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Improved Sampling Plans for
Combinatorial Invariants of Coherent Systems

Radislav Vaisman, Dirk P. Kroese, Ilya B. Gertsbakh

Abstract—Terminal network reliability problems appear in
many real–life applications, such as transportation grids, social
and computer networks, communication systems, etc. In this
paper we focus on monotone binary systems with identical
component reliabilities. The reliability of such systems depends
only on the number of failure sets of all possible sizes, which is
an important system invariant. For large problems, no analytical
solution for calculating this invariant in a reasonable time is
known to exist, and one has to rely on different approximation
techniques. An example of such a method is Permutation Monte
Carlo. It is known that this simple plan is not sufficient for
adequate estimation of network reliability due to the rare–event
problem. As an alternative we propose a different sampling
strategy that is based on the recently pioneered Stochastic
Enumeration algorithm for tree cost estimation. We show that
thanks to its built–in splitting mechanism this method is able
to deliver accurate results while employing a relatively modest
sample size. Moreover, our numerical results indicate that the
proposed sampling scheme is capable of solving problems that
are far beyond the reach of the simple Permutation Monte Carlo
approach.

Index Terms—System structure function, Network Reliability,
Permutation Monte Carlo, Stochastic Enumeration, Rare Events,
Splitting.

I. INTRODUCTION

NETWORKS have become an important part of our daily
activities and as a consequence a natural question of

their reliability and sensitivity comes to light. The network
reliability problem can be stated as follows [1]. Suppose we
are given an undirected graph G(V,E,K), where V and E are
the vertex and edge sets respectively and K ⊆ V is a set of
“terminal” nodes. We assume that the vertices are absolutely
reliable (that is, they never fail) but that the edges are subject to
failure. For e ∈ E let the corresponding failure probability be
qe; that is, e can be in an up or down state with probabilities
pe = 1 − qe and qe respectively. Under this setting we can
ask for the probability that the terminal set K is connected
(network UP state) or disconnected (network DOWN state)
[2].

As was noted by Karger [3], the terminal network reliability
problem belongs to the #P–complete complexity class. Conse-
quently, it is hard (or even impossible) to solve exactly in poly-
nomial time. The #P complexity class, introduced by Valiant
[4] consists of the set of counting problems that are associated
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with a decision problem in NP (non–deterministic polynomial
time), e.g., how many solutions does a propositional formula
have (#SAT). The #P–complete complexity class is a sub–
class of #P consisting of those problems in #P to which
any other problem in #P can be reduced via a polynomial
reduction. #SAT, for example, is #P–complete. Interestingly,
various #P–complete problems are associated with an easy
decision problem, i.e., the corresponding decision problem is
in P (polynomial time), such as satisfiability of propositional
formulas in Disjunctive Normal Form (DNF).

For some #P-complete problems there are known efficient
approximations. For example, Karp and Lubby [5] intro-
duced a fully polynomial randomized approximation scheme
(FPRAS) for counting the solutions of DNF satisfiability
formulas. Similar results were obtained for the knapsack and
permanent counting problems by Dyer and Jerrum et al. [6],
[7]. Moreover, Karger [3] obtained a FRPAS for all–terminal
network reliability. Unfortunately, there are also many negative
results. For example, Dyer et al. and Vadhan [8], [9] showed
that counting the number of vertex covers remains hard, even
when restricted to planar bipartite graphs of bounded degree
or regular graphs of constant degree.

There are two main approaches for tackling such difficult
counting problems. The first is Markov Chain Monte Carlo
(MCMC) and the second is Sequential Importance Sampling
(SIS). Both approaches exploit the finding of Jerrum et al. [10]
that counting is equivalent to uniform sampling over a suitably
restricted set. MCMC methods sample from such restricted re-
gions by constructing an ergodic Markov chain with stationary
and limiting distribution equal to the desired uniform distri-
bution. A number of MCMC approaches with good empirical
performance have been proposed; see [11], [12], [13], [14].
Botev et. al. [15] applied a generalized splitting algorithm [11]
to handle the terminal network reliability problem.

There are also many examples of successful SIS imple-
mentations on various counting problems; see, for example,
[5], [16], [17], [18]. More recent advances and background
material can be found in [19]. Unsurprisingly, SIS was also
applied in context of network reliability, see [20] for details.

