space.

We also ran the models of Table 7.17 with the (exact) backward method.
We found that for the first 3 models the CPU times are 0.003, 0.984 and 332
seconds, respectively. As mentioned before the backward method cannot
handle the last model in reasonable time, because |X ∗| is very large.

7.10 Concluding Remarks and Further Research

In this work we introduced a new generic sequential importance sampling
(SIS) algorithm, called stochastic enumeration (SE) for counting #P-complete
problems such as the number of satisfiability assignments, the number of
paths in a network and the number of perfect matchings in a graph (perma-
nent). We showed that SE presents a natural generalization of the classic
one-step-look-ahead (OSLA) algorithm in the sense that it

• Runs in parallel multiple trajectories instead of a single one.

• Employs a polynomial time decision making oracle, which can be
viewed as an n-step-look-ahead algorithm, n being the size of the prob-
lem rather than OSLA.

The presented extensive simulation studies indicate good performance of
SE Algorithm 7.4.1 as compared with the well-known algorithms and in
particular over the splitting [82], and SampleSearch [41] methods.

As for further research, we are planning to

• Find the set of optimal parameters {N (e)
t , r, M} which, for fixed n,

minimizes the variance of the estimator |̃X |∗ = |̃X |∗(N (e)
t , r, M) in

(7.7) as function of N
(e)
t , r, M , provided N

(e)
t = N (e), ∀t.

184

• Apply the SE method to a wide class of NP-hard counting and rare-
event problems, such as estimating the reliability of a network.

• Establish a mathematical foundation for SE and to investigate its
complexity properties. In particular to extend Rasmussen [73] FPRAS
result for counting permanent with OSLA to counting some other
graphs quantities using nSLA and SE.

7.11 Appendices

7.11.1 SIS Method

Sequential importance sampling (SIS), also called dynamic importance sam-
pling, is simply importance sampling carried out in a sequential manner.
To explain the SIS procedure, consider the expected performance

ℓ = Ef [S(X)] =

∫
S(x) f(x) dx , (7.28)

where H is the sample performance and f is the probability density of X.
Let g be another probability density such that H f is dominated by g.

That is, g(x) = 0 ⇒ S(x) f(x) = 0. Using the density g we can represent
ℓ as

ℓ =

∫
S(x)

f(x)

g(x)
g(x) dx = Eg

[
S(X)

f(X)

g(X)

]
, (7.29)

where the subscript g means that the expectation is taken with respect to
g. Such a density is called the importance sampling density, Consequently,
if X1, . . . ,XN is a random sample from g, that is, X1, . . . ,XN are iid
random vectors with density g, then

ℓ̂ =
1

N

N∑
k=1

S(Xk)
f(Xk)

g(Xk)
(7.30)

is an unbiased estimator of ℓ. This estimator is called the importance
sampling estimator. The ratio of densities,

W (x) =
f(x)

g(x)
, (7.31)

is called the likelihood ratio. Suppose that (a) X is decomposable,
that is, it can be written as a vector X = (X1, . . . , Xn), where each of
the Xi may be multi-dimensional, and (b) it is easy to sample from g(x)
sequentially. Specifically, suppose that g(x) is of the form

g(x) = g1(x1) g2(x2 |x1) · · · gn(xn |x1, . . . , xn−1) , (7.32)

where it is easy to generate X1 from density g1(x1), and sequential on
X1 = x1, the second component from density g2(x2|x1), and so on, until

185

one obtains a single random vector X from g(x). Repeating this inde-
pendently N times, each time sampling from g(x), one obtains a random
sample X1, . . . ,XN from g(x) and estimates ℓ according to (7.30). To
further simplify the notation, we abbreviate (x1, . . . , xt) to x1:t for all t. In
particular, x1:n = x. Typically, t can be viewed as a (discrete) time param-
eter and x1:t as a path or trajectory. By the product rule of probability,
the target pdf f(x) can also be written sequentially, that is,

f(x) = f(x1) f(x2 |x1) · · · f(xn |x1:n−1). (7.33)

From (7.32) and (7.33) it follows that we can write the likelihood ratio in
product form as

W (x) =
f(x1) f(x2 |x1) · · · f(xn |x1:n−1)

g1(x1) g2(x2 |x1) · · · gn(xn |x1:n−1)
(7.34)

or recursively as

wt(x1:t) = ut wt−1(x1:t−1), t = 1, . . . , n , (7.35)

where wt(x1:t) denotes the likelihood ratio up to time t, w0(x1:0) = 1 is the
initial weight, and u1 = f(x1)/g1(x1) and

ut =
f(xt |x1:t−1)

gt(xt |x1:t−1)
=

f(x1:t)

f(x1:t−1) gt(xt |x1:t−1)
, t = 2, . . . , n (7.36)

are incremental weights.

Remark 7.11.1. Note that the incremental weights ut only need to be
defined up to a constant, say ct, for each t. In this case the likelihood
ratio W (x) is known up to a constant as well, say W (x) = C V (x), where
1/C = Eg[V (X)] can be estimated via the corresponding sample mean.
In other words, when the normalization constant is unknown, one can still
estimate ℓ using the the following weighted sample estimator:

ℓ̂ =

∑N
k=1 S(Xk)Wk∑N

k=1Wk

. (7.37)

rather than the likelihood ratio estimator (7.31). Here the {Wk}, with
Wk = W (Xk), are interpreted as weights of the random sample {Xk}, and
the sequence {(Xk,Wk)} is called a weighted (random) sample from g(x).

Summarizing, the SIS method can be written as follows.

Algorithm 7.11.1 (SIS Algorithm).

1. For each finite t = 1, . . . , n, sample Xt from gt(xt |x1:t−1).

2. Compute wt = ut wt−1, where w0 = 1 and ut is given in (7.36).

3. Repeat N times and estimate ℓ via ℓ̂ in (7.30) or ℓ̂ in (7.37).

Note that ℓ̂ is an unbiased estimator of ℓ, while ℓ̂w is an asymptotically
consistent estimator of ℓ.

186

7.11.2 DPLL Algorithm from Wikipedia

Davis-Putnam-Logemann-Loveland (DPLL) algorithm [19] is a complete,
backtracking-based algorithm for deciding the satisfiability of propositional
logic formulae in conjunctive normal form, i.e. for solving the CNF-SAT
problem. l DPLL is a highly efficient procedure and after more than 40
years still forms the basis for most efficient complete SAT solvers, as well
as for many theorem provers for fragments of first-order logic.

The basic backtracking algorithm runs by choosing a literal, assigning
a truth value to it, simplifying the formula and then recursively checking if
the simplified formula is satisfiable; if this is the case, the original formula is
satisfiable; otherwise, the same recursive check is done assuming the oppo-
site truth value. This is known as the splitting rule, as it splits the problem
into two simpler sub-problems. The simplification step essentially removes
all clauses which become true under the assignment from the formula, and
all literals that become false from the remaining clauses.

