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Abstract

Network residual resilience is a reliability parameter of the network after
some nodes or edges of the network have been randomly eliminated from
the network as a result of random �attack�. We consider networks which are
monotone binary systems and demonstrate how the residual resilience can
be calculated by means of cumulative signature (D-spectra), for three types
of random attacks on network components (nodes or edges) and for several
versions of network reliability criteria.
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1. The network and failure mechanisms of its components

The network N = (V,E) is a connected graph with node set V and edge
set E. Edges are undirected. Nodes or edges are subject to �random attack�
as a result of which some nodes or some edges are eliminated (fail). If a node
v ∈ V fails, all edges adjacent to v are erased, and v becomes and isolated
node. If edge e(a, b) ∈ E fails, then it is erased.

We will distinguish several random mechanisms of network components
failures.
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A. Edge or node p-lottery. Each edge or each node, independently of other
nodes or edges, fails with probability p, 0 < p < 1.

B. Shock process. A random number of nodes or edges is hit by some
external shock process developing in time. Each new shock hits with
equal probability any non failed node or edge.

C. Balls and boxes. Each component subject to failure is represented by a
box. A certain amount R of balls is randomly allocated into the boxes.
Each ball, independently of other balls, is put into one of n boxes with
equal probabilities. It can happen that some boxes will contain more
than one ball. Each box which contains at least one ball corresponds
to a failed node or failed edge.

2. Residual resilience criteria

Suppose that the network is subject to some of the above failure mecha-
nisms A,B or C, acting on network nodes or on network edges. Our network
is a binary object which can be in two states UP or DOWN.

We consider in only monotone binary systems consisting of binary compo-
nents. Formally, it means the following. System component state is described
by a binary vector x = (x1, x2, ..., xn), where xi = 1(0) if component i is up
(down). System state is ϕ(x) = 1 if the system is UP and 0 if the system is
DOWN. In the network context, xi denote the state of components subject
to failure.

It is important to note that we consider in this paper only monotone net-
works, which means the following.
If state vector x = (x1, ...xn) is replaced by another state vector x0 =
(x01, ..., x

0
n) where at least for one i, xi < x0i then ϕ(x) 6 ϕ(x0). In words: If

the system is DOWN and at least one component in up goes down, then the
network remains in DOWN.

We next introduce the following reliability criteria.

Criterion 1 Network is UP i� its largest component contains at least β-
fraction of all network nodes n, 0 < β < 1.

Criterion 2 Network is UP i� its largest component is greater or equal than
the number of isolated nodes.
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Suppose the network contains several special nodes which do not fail at
all. We call them terminals. Denote by T the set of all terminals, T ⊆ V ,
De�ne a cluster as a connected subset of nodes which contains at least one
terminal.

Criterion 3 The network is UP i� it has one or two clusters.

Criterion 4 The network is UP i� all its terminals are connected (this is a
so-called terminal connectivity).

Suppose that a positive number de is assigned to edge e ∈ E and that
T = s, t.

Criterion 5 The network is UP if and only if the s⇒ t �ow exceeds a given
integer D.

Suppose now that one node (call it α) is declared �capital� an it never
fails. Assign also a positive number le to an edge e = (a, b). We interpret
le as a length of edge e. For any node v its distance from the capital equals
the length of the shortest path between v and α. Let us call all nodes whose
distance from the capital does not exceed some constant D, the central set
of the network.

Criterion 6 The network is UP i� its central set contains at least m nodes.

Obviously, that all the above criteria guarantee that the networks are
monotone systems.

3. Cumulative signature (cumulative D-spectrum)

Suppose that the components of the network subject to failure are num-
bered by integers 1, 2, ..., n and let π = (i1, i2, ..., in) be a random permutation
of component numbers. Imagine the following process of sequential compo-
nent destruction. Take any random permutation. Assume that initially all
components are up. Start moving along the permutation from left to right
and turn down one component after another. Check network state after each
destruction. Let α(π) be the ordinal number of the component in π when
we observe for the �rst time that the network is DOWN. This number will
be called the anchor of the permutation. For example, suppose components
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i1, i2, i3, i4 are turned down and the network is still UP, but after component
i5 is turned down, the network becomes DOWN. Then the anchor of the
corresponding permutation will be equal 5, (see [1, 2, 3]).

Assume that all n! permutation are equally probable. Denote by Aj the
event

Aj = {anchor α(π) = j}
Obviously, the probability of this event

fj = P (Aj) =
the number of permutations with anchor equal j

n!
.