In this paper we focus on the estimation of the so–called
Spectra or Network Signature [2], [21], [22], [23], [24], [25]
measure of a reliability network. The Spectra can be obtained
from the number of failure sets of all possible sizes [26], [27],
which only depends on the graph topology and is hence a
system invariant. The Spectra can be used for several purposes.
For example, as soon as the Spectra is available, one can read-
ily calculate the network reliability for any fixed edge failure
probability q. Moreover, the estimation of Spectra opens a
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way for calculating the Birnbaum Importance Measure (BIM)
and the Joint Reliability Importance (JRI) of the components.
These components importance measures plays crucial role in
optimal reliability design of coherent systems, see Appendix
A and [27] for details.

Unfortunately, the exact Spectra is rarely available analyt-
ically. Hence, it is usually estimated via Permutation Monte
Carlo (PMC) [22].

Similar to [15] we show that this widely used PMC algo-
rithm fails to provide a reliable estimate of the Spectra. That is,
it underestimates (in orders of magnitude) the true quantity of
interest. Although there exist good methods for estimating the
terminal network reliability, such as Lomonosov’s Turnip [21]
and the Splitting method [28], these methods are not suited
for the estimation of the network invariants. As was noted
in [15] in the context of a PMC algorithm with exponential
lifetimes, the reason for the inaccuracy of this scheme lies in
the importance of small (rare event) probabilities that cannot
be properly estimated via PMC in manageable time.

To overcome this problem, we propose a different sampling
scheme, based on the Stochastic Enumeration (SE) method
[18]. We show that the SE–based sampling is capable of
handling rare–event probabilities while using a relatively small
sample size. This will significantly boost our ability to perform
an accurate estimation of the Spectra and thus obtain reliable
results for the network reliability in the sense of precision
and running time. While the SE belongs to the SIS family
of algorithms, it is an extension of the well known Knuth’s
estimator [29] for approximating the cost of backtrack trees.
The main difference between the corresponding Knuth’s es-
timator and SE is that the latter has a budget parameter (B)
that limits the number of parallel random walks. We show
that this property has a crucial impact on the SE performance.
In particular, it turn the SE into a splitting algorithm. It
was shown that such splitting mechanisms can introduce a
significant variance reduction [30], [31]. For a background on
the splitting methods, see [15], [32], [33], [31].

The rest the paper is organized as follows. In Section II we
give a short summary of the PMC method and explain why it
fails to provide a reliable estimate of the Spectra. In Section
III we give an introduction to the SE algorithm and show
how the latter can be used to reliably estimate the Spectra. In
Section IV we provide numerical evidence for the accuracy of
our method. Finally, in Section V we summarize our findings
and discuss possible directions for future research.

II. THE PMC METHOD FOR SPECTRA ESTIMATION

We consider a special case of the terminal network reli-
ability problem in which the nodes are completely reliable
and all edge failure probabilities are equal; that is, qe = q
for all e ∈ E. Additionally, we assume that the edge failures
are independent. Under this simplified setting there exists an
efficient approach to calculate the terminal network reliability
r(p) or unreliability r(q) — the so–called Spectra method.
Moreover, this method can be used for estimating the impor-
tance measures of the system; see Appendix A for details. We
now briefly describe the Spectra approach.

Let e1, e2, . . . , em be the network edges. Suppose that all of
them are initially operational and thus the network is in the UP
state, and let π = (ei1 , . . . , eim) be a permutation of edges.
Given the permutation π, start “erasing” edges (change the
edges state from up to down) moving through the permutation
from left to right and check the UP/DOWN state of the network
after each step. Find the index j of the first edge eij , j =
1, . . . ,m for which the network switches from UP to DOWN.
This index j is called the anchor of π and is denoted by a(π).

Next, we assign the uniform distribution on the set of all
edge permutations, that is, P (Π = π) = 1/m!, and define the
set

A(k) = {π | a(π) = k} .

Definition 2.1 (Destruction Spectra [22]): Let Π be a
random permutation and define

fk = P (Π ∈ A(k)) =
|A(k)|
m!

, k = 0, . . . ,m.