7.11.3 Random Graphs Generation

This section is taken almost verbatim from
http://en.wikipedia.org/wiki/Erd

Random graphs generation is associated with the ErdosRenyi model,
named for Paul Erdos and Alfred Renyi. There are two closely related
variants of the ErdosRenyi random graph model, the so-called (i) G(n, p)
and (ii)G(n,M) model.

(i) G(n, p) model In the G(n, p) model, a graph is constructed by
connecting nodes randomly. Each edge is included in the graph with prob-
ability p independent from every other edge. Equivalently, all graphs with
n nodes and m edges have equal probability of

pm(1− p)(
n
2)−m.

The distribution of the degree of any particular vertex v is binomial:

P(deg(v) = k) =

(
n− 1

k

)
pk(1− p)n−1−k,

where n is the total number of vertices in the graph.
A simple way to generate a random graph in G(n, p) is to consider each

of the possible
(
n
2

)
edges in some order and then independently add each

edge to the graph with probability p.
The expected number of edges in G(n, p) is p

(
n
2

)
, and each vertex has

expected degree p(n − 1). Since every thing is distributed independently

their corresponding variances are p(1− p)
(
n
2

)2
, and p(1− p)(n− 1)2.

It readily follows from the above that even for N (e) = 1 we have that

Var{|̂X ∗|} ≤ p(1− p)

(
n

2

)2

< n4. (7.38)

187

The parameter p in this model can be thought of as a weighting function;
as p increases from 0 to 1, the model becomes more and more likely to
include graphs with more edges and less and less likely to include graphs
with fewer edges. In particular, p = 0.5 corresponds to the case where all

2(
n
2) graphs on n vertices are chosen with equal probability. The behavior

of random graphs are often studied asymptotically in n, that is when the
number of vertices tends to infinity. For example, the statement ”almost
every graph in is connected” means ”as n tends to infinity, the probability
that a graph on n vertices with edge probability is connected tends to 1”.

(ii) G(n,M) model In the G(n,M) model, a graph is chosen uniformly
at random from the collection of all graphs, which have n nodes and M
edges.

In practice, the G(n, p) model is the one more commonly used today, in
part due to the ease of analysis allowed by the independence of the edges.

Erdos and Renyi described the behavior of G(n, p) very precisely for
various values of p. In particular

1. If np < 1, then a graph in G(n, p) will almost surely have no connected
components of size larger than O(log n).

2. If np = 1, then a graph in G(n, p) will almost surely have a largest
component whose size is of order n2/3.

3. If np tends to a constant c > 1, then a graph in G(n, p) will almost
surely have a unique giant component containing a positive fraction
of the vertices. No other component will contain more than O(log n)
vertices.

4. If p < (1−ε) lnn
n

, then a graph in G(n, p) will almost surely contain
isolated vertices, and thus be disconnected.

5. If p > (1+ε) lnn
n

, then a graph in G(n, p) will almost surely be con-
nected.

Thus lnn
n

is a sharp threshold for the connectedness of G(n, p).
The transition at np = 1 from giant component to small component can

be regarded as a phase transition studied by percolation theory.
In our numerical results we shall always deal with connected graphs,

that is when p > (1+ε) lnn
n

.

188

Chapter 8

Conclusion and Further
Research

In this work we introduced three general techniques for approximating the
solutions of general NP-hard, NP-complete, and #P -complete problems.
The main problems handled in this thesis are: combinatorial optimization,
uniform sampling on complex regions, counting the number of satisfiability
assignments in a cnf formulas, approximating the permanent, counting the
number of contingency tables and graphs with prescribed degrees and a
rare-event estimation for the network flow reliability. In particular, we
showed the following.

1. The splitting algorithm is a general and very powerful technique ca-
pable to handle many hard problems in sense of optimization and
counting. As compared to the classical randomized algorithms, the
proposed splitting algorithms require very little warm-up time when
running the Gibbs sampler from iteration to iteration, since the un-
derlying Markov chains are already in steady-state from the begin-
ning. The only purpose remaining for them is fine tuning in order for
the associated Markov processes to be kept in the steady-state while
moving from iteration to iteration. The fine tuning is performed by
introducing the splitting and burn-in parameters η and b, respectively.
As result we obtain substantial variance reduction and thus, dramatic
speedup as compared to the randomized algorithms.

We introduced an entirely new, flexible and robust version of the
splitting algorithm - the smoothed splitting method (SSM) that oper-
ates in the continuous space while solving discrete optimization and
counting problems.

We showed that splitting can successfully generate almost uniform
samples in hard regions. Finally, a classical capture-recapture method
can lead to a substantial variance reduction for many problem in-

189

stances.

2. We showed how the classical Evolution methods, initially developed
for network reliability problems can be used to successfully solve net-
work flow problems.

3. We introduced entirely new sequential importance sampling algorithm
called the Stochastic Enumeration method for counting #P -complete
problems like SAT, permanent and self avoiding walks.

4. We presented efficient numerical results with all the algorithms de-
scribed above for a variety of real-world benchmark problem instances.

Further Research

As for further research, we suggest the following issues:

1. Establish solid mathematical grounding based on the splitting and
SSM methods [28] , on use of the Feynman-Kac formulae and on
interacting particle systems (Del Moral, 2004). We believe that the
prove for (polynomial) speed of convergence for quite general counting
problems could be established by using arguments similar to these we
used in Appendix under simplifying assumptions.

2. Find the total sample size and the size of the elites at each iteration of
the splitting algorithm , while estimating the rare-event probability

ℓ = Ef

[
I{

∑m
i=1 Ci(X)≥m}

]
,

which involves a sum of dependent Ber(1/2) random variables Ci(X), i =
1, . . . ,m. Recall that the goal of estimator of ℓ is to insure approx-
imate uniformity of the sample at each sub-region Xt via formula
|X ∗| = ℓ|X |. Note that both, the CE and the exponential change of
measure have limited applications in this case.

3. Further investigate the convergence properties of some alternatives
to the Gibbs sampler used in this thesis, like the hit-and-run and
Metropolis-Hastings combined with splitting.

4. In this work we applied the splitting method to some new problems
like counting graphs with prescribed degrees and contingency tables.
Clearly additional research is needed in sense of employing our method
to a broad variety of optimization and counting problems. A special
interest can be an adaptation to the continuous case. The splitting
framework can provide both optimization and counting the number
of multiple extrema in a multi-extremal function.

5. The splitting method can have an impact in various queueing models
with heavy tails. As an example, one can consider estimating the
probability of buffer overflow in the GI/G/1 queue.

190

6. While working with the methods presented in chapter 6, we noticed
that it can be used for various problems having monotonic properties.
For example, it can be used for counting graph vertex and edge covers
or even a more general monotone cnf instances.

7. We showed numerically that the Stochastic Enumeration method is a
powerful tool but more rigorous mathematical background should be
established. One possible direction of research would be to supply the
SE with estimation oracle that will suggest the correct probabilities
during the algorithm walk down the tree. The SE can benefit much
from it’s use. See for example the sequential importance sampling
procedure proposed in [74]

191

Appendix A

Additional topics

A.1 Efficiency of Estimators

In this work we frequently use

ℓ̂ =
1

N

N∑
i=1

Zi , (A.1)

which presents an unbiased estimator of the unknown quantity ℓ = E[Z],
where Z1, . . . , ZN are independent replications of some random variable Z.