The vector f = (f1, f2, ..., fn) is called D-spectrum of the network (�D�
stands for �destruction�). Obviously, f is a discrete density function,

∑n
1 fj =

1. The D-spectrum coincides numerically with the so-called signature intro-
duced �rst by Samaniego [4, 5]. In [6] it was termed ID - internal distribution
of the network.

For us most important will be so-called cumulative D-spectrum F (k)
de�ned as

F (k) =
r=k∑
r=1

fr, k = 1, 2, ..., n.

Let Y be the random number of components failing in random order which
cause system failure. Then obviously, fr = P (Y = r) and

F (k) = P (Y 6 k).

For each monotone network and for each DOWN/UP criterion we can cal-
culate its own cumulative D-spectrum. For convenience, the D-spectrum
related to criterion s, see above, will be denoted as F (s)(k).

Suppose we have a non monotone system. For example, we have a network
with nodes subject to failures. An isolated node is considered as a single-
node component.If a node fails, it erased, together with edges adjacent to it.
Suppose that the network is UP if its nodes form one component. Clearly,
this criterion makes the network non monotone. For example, consider a
chain with �ve nodes a,b,c,d,e and four edges (a, b), (b, c), (c, d) and (d, e).
After node 1 fails, network is UP . After node 3 fails it goes DOWN . After
node 2 fails, it again goes UP . Non monotone systems do not allow de�ning
for them signatures or D-spectra, since some permutations may have more
than one anchor.
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4. Calculating Network Residual Reliability

In this section we present our main results regarding network DOWN
probability for various versions of node (edge) failure mechanisms.

Claim 4.1. Let n be the number of components subject to failure. For ran-
dom lottery model (A), and criterion s, s = 1, ..., 6 network DOWN proba-
bility equals

P (DOWN) =
n∑
i=1

n!

i!(n− i)!
pi(1− p)n−iF (s)(i). (1)

Proof: The proof is obvious: the multiple at F (s)(i) is the probability of
network to be DOWN if exactly i components have failed, Then P (DOWN)
for random lottery follows by the formula of Total Probability.

�
Let us assume now that network component failures occur as an action

of an external shock process. Assume, without loss of generality, that shocks
appear according to a homogeneous Poisson process (HPP) ξ(t) with intensity
λ = 1. In this case, the number of failed components during the interval [0, t0]
equalsmin(ξ(t0), n). If ξ(t0) > n, we assume that the network will be DOWN
with probability 1.

Claim 4.2. In the external HPP shock process, the probability that network
failure will occur on the interval [0, t0] equals

P (DOWN ; t0) =
n∑
j=1

(λt0)
je−λt0

j!
F (s)(j) + P (ξ(t0) > n). (2)

Proof: The proof is obvious. �

Let us turn now to �boxes and balls� model. Denote by n the number of
nodes or edges (�boxes�) subject to failure and by R the number of balls. In
this model, we have to take into account that one box can contain more than
one ball, i.e. one node (edge) can receive more than one shock. Denote by
p(k | R) the probability that exactly k boxes will contain at least one ball.
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Then obviously the probability that R balls will bring the network DOWN
equals

P (DOWN | R) =
min(n,R)∑
k=1

p(k | R)F (s)(k). (3)

.
Finding the probabilities p(k | R) is a nontrivial problem. In combina-

torics, it is known as �occupancy� problem. Its solution has been found by
DeMoivre, see [6], p. 242:

p(k | R) = n!

k!(n− k)!

k∑
t=0

(−1)t k!

t!(k − t)!

(k − t
n

)R
, k = 1, ...,min(n,R).

Substituting p(k | R) into (3), we arrive at

Claim 4.3. In �balls and boxes� model, the probability that the network will
be DOWN if it is �attacked� by R �balls� equals

P (DOWN | R) =
min(n,R)∑
k=1

n!

k!(n− k)!
· (4)

·
k∑
t=0

(−1)t k!

t!(k − t)!

(k − t
n

)R
F (s)(k).

5. Example

As an example we consider a 11×11 rectangular grid with capital α in the
center, see Figure 1. The central part of the grid consists of all nodes whose
shortest distance from the capital does not exceed 6. Each edge has length
1. Components subject to failure are network nodes. Network is (DOWN) if
the central part of it contains less than 24 nodes, see criterion 6 in Section 2.

To analyse the network residual resilience we need to estimate the D-
spectrum F (6)(k). Figure 2 presents the graph of the spectrum.