Then,
Sp = {f0, f1, . . . , fm}

is called the Destruction Spectra, or simply D–Spectra of the
network. 2

Definition 2.2 (Cumulative D–Spectra [22]): The cumula-
tive D–Spectra is defined by

CSp
= {F (0), F (1), . . . , F (m)} ,

where

F (k) =

k∑

i=0

fi, k = 0, . . . ,m.

2

The nice feature of the D–Spectra is that once CSp is avail-
able one can calculate directly the sought network unreliability
r (q). Let us define a failure set to be an ordered set of edges
such that their failure forces the network to enter the DOWN
state and denote by N (k) the number of network failure sets
of size k. Note that each such set is a collection of k edges
whose failure results in the DOWN state of the network. It is
readily seen that

N (k) =

(
m

k

)
F (k). (1)

This statement has a simple combinatorial explanation:
F (k) is the fraction of all failure sets of size k among all
subsets of size k taken from the set of m components. Note
that N (k), k = 1, . . . ,m, is an important system invariant that
is of great interest in many applications [26].

Moreover, note that the following holds.

• The network is DOWN if and only if it is in one of its
failure sets.

• For fixed q each failure set of size k has the probability
qk(1− q)m−k.

Combining this with (1) we obtain
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TABLE I
PERMUTATION–ANCHOR.

π a(π) π a(π) π a(π)

(e1, e2, e3, e4) 2 (e2, e3, e4, e1) 2 (e3, e4, e2, e1) 2

(e1, e2, e4, e3) 2 (e2, e3, e1, e4) 2 (e3, e4, e1, e2) 2

(e1, e3, e2, e4) 3 (e2, e4, e3, e1) 3 (e4, e1, e2, e3) 2

(e1, e3, e4, e2) 3 (e2, e4, e1, e3) 3 (e4, e1, e3, e2) 2

(e1, e4, e2, e3) 2 (e3, e1, e2, e4) 3 (e4, e2, e3, e1) 3

(e1, e4, e3, e2) 2 (e3, e1, e4, e2) 3 (e4, e2, e1, e3) 3

(e2, e1, e4, e3) 2 (e3, e2, e4, e1) 2 (e4, e3, e2, e1) 2

(e2, e1, e3, e4) 2 (e3, e2, e1, e4) 2 (e4, e3, e1, e2) 2

r (q) =

m∑

k=0

(
m

k

)
F (k)qk(1− q)m−k (2)

=

m∑

k=0

N (k)qk(1− q)m−k.

With this equation, it only remains to calculate the D–Spectra
in order to calculate the network reliability for any q. As an
example, consider the simple graph in Figure 1 and suppose
that K = {s, t}.

e1

s t

e2 e4

e3

Fig. 1. A simple graph.

It is clear that zero or one edge removal cannot bring
the network to the DOWN state so f0 = f1 = 0. In order
to calculate f2, f3 and f4, consider Table I. From the data
presented in Table I, the D–Spectra is given by

f0 = f1 = 0, f2 = 16/24, f3 = 8/24 and f4 = 0,

so we arrive at

Sp = {0, 0, 2/3, 1/3, 0} and CSp = {0, 0, 2/3, 1, 1}.
As soon as we obtain this Spectra the network unreliability
can be readily calculated for any q via (2).

Sometimes, it is more convenient to work with an equivalent
Spectra object called the Construction Spectra. Under the
construction settings, we start with all edges being in state
down. In this case the network is clearly in the DOWN state
too. Similarly to the D–Spectra let π = (ei1 , . . . , eim) be a

permutation of the network edges. With this π, start “building”
edges (change the edges state from down to up) while moving
through the permutation from left to right. The anchor of π,
(a′(π)), is defined as the first index of the edge for which the
network enters the UP state. Next, by specifying the set

A′(k) = {π | a′(π) = k} ,

the Construction Spectra (C–Spectra) S′p and the Cumulative
C–Spectra C ′S′p can be defined similarly to Definitions 2.1 and
2.2.

Definition 2.3 (Construction Spectra [22]): Let Π be a
random permutation and define

f ′k = P (Π ∈ A′(k)) =
|A′(k)|
m!

, k = 0, . . . ,m.

Then,
S′p = {f ′0, f ′1, . . . , f ′m}

is called the Construction Spectra, or simply C–Spectra of the
network. 2

Definition 2.4 (Cumulative Construction Spectra [22]): The
cumulative C–Spectra is defined by

C ′S′p = {F ′(0), F ′(1), . . . , F ′(m)} ,

where

F ′(k) =

k∑

i=0

f ′i , k = 0, . . . ,m.