By the central limit theorem, ℓ̂ has approximately a N(ℓ,N−1Var[Z])
distribution for large N . We shall estimate Var[Z] via the sample variance

S2 =
1

N − 1

N∑
i=1

(Zi − ℓ̂)2 .

By the law of large numbers, S2 converges with probability 1 to Var[Z].
Consequently, for Var[Z] <∞ and large N , the approximate (1− α) con-
fidence interval for ℓ is given by(

ℓ̂− z1−α/2
S√
N
, ℓ̂+ z1−α/2

S√
N

)
,

where z1−α/2 is the (1−α/2) quantile of the standard normal distribution.
For example, for α = 0.05 we have z1−α/2 = z0.975 = 1.96. The quantity

S/
√
N

ℓ̂

is often used in the simulation literature as an accuracy measure for the

estimator ℓ̂. For large N it converges to the relative error of ℓ̂, defined as

RE =

√
Var[ℓ̂]

E[ℓ̂]
=

√
Var[Z]/N

ℓ
. (A.2)

192

The square of the relative error

RE2 =
Var[ℓ̂]
ℓ2

(A.3)

is called the squared coefficient of variation.

Example A.1.1 (Estimation of Rare-Event Probabilities). Con-
sider estimation of the tail probability ℓ = P(X ≥ γ) of some random
variable X for a large number γ. If ℓ is very small, then the event {X ≥ γ}
is called a rare event and the probability P(X ≥ γ) is called a rare-event
probability.

We may attempt to estimate ℓ via (A.1) as

ℓ̂ =
1

N

N∑
i=1

I{Xi≥γ} , (A.4)

which involves drawing a random sample X1, . . . , XN from the pdf of X
and defining the indicators Zi = I{Xi≥γ}, i = 1, . . . , N . The estimator ℓ
thus defined is called the crude Monte Carlo (CMC) estimator. For small
ℓ the relative error of the CMC estimator is given by

RE =

√
Var[ℓ̂]

E[ℓ̂]
=

√
1− ℓ

N ℓ
≈
√

1

N ℓ
. (A.5)

As a numerical example, suppose that ℓ = 10−6. In order to estimate ℓ
accurately with relative error (say) RE = 0.01, we need to choose a sample
size

N ≈ 1

RE2ℓ
= 1010 .

This shows that estimating small probabilities via CMC estimators is com-
putationally meaningless. 2

A.1.1 Complexity

The theoretical framework in which one typically examines rare-event prob-
ability estimation is based on complexity theory, (see, for example, [2]).

In particular, the estimators are classified either as polynomial-time or

as exponential-time. It is shown in [2] that for an arbitrary estimator, ℓ̂ of
ℓ, to be polynomial-time as a function of some γ, it suffices that its squared
coefficient of variation, RE2, or its relative error, RE, is bounded in γ by
some polynomial function, p(γ). For such polynomial-time estimators, the
required sample size to achieve a fixed relative error does not grow too fast
as the event becomes rarer.

193

Consider the estimator (A.4) and assume that ℓ becomes very small as
γ →∞. Note that

E[Z2] ≥ (E[Z])2 = ℓ2 .

Hence, the best one can hope for with such an estimator is that its second
moment of Z2 decreases proportionally to ℓ2 as γ → ∞. We say that the
rare-event estimator (A.4) has bounded relative error if for all γ

E[Z2] ≤ c ℓ2 (A.6)

for some fixed c ≥ 1. Because bounded relative error is not always easy
to achieve, the following weaker criterion is often used. We say that the
estimator (A.4) is logarithmically efficient (sometimes called asymptotically
optimal) if

lim
γ→∞

logE[Z2]

log ℓ2
= 1 . (A.7)

Example A.1.2 (The CMC Estimator is not Logarithmically
Efficient). Consider the CMC estimator (A.4). We have

E[Z2] = E[Z] = ℓ ,

so that

lim
γ→∞

logE[Z2]

log ℓ2(γ)
=

log ℓ

log ℓ2
=

1

2
.

Hence, the CMC estimator is not logarithmically efficient, and therefore
alternative estimators must be found to estimate small ℓ. 2

A.1.2 Complexity of Randomized Algorithms

A randomized algorithm is said to give an (ε, δ)-approximation for a pa-
rameter z if its output Z satisfies

P(|Z − z| ≤ εz) ≥ 1− δ, (A.8)

that is, the “relative error” |Z−z|/z of the approximation Z lies with high
probability (> 1− δ) below some small number ε.

One of the main tools in proving (A.8) for various randomized algo-
rithms is the so-called Chernoff bound, which states that for any random
variable Y and any number a

P(Y ≤ a) ≤ min
θ>0

eθa E[e−θY] . (A.9)

Namely, for any fixed a and θ > 0 define the functions H1(z) = I{z≤a} and

H2(z) = eθ(a−z). Then, clearly H1(z) ≤ H2(z) for all z. As a consequence,
for any θ,

P(Y ≤ a) = E[H1(Y)] ≤ E[H2(Y)] = eθa E[e−θY] .

The bound (A.9) now follows by taking the smallest such θ.
An important application is the following.

194

Theorem A.1.1. Let X1, . . . , Xn be iid Ber(p) random variables, then their
sample mean provides an (ε, δ)-approximation for p, that is,

P

(∣∣∣∣∣ 1n
n∑

i=1

Xi − p

∣∣∣∣∣ ≤ εp

)
≥ 1− δ,

provided n ≥ 3 ln(2/δ)/(pε2).

For the proof see, for example Rubinstein and Kroese [86].

Definition A.1.1 (FPRAS). A randomized algorithm is said to provide
a fully polynomial-time randomized approximation scheme (FPRAS) if for
any input vector x and any parameters ε > 0 and 0 < δ < 1 the algorithm
outputs an (ε, δ)-approximation to the desired quantity z(x) in time that
is, polynomial in ε−1, ln δ−1 and the size n of the input vector x.

Note that the sample mean in Theorem A.1.1 provides a FPRAS for es-
timating p. Note also that the input vector x consists of the Bernoulli
variables X1, . . . , Xn.

There exists a fundamental connection between the ability to sample
uniformly from some set X and counting the number of elements of interest.
Since exact uniform sampling is not always feasible, MCMC techniques are
often used to sample approximately from a uniform distribution.

Definition A.1.2 (ε-Uniform Sample). Let Z be a random output of a
sampling algorithm for a finite sample space X . We say that the sampling
algorithm generates an ε-uniform sample from X if, for any Y ⊂ X∣∣∣∣P(Z ∈ Y)− |Y||X |

∣∣∣∣ ≤ ε.

Definition A.1.3 (Variation Distance). The variation distance be-
tween two distributions F1 and F2 on a countable space X is defined as

||F1 − F2|| =
1

2

∑
x∈X

|F1(x)− F2(x)|.