Let us analyze network resilience for various mechanisms of node failure.
If nodes fail in accord with the p − lottery model see A, Section 1), we
compute network DOWN probability as a function of the value of p using
formula (1). Table 1 presents numerical data on P (DOWN) as a function
of p.
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Figure 1: 11×11 grid, the capital node (blue) and the central area. Failed nodes are black

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7
P (DOWN) 0.000001 0.00224 0.02956 0.22035 0.65339 0.94761 0.99853
RE % 9 1 0.4 0.2 0.07 0.05 0.01

Table 1: P (DOWN) as function of p, p-lottery model

These results were checked by Crude Monte Carlo (CMC) based on 1,000,000
replications of p-lottery scheme. The corresponding relative errors are pre-
sented in the bottom row of Table 1.

Suppose now that the grid is subject to an external Poisson shock process
(see B, Section 1). Important is that each shock hits one of non failed nodes
(there are no repeated hits of the same node). Assume that shocks appear
in accordance with HPP with intensity λ = 1. So, we assume that in the
interval [0, 60] min, on the average, the grid receives 60 hits.

Table 2 presents the calculations results obtained by formula (2). It is
seen, for example, that the grid is DOWN with probability almost 1 if the
shock process lasts 90 minutes. A short attack lasting 30 minutes destroys
the network with probability near zero - 0.01012.
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Figure 2: Cumulative D-spectrum F (6)(k) for 11× 11 grid

t [min] 30 40 50 60 70 80 90
P (DOWN ; t) 0.01012 0.0756 0.2978 0.6450 0.8825 0.9772 0.9973

Table 2: P (DOWN ; t) as function of t, shock model B

Let us turn now to the �boxes� and �balls� model. We have n = 120
node-boxes, and let us randomly allocate R balls into the boxes. Nonempty
boxes correspond to failed nodes. Using formula (4) we can compute system
DOWN probability when the number of balls changes from 10 to 140, see
Table 3. It is seen from it that in order to achieve that P (DOWN | R) > 0.98
the number of balls should be at least 120. If R = 80, P (DOWN | 80) ≈
0.61. Compare this with the graph of the D-spectrum on Figure (2). We see,
that if 60 nodes fail, system fails with probability near 0.6. We see therefore
that about 20 �hits� fell on the nodes which already were hit once.

6. Concluding remarks

Estimation of D-spectrum. Monte Carlo algorithms for estimation of
cumulative spectra have been described in detail in [1], Chapter 8 and [2],
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R 10 20 30 40 50 60 70
P (DOWN | R) 0.00003 0.00049 0.00279 0.1302 0.05616 0.17547 0.37864

R 80 90 100 110 120 130 140
P (DOWN | R) 0.60926 0.79596 0.91050 0.96649 0.98906 0.9968 0.9992

Table 3: P (DOWN ;R), �balls� and �boxes� model

Section 1.8. Basically, for all network DOWN criteria the algorithms work
similarly and consists of repeating the following basic steps.

a. Generation of random permutation of component numbers;

b. �nding the anchor of the permutation;

c. computing the cumulative D-spectrum.

d. The steps a,b and c are repeated M times.

For n = 80− 120 su�cient accuracy is achieved for M = 5 · 105 − 106. The
most time consuming operation is b. because it involves checking whether
the system made a transition UP ⇒ DOWN after component was turned
from up to down. Typically, a binary search of anchor position is carried out.

Estimation of the D-spectrum in the above Example was performed on
Core i5 laptop processor with 4GB of RAM. Spectra calculation with M =
106 took 61 seconds.

Role of monotone property. Writing this paper was inspired by the
work [5], in which the authors considered a connected network whose com-
ponents (nodes or edges) fail according to the p-lottery random mechanism.
Network is UP if and only if it remains connected after elimination of failed
nodes or failed edges. It it important to note that with this UP/DOWN
de�nition the network is not a monotone system. Consider, for example that
after some nodes have failed, the remaining network consists of two com-
ponents C1 and C2. C1 is an isolated node x, and C2 has two nodes a, b
and edge e(a, b). Obviously, the network is DOWN . Suppose that node
x fails. Now the network becomes connected, and therefore we observe a
DOWN ⇒ UP transition after component failure. Considering non mono-
tone systems makes it impossible to use D-spectra (signature) technique for
analyzing system residual resilience thus considerably complicating the algo-
rithmic part of the network reliability analysis.
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There are, however, some possibilities to use a permutation based algo-
rithm to count failure sets for a non monotone system. This algorithm is
considerably less e�cient than the algorithm for �nding the D-spectra. Be-
sides, it becomes possible to compute network DOWN probability only for
p-lottery model. Because of these complications it has been decided to limit
our present paper to a consideration of monotone systems only.
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