2

Given the Construction Spectra the network UP probability is
given by

r(p) =

m∑

k=0

(
m

k

)
F ′(k)pk(1− p)m−k

=

m∑

k=0

N ′(k)pk(1− p)m−k,

where

N ′(k) =

(
m

k

)
F ′(k).

Intuitively, both the destruction and the construction Spectra
seems to share similar behavior; Proposition 2.1 establishes
their equivalence.

Proposition 2.1 (Construction and Destruction Spectra
equivalence): For the Construction and Destruction Spectra,
it holds that

fk = f ′m−k for all k = 0, . . . ,m.

Proof: Let π = (ei1 , . . . , eim) be a permutation of edges and
define the reverse permutation πr as πr = (eim , . . . , ei1).
Suppose that π ∈ A(k), that is a(π) = k for any k =
0, . . . ,m. Note that for this particular π the following holds.
• If the edges ei1 , . . . , eik and eik+1

, . . . , eim are in down
and up states respectively,the network is DOWN.

• If the edges ei1 , . . . , eik−1
and eik , . . . , eim are in down

and up states, the network is in UP state.
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From this, a′(πr) = m− k, that is πr ∈ A′(m− k). Hence,
π ∈ A(k)⇒ πr ∈ A′(m−k), and we conclude that |A(k)| =
|A′(m− k)|, so, combining this with Definitions 2.1 and 2.3
the proof is completed by

fk =
|A(k)|
m!

=
|A′(m− k)|

m!
= f ′m−k.

2

As an immediate consequence of Proposition 2.1, note that
we can freely choose the Construction or the Destruction
Spectra to work with and that this particular choice should
be guided only by one’s convenience. The above statement is
summarized in Corollary 2.1.

Corollary 2.1: For any network with m edges, the D–
Spectra can be transformed to C–Spectra and vice versa using
the formula

fk = f ′m−k for all k = 0, . . . ,m.

2

Unfortunately, both the construction and the destruction
Spectra are generally not available analytically and as con-
sequence a Monte Carlo procedure should be applied. One
of the widely adopted approaches, the PMC, is presented in
Algorithm 2.1.

Algorithm 2.1 (PMC Algorithm): Given a graph G(V,E,K)
such that |E| = m and a sample size N , execute the following
steps.

1) Step 1 (Initialization): Set

Ŝp ≡ {f̂0, . . . , f̂m} ←− {0, 0, . . . , 0}︸ ︷︷ ︸
m+1

.

2) Step 2 (Main loop): Repeat N times.
a) Π ← (ei1 , . . . , eim) (generate a random edge

permutation).
b) k ← a(Π) (find the anchor).
c) f̂k ←− f̂k + 1.

3) Step 3 (Calculate D–Spectra):

f̂k ←−
f̂k
N

for k = 0, . . . ,m.

4) Step 3 (Calculate Cumulative D–Spectra):

F̂ (k)←−
k∑

i=0

f̂i for k = 0, . . . ,m.

2

Let us turn our attention to the Spectra estimation under rare–
event settings and consider the artificial Spectra in Table II.
The left part of the table presents the “real” Spectra values
(CSp

) and the right stands for their (fake) “estimates” (ĈSp
).

Suppose that ĈSp was obtained using Algorithm 2.1. (We
deliberately set the “estimates” to be equal to the real values
in order to stress the importance of the rare components
(F (4), F (5) and F (6)))

Note that the proposed Monte Carlo Algorithm 2.1 will
not be able to estimate the left part of the Spectra

TABLE II
ARTIFICIAL SPECTRA.