It is well-known, [67] that the definition of variation distance coincides with
that of an ε- uniform sample in the sense that a sampling algorithm returns
an ε- uniform sample on X if and only if the variation distance between its
output distribution F and the uniform distribution U satisfies

||F − U|| ≤ ε.

Bounding the variation distance between the uniform distribution and the
empirical distribution of the Markov chain obtained after some warm-up
period is a crucial issue while establishing the foundations of randomized
algorithms since with a bounded variation distance one can produce an
efficient approximation for |X ∗|.

195

Definition A.1.4 (FPAUS). A sampling algorithm is called a fully poly-
nomial almost uniform sampler (FPAUS) if, given an input vector x and a
parameter ε > 0, the algorithm generates an ε-uniform sample from X (x)
and runs in a time that is, polynomial in ln ε−1 and the size of the input
vector x.

An important issue is to prove that given an FPAUS for a combinatorial
problem, one can construct a corresponding FPRAS.

A.2 Complexity of Splitting Method under Simplify-
ing Assumptions

Denote by
ℓ- the rare-event probability.
m - number of levels. mt, t = 0, 1, . . . , T - intermediate levels (m0 =

0,mT = m).
ct - probability of hitting mt, starting from mt−1.
Nt - number of successful hits of level mt (elite sample).
N (t) - total sample from level mt.

Our main goal is to present a calculation for Varℓ̂ and to show how
much variance can be obtained with splitting versus the crude Monte Carlo
(CMC). To do so we shall cite some basic results from [28].

Let us write Nt (the number of elite samples) as

Nt =
N(t)∑
i=1

I
(t)
i ,

where each I
(t)
i , i = 1, . . . , N (t); t = 1, . . . , T represents the indicator of

successes at the t-th stage, that is, I
(t)
i is the indicator that the process

reaches the level mt from level mt−1. We assume that

1. The indicators I
(t)
i , i = 1, . . . , N (t); t = 1, . . . , T are generated using

the splitting algorithm.

2. For fixed mt the indicators I
(t)
i are iid and EI(t)i = ct. In addition,

we assume that for all combinations (i, j) and for t ̸= k, they are also

independent level-wise, that is, EI(t)i I
(k)
j = ctck. Clearly, this is a sim-

plified assumption, since in practice we generate only approximately
uniform samples at each sub-space Xt. As a result, each estimator
of ct might be slightly biased. Recall that ct = P(Xt|Xt−1), that
is, it represents the conditional probability of the process (particle)
reaching the sub-space (event) Xt from Xt−1, or in other words of it

reaching the level mt from level mt−1. Moreover, the indicators I
(t)
i

and I
(k)
j might be slightly correlated as well, in particular when k is

196

close to t, say k = t ± 1. We use the phrases “slightly biased” and
“slightly correlated” being aware that our elites samples remain in
“near” steady-state (warm-up) position in each sub-space Xt. Recall
that we do so by introducing the splitting and the burn-in parameters,
b and η, respectively.

With this on hand, we have

Varℓ̂ = Eℓ̂2 − ℓ2 = E
T∏
t=1

ĉ2t − ℓ2. (A.10)

Taking into account that

Varĉt =
1

N (t)
ct(1− ct), (A.11)

we obtain

Varℓ̂ =
T∏
t=1

{
ct(1− ct)

N (t)
+ c2t

}
− ℓ2 = ℓ2

(
T∏
t=1

{
1− ct
ctN (t)

+ 1

}
− 1

)
. (A.12)

As a simple example consider estimation of ℓ in the Sum of Bernoulli
problem, that is estimation

ℓ = Ef

[
I{

∑n
i=1 Xi=m}

]
,

where the Xi’s are iid, each Xi ∼ Ber(1/2). Assume that T = m and
Nt = N, t = 1, . . . ,m. It is readily seen that in this case ct = 1/2 and thus
(A.12) reduces to

Varℓ̂ = ℓ2
(
1 +

1

N

)m

− ℓ2. (A.13)

For large m and N = m we obtain that

Varℓ̂ ≈ ℓ2(e− 1). (A.14)

We proceed next with (A.12). To find the optimal parameters T , and
(N1, . . . , NT) in (A.12) we solve the following minimization problem

minVarℓ̂ = min ℓ2

(
T∏
t=1

{
(1− ct)

ctN (t)
+ 1

}
− 1

)
(A.15)

with respect to T , and (N1, . . . , NT), subject to the following constraint

T∑
t=1

N (t) = M. (A.16)

197

It is not difficult to show that for fixed T , the solution of (A.15)-(A.16)

(see Garvels, 2000) is ct = c = ℓ
1
T and N (t) = M

T
, ∀ k = 1, . . . , T . Mote that

we assumed that
∑T

t=1N
(t) is large and in solving (A.15)-(A.16) we used

a continuous approximation for the true discrete program (A.15)-(A.16).

It follows that for fixed T , the minimal variance (under ct = c = ℓ
1
T and

N (t) = M
T
, ∀ k = 1, . . . , T) equals{

ℓ2T 2(1− ℓ
1
T)

ℓ
1
T M

}
.

It remains to solve

min
T

Varℓ̂ = min
T

{
ℓ2T 2(1− ℓ

1
T)

ℓ
1
T M

}
. (A.17)

It is readily seen that under the above simplifying assumptions the optimal
values of T and c, the minimal variance, optimal squared relative error and

optimal efficiency, denoted Tr, cr, Varr ℓ̂, κ2
r, and εr are

Tr = −
log ℓ

2
, (A.18)

cr = e−2, (A.19)

Varr ℓ̂ =
(eℓ log ℓ)2

4M
, (A.20)

κ2
r =

M−1Varrℓ̂
ℓ2

≈ (e log ℓ)2

4
, (A.21)

and

εr =
M−1Varr ℓ̂
ℓ(1− ℓ)

≈ ℓ(e log ℓ)2

4
, (A.22)

respectively. Confidence intervals and central limit theorems can be also
readily established.

Even though the assumptions are indeed simplifying, they provide good
insight into the polynomial complexity of splitting Algorithm and in partic-
ular into the relative error κ2

r. Note that for general counting problem, our
numerical data are in agreement with these results and in particular with κ2

r

in (A.21). Note finally, that for the Bernoulli model with Varℓ̂ ≈ ℓ2(e− 1)
(see (A.14)) we obtain (under the above simplifying assumptions) that
κ2
r = e− 1 and thus, bounded relative error.

198

Bibliography

[1] S. Asmussen and P. W. Glynn. Stochastic Simulation: Algorithms and
Analysis. Stochastic Modelling and Applied Probability, 57. Springer
Science,Business Media, LLC, 2007.

[2] S. Asmussen and R. Y. Rubinstein. Steady state rare event simulation
in queueing model and its complexity properties. In J. Dshalalow,
editor, Advances in Queueing: Theory, Methods and Open Problems,
volume I, pages 429–462. CRC Press, 1995.

[3] J. Blanchet and D. Rudoy. Rare-Event Simulation and Counting Prob-
lems. Wiley, 2009.

[4] J. H. Blanchet. Efficient importance sampling for binary contingency
tables. Annals of Applied Probability, 19:949–982, 2009.