CSp ĈSp

F (0) 0 F (10) 0.3 F̂ (0) 0 F̂ (10) 0.3

F (1) 0 F (11) 0.5 F̂ (1) 0 F̂ (11) 0.5

F (2) 0 F (12) 0.7 F̂ (2) 0 F̂ (12) 0.7

F (3) 0 F (13) 0.9 F̂ (3) 0 F̂ (13) 0.9

F (4) 10−12 F (14) 1 F̂ (4) 0 F̂ (14) 1

F (5) 10−10 F (15) 1 F̂ (5) 0 F̂ (15) 1

F (6) 10−8 F (16) 1 F̂ (6) 0 F̂ (16) 1

F (7) 10−6 F (17) 1 F̂ (7) 10−6 F̂ (17) 1

F (8) 10−3 F (18) 1 F̂ (8) 10−3 F̂ (18) 1

F (9) 0.1 F (19) 1 F̂ (9) 0.1 F̂ (19) 1

TABLE III
NETWORK DOWN PROBABILITIES FOR DIFFERENT VALUES OF q.

q r(q) r̂(q)

10−10 3.88 · 10−49 5.04 · 10−72

10−9 3.88 · 10−45 5.04 · 10−65

10−8 3.88 · 10−41 5.04 · 10−58

10−7 3.88 · 10−37 5.04 · 10−51

10−6 3.88 · 10−33 5.05 · 10−44

10−5 3.89 · 10−29 5.11 · 10−37

10−4 3.99 · 10−25 5.00 · 10−30

10−3 5.37 · 10−21 1.34 · 10−22

10−2 1.62 · 10−14 1.58 · 10−14

10−1 4.71 · 10−6 4.71 · 10−6

(F (4), F (5) and F (6)) in a reliable manner using any man-
ageable sample size, say N = 107. This problem is due to
the well-known issue of Crude Monte Carlo algorithms under
rare–event settings. For example, consider the value of f4.
Having in mind that P(a(π) = 4) = f4 = 10−12, the relative
error (RE) [34] of the PMC Algorithm 2.1 for the f̂4 is given
by

RE =

√√√√√√
Var

(
f̂4

)

E
(
f̂4

)2
N

=

√
f4(1− f4)

f24N

=

√
10−12 · (1− 10−12)

10−(12·2)N
≈ 106/

√
N,

where N is the sample size. The above equation suggests that
in order to achieve even a modest (say 10%) RE, the value of
N should be huge.

Applying (2) to the Spectra values from Table II, we get the
corresponding network reliability estimations. Table III sum-
marizes the values for the obtained estimators r(q) and r̂(q)
using the exact and the approximated Spectra respectively.

One can easily note that the right column of Table III is a
clear underestimation for q 6 10−4. A more careful observa-
tion of the results reveals the importance of the leftmost values
of Spectra. Note that F̂ (4), F̂ (5) and F̂ (6) were “evaluated”
to zero, and, for q 6 10−4, (2) accumulates most of its mass
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for k = 4, 5, 6. For example, if we examine q = 10−4 and
evaluate (2) for k = 0, . . . , 6, we get

6∑

k=0

(
19

k

)
F (k)(10−4)k(1− 10−4)19−k ≈ 3.989017 · 10−25,

which is almost equal to the true probability

r
(
10−4

)
=

19∑

k=0

(
19

k

)
F (k)(10−4)k(1− 10−4)19−k

= 3.989067 · 10−25.

Clearly, the remaining probability mass
19∑

k=7

(
19

k

)
F̂ (k)(10−4)k(1− 10−4)19−k ≈ 5 · 10−30

forms the value of ̂r (10−4) because F̂ (k) = F (k) for k =
7, . . . , 19.

We shall summarize the above discussion as follows. For
highly reliable networks (that is, networks with small edge
failure probabilities q), Algorithm 2.1 fails to produce reli-
able results because it requires calculations that involve the
accurate estimation of rare–event probabilities; see also [15]
for a similar discussion regarding the PMC and Turnip with
exponential lifetimes. In other words, in the rare–event setting,
the system invariant (Spectra) cannot be accurately estimated
using Algorithm 2.1. Naturally, this inaccurate estimation also
causes the importance measures to be corrupted. We will use
network reliability examples to demonstrate the accuracy of
the estimated Spectra components. To overcome the problem
of rare events we propose to adopt the SE algorithm that is
described in the next section.

III. STOCHASTIC ENUMERATION METHOD FOR COUNTING
TREES

In this section we provide a brief overview of the SE method
for counting trees. The algorithm is an extension of the one
introduced in [31]. Our setting is as follows. Consider a rooted
tree T = (V, E) with node set V and edge set E (so that
|E| = |V| − 1). We denote the root of the tree by v0, and for
any v ∈ V the subtree rooted at v is denoted by Tv . With
each node v is associated a nonnegative cost c(v). The main
quantity of interest is the total cost of the tree,

Cost(T ) =
∑

v∈V
c(v)

or, more generally, the total cost of a subtree Tv — denoted
by Cost(Tv). For each node v we denote the set of successors
of v by S(v).