[5] J. Blitzstein and P. Diaconis. A sequential importance sampling algo-
rithm for generating random graphs with prescribed degrees. Technical
report, 2006.

[6] J. Blitzstein and P. Diaconis. A sequential importance sampling algo-
rithm for generating random graphs with prescribed degrees. Technical
report, 2006.

[7] Z. I. Botev and D. P. Kroese. An Efficient Algorithm for Rare-event
Probability Estimation, Combinatorial Optimization, and Counting.
Methodology and Computing in Applied Probability, 10(4):471–505, De-
cember 2008.

[8] Z. I. Botev and D. P. Kroese. Efficient monte carlo simulation via the
generalized splitting method. Statistics and Computing, 22:1–16, 2012.

[9] Z. I. Botev, P. L’Ecuyer, G. Rubino, R. Simard, and B. Tuffin. Static
network reliability estimation via generalized splitting. INFORMS
Journal on Computing, 2012.

[10] A. Cayley. A theorem on trees. Quart. J. Math, 23:376–378, 1889.

[11] F. Cérou and A. Guyader. Adaptive multilevel splitting for rare event
analysis. Research Report RR-5710, INRIA, 2005.

199

[12] F. Cérou, P. D. Moral, F. L. Gland, and P. Lezaud. Genetic Genealogi-
cal Models in Rare Event Analysis. Publication interne - IRISA. IRISA,
2006.

[13] F. Cérou, P. Del Moral, T. Furon, and A. Guyader. Sequential monte
carlo for rare event estimation. Statistics and Computing, 22(3):795–
808, 2012.

[14] Y. Chen, P. Diaconis, S. P. Holmes, and J. S. Liu. Sequential monte
carlo methods for statistical analysis of tables. Journal of the American
Statistical Association, 100:109–120, March 2005.

[15] N. Clisby. Efficient implementation of the pivot algorithm for self-
avoiding walks. Technical Report arXiv:1005.1444, May 2010. Com-
ments: 35 pages, 24 figures, 4 tables. Accepted for publication in the
Journal of Statistical Physics.

[16] J. L. Cook and J. E. Ramirez-Marquez. Two-terminal reliability anal-
yses for a mobile ad hoc wireless network. Rel. Eng. & Sys. Safety,
92(6):821–829, 2007.

[17] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson. Introduction
to Algorithms. McGraw-Hill Higher Education, 2nd edition, 2001.

[18] F. Crou, P. Del, Moral T. Furon, and A. Guyader. Rare event simu-
lation for static distribution. Technical report, 2009.

[19] M. Davis, G. Logemann, and D. Loveland. A machine program for
theorem-proving. Commun. ACM, 5(7):394–397, July 1962.

[20] M. Davis and H. Putnam. A computing procedure for quantification
theory. J. ACM, 7(3):201–215, July 1960.

[21] T. Dean and P. Dupuis. Splitting for rare event simulation: a large
deviations approach to design and analysis. Stochastic Processes and
their Applications, 119(2):562–587, 2009.

[22] T. Dean and P. Dupuis. The design and analysis of a generalized
RESTART/DPR algorithm for rare event simulation. Annals of Op-
erations Research, 189(1):63–102, 2011.

[23] M. Dyer. Approximate counting by dynamic programming. In Pro-
ceedings of the 35th ACM Symposium on Theory of Computing, pages
693–699, 2003.

[24] M. Dyer, A. Frieze, and M. Jerrum. On counting independent sets
in sparse graphs. In In 40th Annual Symposium on Foundations of
Computer Science, pages 210–217, 1999.

200

[25] T. Elperin, I. Gertsbakh, and M. Lomonosov. An evolution model for
Monte Carlo estimation of equilibrium network renewal parameters.
Probability in the Engineering and Informational Sciences, 6:457–469,
1992.

[26] T. Elperin, I. B. Gertsbakh, and M. Lomonosov. Estimation of net-
work reliability using graph evolution models. IEEE Transactions on
Reliability, 40(5):572–581, 1991.

[27] P. Erdos and A. Rnyi. On random graphs. i. Publicationes Mathemat-
icae, 6:290–297, 1959.

[28] M. J. J. Garvels. The splitting method in rare event simulation. PhD
thesis, University of Twente, Enschede, October 2000.

[29] M. J. J. Garvels and D. P. Kroese. A comparison of RESTART im-
plementations. In Proceedings of the 30th conference on Winter simu-
lation, WSC ’98, pages 601–608, Los Alamitos, CA, USA, 1998. IEEE
Computer Society Press.

[30] M. J. J. Garvels, D. P. Kroese, and J. C. W. van Ommeren. On the
importance function RESTART simulation. European Transactions on
Telecommunications, 13(4), 2002.

[31] M. J. J. Garvels and R.Y. Rubinstein. A combined restart - cross
entropy method for rare event estimation with applications to atm
networks. Technical report, 2000.

[32] A. Gelman and D. B. Rubin. Inference from Iterative Simulation Using
Multiple Sequences. Statistical Science, 7(4):457–472, 1992.

[33] I. Gertsbakh and Y. Shpungin. Combinatorial approaches to monte
carlo estimation of network lifetime distribution. Applied Stochastic
Models in Business and Industry, 20:49–57, 2004.

[34] I. Gertsbakh and Y. Shpungin. Network reliability importance mea-
sures: combinatorics and monte carlo based computations. WSEAS
Trans Comp, 4:21–23, 2007.

[35] I. Gertsbakh and Y. Shpungin. Models of network reliability: analysis,
combinatorics, and Monte Carlo. CRC Press, New York, 2009.

[36] I. Gertsbakh and Y. Shpungin. Network reliability design: combina-
torial and Monte Carlo approach. Proceedings of the International
Conference on Modeling and Simulation, pages 88-94, Canada, 2010.

[37] I. Gertsbakh and Y. Shpungin. Network Reliability and Resilience -.
Springer, Berlin, Heidelberg, 1st edition. edition, 2011.

201

[38] I. Gertsbakh and Y. Shpungin. Spectral Approach to Reliability Eval-
uation of Flow Networks. Proceedings of the European Modeling and
Simulation Symposium, Vienna, pages 68-73, 2012.

[39] P. Glasserman, P. Heidelberger, P. Shahabuddin, and T. Zajic. A large
deviations perspective on the efficiency of multilevel splitting. IEEE
Transactions on Automatic Control, 43(12):1666–1679, 1998.

[40] P. Glasserman, P. Heidelberger, P. Shahabuddin, and T. Zajic. Multi-
level splitting for estimating rare event probabilities. Operations Re-
search, pages 585–600, 1999.

[41] V. Gogate and R. Dechter. Approximate counting by sampling the
backtrack-free search space. In AAAI, pages 198–203. AAAI Press,
2007.

[42] V. Gogate and R. Dechter. Samplesearch: Importance sampling in
presence of determinism. Artif. Intell., 175(2):694–729, 2011.

[43] A. V. Goldberg and S. Rao. Beyond the flow decomposition barrier.
J. ACM, 45(5):783–797, 1998.

[44] C. P. Gomes, A. Sabharwal, and B. Selman. Model counting. In
Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, ed-
itors, Handbook of Satisfiability, volume 185 of Frontiers in Artificial
Intelligence and Applications, pages 633–654. IOS Press, 2009.

[45] D. Günneç and F. S. Salman. Assessing the reliability and the expected
performance of a network under disaster risk. OR Spectr., 33(3):499–
523, July 2011.

[46] M. Jerrum and A. Sinclair. The markov chain monte carlo method:
An approach to approximate counting and integration. pages 482–520.
PWS Publishing, 1996.

[47] M. Jerrum, A. Sinclair, and E. Vigoda. A polynomial-time approx-
imation algorithm for the permanent of a matrix with non-negative
entries. Journal of the ACM, pages 671–697, 2004.

[48] M. Jerrum, L. G. Valiant, and V. V. Vazirani. Random generation of
combinatorial structures from a uniform distribution. Theor. Comput.
Sci., 43:169–188, 1986.

[49] M. Jerrum, L. G. Valiant, and V. V. Vazirani. Random generation of
combinatorial structures from a uniform distribution. Theor. Comput.
Sci., 43:169–188, 1986.

[50] H. Kahn and T. E. Harris. Estimation of particle transmission by
random sampling, monte carlo method. National Bureau of Standards
Applied Mathematics Series, 12:27–30, 1951.

202

[51] R. M. Karp and M. Luby. Monte-carlo algorithms for enumeration
and reliability problems. In Proceedings of the 24th Annual Sympo-
sium on Foundations of Computer Science, SFCS ’83, pages 56–64,
Washington, DC, USA, 1983. IEEE Computer Society.

[52] D. P. Kroese, K. P. Hui, and S. Nariai. Network reliability optimiza-
tion via the cross-entropy method. IEEE Transactions on Reliability,
56(2):275–287, 2007.

[53] D. P. Kroese, T. Taimre, and Z. I. Botev. Handbook of Monte Carlo
methods. John Wiley & Sons, New York, 2011.

[54] H. W. Kuhn. The hungarian method for the assignment problem.
Naval Research Logistics Quarterly, 2:83–97, 1955.

[55] A. Lagnoux-Renaudie. A two-step branching splitting model under
cost constraint for rare event analysis. Journal of Applied Probability,
46(2):429–452, 2009.

[56] P. LEcuyer, J. Blanchet, B. Tuffin, and P. Glynn. Asymptotic ro-
bustness of estimators in rare-event simulation. ACM Transactions on
Modeling and Computer Simulation - TOMACS, 20:1–41, 2010.

[57] P. L’Ecuyer, V. Demeres, and B. Tuffin. Splitting for rare-event sim-
ulation. In Proceedings of the 38th conference on Winter simulation,
WSC ’06, pages 137–148. Winter Simulation Conference, 2006.

[58] P. L’Ecuyer, V. Demers, and B. Tuffin. Rare events, splitting, and
quasi-monte carlo. ACM Trans. Model. Comput. Simul., 17(2), April
2007.

[59] L. Lin and M. Gen. A Self-controlled Genetic Algorithm for Reliable
Communication Network Design. pages 640–647.

[60] Y. Lin. Reliability of a stochastic-flow network with unreliable
branches & nodes, under budget constraints. IEEE Transactions on
Reliability, 53(3):381–387, 2004.

[61] J. S. Liu. Monte Carlo Strategies in Scientific Computing. Springer,
corrected edition, January 2008.

[62] N. Madras and A. Sokal. The pivot algorithm - a highly efficient
monte-carlo method for the self-avoiding walk. Journal of Statistical
Physics, 50(1-2):109–186, 1988.

[63] M. Marseguerra, E. Zio, L. Podofillini, and D. W. Coit. Optimal
design of reliable network systems in presence of uncertainty. IEEE
Transactions on Reliability, 54(2):243–253, 2005.

203

[64] V. B. Melas. On the efficiency of the splitting and roulette approach for
sensitivity analysis. In Proceedings of the 29th conference on Winter
simulation, WSC ’97, pages 269–274, Washington, DC, USA, 1997.
IEEE Computer Society.

[65] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller,
and E. Teller. Equation of State Calculations by Fast Computing
Machines. The Journal of Chemical Physics, 21(6):1087–1092, 1953.

[66] P. Metzner, C. Schutte, and E. Vanden-Eijnden. Illustration of tran-
sition path theory on a collection of simple examples. The Journal of
Chemical Physics, 125(8):84–110, 2006.

[67] M. Mitzenmacher and E. Upfal. Probability and Computing : Ran-
domized Algorithms and Probabilistic Analysis. Cambridge University
Press, New York (NY), 2005.

[68] P. D. Moral. Feynman-Kac Formulae: Genealogical and Interacting
Particle Systems with Applications. Springer series in statistics: Prob-
ability and its applications. Springer, 2004.

[69] R. Motwani and P. Raghavan. Randomized algorithms. In The Com-
puter Science and Engineering Handbook, pages 141–161. 1997.

[70] L. Murray, H. Cancela, and G. Rubino. A splitting algorithm for
network reliability estimation. IIE Transactions, 45(2):177–189, 2013.
2 2.

[71] C. H. Papadimitriou. Computational complexity. Addison-Wesley,
1994.

[72] B. T. Polyak and E. N. Gryazina. Randomized methods based on
new monte carlo schemes for control and optimization. Annals OR,
189(1):343–356, 2011.

[73] L. E. Rasmussen. Approximating the permanent: A simple approach.
Random Struct. Algorithms, 5(2):349–362, 1994.

[74] L. E. Rasmussen. Approximately counting cliques. Random Struct.
Algorithms, 11(4):395–411, 1997.

[75] A. K. Ravindra, M. L. Thomas, and O. B. James. Network Flows:
Theory, Algorithms, and Applications. Prentice Hall, Englewood Cliffs,
NJ, 1993.

[76] B. Roberts and D. P. Kroese. Estimating the number of s-t paths in a
graph. Journal of Graph Algortihms and Applications, 11(1):195–214,
2007.

204

[77] M. N. Rosenbluth and A. W. Rosenbluth. Monte Carlo calculation
of the average extension of molecular chains. Journal of Chemical
Physics, 23:356–359, 1955.

[78] S. M. Ross. Simulation. Statistical Modeling and Decision Science
Series. Academic Press, 2006.

[79] S. M. Ross. Introduction to Probability Models, Eighth Edition. Aca-
demic Press, 9 edition, January 2007.

[80] R. Rubinstein, R. Vaisman, and Z. Botev. Hanging edges for fast
reliability estimation. Technical report, Technion, Haifa, Israel, 2012.

[81] R. Y. Rubinstein. The cross-entropy method for combinatorial and
continuous optimization. Methodology and Computing in Applied Prob-
ability, pages 127–190, 1999.

[82] R. Y. Rubinstein. The Gibbs Cloner for Combinatorial Optimization,
Counting and Sampling. Methodology and Computing in Applied Prob-
ability, pages 491–549, 2009.

[83] R. Y. Rubinstein. Randomized algorithms with splitting: Why the
classic randomized algorithms do not work and how to make them
work. Methodology and Computing in Applied Probability, 12:1–50,
2010.

[84] R. Y. Rubinstein. Stochastic enumeration method for counting np-
hard problems. Methodology and Computing in Applied Probability,
pages 1–42, 2012.

[85] R. Y. Rubinstein and D. P. Kroese. The Cross-Entropy Method: A
Unified Approach to Combinatorial Optimization, Monte-Carlo Sim-
ulation and Machine Learning (Information Science and Statistics).
Springer, 1 edition, July 2004.

[86] R. Y. Rubinstein and D. P. Kroese. Simulation and the Monte Carlo
Method, Second Edition. John Wiley and Sons, New York, 2007.

[87] F. J. Samaniego. On closure of the ifr under formation of coherent
systems. IEEE Trans Reliab, 34:69–72, 1985.

[88] G. A. F. Seber. The effect of trap response on tag recapture estimates.
Biometrics, pages 13–22, 1970.

[89] D. Siegmund. Importance sampling in the Monte Carlo study of se-
quential tests. Annals of Statististics, 4:673–684, 1976.

[90] R. L. Smith. Efficient Monte Carlo procedures for generating points
uniformly distributed over bounded regions. 1982.

205

[91] S. P. Vadhan. The complexity of counting in sparse, regular, and
planar graphs. SIAM Journal on Computing, 31:398–427, 1997.

[92] L. G. Valiant. The complexity of computing the permanent. Theoret-
ical Computer Science, 8(2):189–201, January 1979.

[93] A. W. van der Vaart. Asymptotic Statistics. Cambridge Series in Sta-
tistical and Probabilistic Mathematics. Cambridge University Press,
2000.

[94] J. van Rensburg. Monte carlo methods for the self-avoiding walk. J.
Phys. A: Math. Theor., 50(42):1–97, 2009.

[95] M. Villén-Altimirano and J. Villén-Altimirano. RESTART: A method
for accelerating rare event simulations. In Proceedings of the 13th
International Teletraffic Congress, Performance and Control in ATM,
pages 71–76, June 1991.

[96] M. Villén-Altimirano and J. Villén-Altimirano. RESTART: A straight-
forward method for fast simulation of rare events. In Proceedings of
the 26th conference on Winter simulation, WSC ’94, pages 282–289,
San Diego, CA, USA, 1994. Society for Computer Simulation Interna-
tional.

[97] M. Villén-Altimirano and J. Villén-Altimirano. About the efficiency
of RESTART. In Proceedings of the 1999 RESIM Workshop, pages
99–128, University of Twente, the Netherlands, 1999.

[98] W. Wei and B. Selman. A new approach to model counting. In In 8th
SAT, volume 3569 of LNCS, pages 324–339, 2005.

206

 2בדיקת תנאי עצירה: אם תנאי העצירה שנבחר מראש מתקיים עבור לשלב הבא, אחרת תחזור לשלב.

 .אמידה: אמידה עבור בעיות ספירה

 במספר נקודות.מרחיבים את אלגוריתם הפיצול מאמרים, אנו מבעבודה זו, המורכבת

 אנו מראים שאלגוריתם הפיצול יכול לשמש כאלגוריתם לפתרון בעיות אופטימיזציה בדידות
 אנו מציגים עדויות נומריות ליכולת האלגוריתם להגריל דגימות אחידות בתוך אובייקטים קומבינטורים

 מסובכים
 של האלגוריתם המקורי אנו מציגים אלגוריתם פיצול חדש עם החלקה אשר יכול לשפר את הביצועים
 אנו מרחיבים את האלגוריתם המקורי ע"י שיטתcapture-recapture .הידועה בסטטיסטיקה

מזו אך בדרך שונה לפתרון בעיות ספירה גם כן בנוסף, אנו מציגים שני אלגוריתמים נוספים שמשמשים
 אנומרציה סטובסטית – SE ואלגוריתם Spectra . אלגוריתם ה אלגוריתם הפיצולשהשתמשנו בה ב

 .בהתאמה 7ו 6המוצגים בפרקים

כגון בעיית במהלך העבודה, אנו מציגים תוצאות נומריות עבור בעיות שונות של ספירה ואופטימיזציה
(, אשר תופסת מקום מרכזי בעבודה, בעיית ספירת גרפים בעלי דרגות נתונות ובעיית SATספיקות)

לציין, שאף אם קל למצוא פתרון לחלק מבעיות החלטה, קשה חשוב .Binary Contingency Tablesה

 למצוא פתרון לבעיית הספירה המתאימה לה.

-NPבעיית ספיקות הינה אחד מהנושאים המרכזיים באופטימיזציה קומבינאטורית. כל בעיה שהיא
complete כמוMax-Cut ו גרף, צביעת-TSP .באופן כללי, ניתנת להצגה בזמן פולינומיאלי כבעיית ספיקות

-היא הבעיה הבאה: בהינתן נוסחה בתחשיב הפסוקים שמכילה רק קשרים מסוג "גם", "או" ו SAT בעיית

)פה אנו עוסקים ?"לא", האם קיימת השמה של ערכי אמת למשתנים כך שהנוסחה תקבל ערך אמת

ן להראות שגם ספיקה שבה אנו מעוניינים לדעת מספר הפתרונות(נית לבעייתספירה הקשורה בבעיית
-NP הבעיה תישאר (,CNF) הקוניונקטיבית הנורמאליתאם נגביל את הבעיה לנוסחאות הניתנות בצורה

מקובל לנסח את הבעיה רק עבור נוסחאות CNF,קשה. לכן, בשל נוחות העבודה עם נוסחאות בצורת

אשר כל הפסוקיות CNFלבעיית ספיקות מנוסחות בצורת SAT- kמקובל להתייחס בשם .הנתונות בצורה זו

ניתנות לפתרון בזמן פולינומי.)כלומר, שייכות SAT-1,2ניתן לראות כי הבעיות . kהמופיעות בהן מאורך

חשיבות בתחומים SAT - לבעיית ה קשה.NP היא גדול משתיים הבעיה המתקבלתk (, בעוד שעבור P-ל

 .יצוב חומרהוע בינה מלאכותית ,רבים של מדעי המחשב, ובהם אלגוריתמיקה

. בעיה זו משכה את תשומת לב החוקרים מכיוון שהיא יכולה ותנתונ ותבעיית ספירת גרפים עם דרג
בעיקרון , בעיות ברשתות חברתיות וביולוגיות. World Wide Webאמתיות כגון בעיות ב בעיותלמדל

ור כמה גרפים כאלה נתון גרף עם מספר צמתים ידוע ולכל צומת מוגדרת הדרגה שלו. אנו רוצים לספ
 קיימים.

אנו מגדירים { } ו { } . בהינתן שני וקטורים Binary Contingency Tablesבעיית ה

וסכום האיברים בעמודה יהיה שווה ל -כך שסכום האיברים בשורה ה מטריצה של אפסים ואחדים בגודל
. אנו מעוניינים לספור את כמות המטריצות שמקיימות את { } ו { } לכל יהיה שווה ל -ה

 התכונה הזו.

 תקציר

הן בעיות שלא קיימת . בעיות בעיות בפתרוןמדעי המחשב הוא טיפול ב אחד התחומים המאתגרים ביותר
או במילים ודל הבעיהעבורן מכונת טיורינג דטרמיניסטית הפותרת את הבעיה בזמן פולינומיאלי כפונקציה של ג

וגם האלה תובעבודה זו אנו מטפלים בבעי. הפותר אותםקיים אלגוריתם יעיל ידוע אם אחרות, עבור בעיות אלה לא

 . הנחשבות אפילו קשות יותר מבעיית ה הספירהבבעיות

כלים הסתברותיים. למרות שרוב הבעיות שנטפל בהן מוגדרות כבעיות דטרמיניסטיות, אנו נתקוף אותן בעזרת

וקטור בינארי על המוגדרת על מנת להבין את דרך הפעולה, נתבונן למשל בבעיית אופטימיזציה בדידה כלשהי
. כמו כן, ע"י הגרלה { }מהתפלגות אחידה מעל המרחב למשל אנו יכולים להגריל אותונשים לב ש . באורך

האופטימאלי של אותה בעיית אופטימיזציה. הבעיה היחידה אנו בסוף נגיע לפתרון לפונקציית המטרהחוזרת והצבה
אז דקיים מינימום גלובאלי יחי למשל זה היא מאורע נדיר, כלומר אםכבגישה זו היא שההגרלה של הפתרון

ההסתברות שהגענו אליו בזמן הדגימה מהתפלגות אחידה הוא

באופן כללי קיימת שקילות מסויימת בין בעיות .

 .במרחב הסתברותי נדירים מאורעותית אמידה של קשות לבעי

(כבעיית עמידה. לדוגמא, נתבונן בבעיית אמינות רשת ונניח שיש לנו גרף ניתן גם להסתכל על בעיות ספירה)
לא מכוון עם צמתים חשובים שחייבים להיות מקושרים בינם לבין עצמם כל הזמן. כמו כן נניח שהצמתים אמינים אך

מה הקשתות יכולות ליפול. אחד השאלות שניתן לשאול היא מה ההסתברות שהרשת אמינה או במילים אחרות,
ההסתברות שכל הצמתים החשובים מקושרים. ברור ש בהינתן שכל קשת נופלת בהסתברות מסוימת, ונניח בלי

ריאליזציות של קבוצת הקשתות בגרף(–)כאשר אז קיימים 1או 0הגבלת הכלליות שהסתברות זו שונה מ
יאליזציות שמגדירים רשת אמינה ולחלק ניתן כעת לספור את כל הר הגרף ורק בחלקם הצמתים החשובים מקושרים.

את המספר שהתקבל במספר של כל הריאליזציות האפשריות. התוצאה תיתן לנו את ההסתברות של אמינות הרשת
נניח כעת שכל הקשתות מאוד לא אמינות. אם כך, באופן אינטואיטיבי, אמינות הרשת תהיה מאוד נמוכה. הנתונה.

 נסים שוב לנישה של מאורעות נדירים.ואכן זה מה שקורה באמת ואנו נכ

מידה ששקולה לבעיות אופטימיזציה וספירה, הופכת להיות קשה כאשר אנו אבאופן כללי, אפשר להגיד שבעיית
מד. קיימות מספר שיטות אבאופן לא פורמאלי, זה נובע מהתפוצצות השונות של אותו קים במאורעות נדירים. סעו

אפשר .)או הקטנת שונות(אלגוריתמים לאמידת התפלגות הופיעתשעים החלו לבאמצע שנות ה ו להקטנת השונות
 אוכלוסיית כל של הסתברותי אוריבת המשתמשיםלהגיד שכל האלגוריתמים האלה הם אלגוריתמים איטרטיביים

בכל מקרה, רובם מסתמכים .רבים מבנים זמנית בו מכליאים וכך, חדשים מבנים ליצירת שלה העלית של או המבנים
 על שתי השיטות הבאות:

 (דגימה חשובהImportance Sampling)

 MCMC- Markov Chain Monte Carlo

בעבודה זו אנו היא שיטה לא פרמטרית בהתאמה. MCMCו דגימה חשובה היא שיטה פרמטרית

ההבדל המבוססת אליה.המצליחה פיצולה(ובפרת בשיטת MCMCבשיטה השנייה)וק בעיקר סנע

 "clonningהוא שבשיטה זו יש מנגנון מיוחד הנקרא מנגנון " MCMCל Splittingה תהעיקרי בין שיט

נקודה חשובה נוספת היא בכך , אשר עושה את האלגוריתם מהיר ומדויק מאוד.)שיבוט, פיצול(
 מבצע דגימה בכל המרחב ולא רק במרחב קבוע מראש. פיצולשאלגוריתם ה

הוא לתכנן סדרת הדגימות כאשר בעיה "קשה" של חישוב עוצמה MCMCהרעיון העיקרי של שיטת

תכנית לבעיות אמידה "קלות" עבור מספר קבוצות הקשורות לקבוצה המקורית. תשל הקבוצה מפורק
המורכב אבולוציוניהיא בעצם חישוב הפעולה בכל השיטות שנחקרו או פותחו במסגרת העבודה הזאת

 ים הבאים:מהשלב

 1 –התפלגות אחידה על פני המרחב הכולל, מספר האיטרציה –אתחול: ההתפלגות ההתחלתית.

 דגימה: תחולל מבנים המפולגים לפי פונקציית ההתפלגות של האיטרציה הנוכחית, תקבע את רמת
האלגוריתם עבור האיטרציה הנוכחית ועל סמך הרמה הזאת תמצא את האוכלוסייה אשר תשפיע על

 ונקציית ההתפלגות באיטרציה הבאה.פ

 ההתפלגות. פונקצייתעדכון פונקצית התפלגות: עדכון

בפקולטה להנדסת תעשייה וניהול. אופר שטרייכמן 'ופרופ פרופ' ראובן רובינשטייןהמחקר נעשה בהנחיית
 ברצוני להביע את תודתי העמוקה לפרופ' רובינשטיין על הנחייתו המסורה והמקצועית ועל תמיכתו הכספית.

 אני מודה לטכניון על התמיכה הכספית הנדיבה בהשתלמותי.

 הלימודים.אני מודה למשפחתי על התמיכה בזמן

 , המורה הטוב ביותר שהיה לי.פרופ' ראובן רובינשטייןעבודה זו מוקדשת ל

 ,לבעיות מאורעות נדירים תסטוכסטי אנומרציה תוטשי
 ספירה ואופטימיזציה

 חיבור על מחקר

 לשם מילוי חלקי של הדרישות לקבלת התואר

 דוקטור לפילוסופיה

 רדיסלב וייסמן

מכון טכנולוגי לישראל –הוגש לסנט הטכניון

3102 אוקטובר חיפה תשע"ג תשרי