Definition 3.1 (Hyper nodes and forests): Let {v1, . . . , vr} ∈
V be tree nodes.
• We call a collection of distinct nodes in the same level

of the tree v = {v1, . . . , vr} a hyper node of cardinality
|v| = r.

• Let v be a hyper node. Generalizing the tree node cost,
we define the cost of the hyper node as

c(v) =
∑

v∈v
c(v).

• Let v be a hyper node. Define the set of successors of v
as

S(v) =
⋃

v∈v
S(v).

• Let v be a hyper node and let B ∈ N, B > 1. Define

H(v) =

{
{S(v)} if |S(v)| 6 B

{w | w ⊆ S(v), |w| = B} if |S(v)| > B,

to be the set of all possible hyper nodes having cardinality
max{B, |S(v)|} that can be formed from the set of v’s
successors. Note that if |S(v)| 6 B, we get a single hyper
node with cardinality |S(v)|.

• For each hyper node v let

Tv =
⋃

v∈v
Tv

be the forest of trees rooted at v. See Figure 2 for
an example of hyper node v = {v1, v2, v3, v4} and its
corresponding forest Tv = {Tv1 , Tv2 , Tv3 , Tv4}.

• For each forest rooted at hyper node v, define its total
cost as

Cost (Tv) =
∑

v∈v
Cost(Tv).

2

vv1 v2 v3 v4

Fig. 2. Hyper node v that contains regular tree nodes v1, v2, v3 and v4 with
their corresponding subtrees.

With these definitions in hand we are ready to state the main
SE algorithm.

Algorithm 3.1 (Stochastic Enumeration Algorithm): Given a
forest Tv of height h rooted at a hyper node v, and a budget
B > 1, execute the following steps.

1) Step 1 (Initialization): Set k ← 0, D ← 1, X0 = v
and CSE ← c(X0)/|X0|.

2) Step 2 (Compute the successors): Let S(Xk) be the
set of all children of Xk.

3) Step 3 (Terminal position?): If |S(Xk)| = 0, the
algorithm stops, returning |v|CSE as an estimator of
Cost(Tv).

4) Step 4 (Advance): Choose hyper node Xk+1 ∈ H(Xk)
at random, each choice being equally likely. (Thus,
each choice occurs with probability 1/|H(Xk)|.) Set
Dk = |S(Xk)|

|Xk| and D ← DkD, then set CSE ←
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CSE +
(
c(Xk+1)
|Xk+1|

)
D. Increase k by 1 and return to Step

2.

2

It can be shown that the output of Algorithm 3.1 is a random
variable

CSE =
c(X0)

|X0|
+
|S(X0)|
|X0|

c(X1)

|X1|
(3)

+
|S(X0)|
|X0|

|S(X1)|
|X1|

c(X2)

|X2|

+ · · ·+


 ∏

06j6τ−1

|S(Xj)|
|Xj |


 c(Xτ )

|Xτ |
,

where τ 6 h is the random variable that represents the length
of the random walk. The term

 ∏

06j6k−1

|S(Xj)|
|Xj |


 c(Xk)

|Xk|
= D

c(Xk)

|Xk|
,

which is calculated at Step 4 of Algorithm 3.1 is the estimator
for the total cost of the vertices at tree level k. Moreover, this
estimator is unbiased; that is, for a tree T rooted at v0, and
for v0 = {v0},

E (CSE(Tv0)) = Cost (T ) .

For the proof of unbiasedness and for typical run of Algorithm
3.1, see Appendices B and C respectively.

Note that (3) represents the sum of unbiased estimators to
the costs of tree levels at heights k = 0, . . . , h. With this
observation in hand one can introduce a simple modification
of Algorithm 3.1 such that instead of the entire tree cost, the
algorithm will return separate estimators for each level. All we
need to do is to replace the single random variable CSE with h
variables C(0)

SE , . . . , C
(h)
SE , and substitute the expression CSE ←

CSE +
(
c(Xk+1)
|Xk+1|

)
D with C

(k+1)
SE ← C

(k+1)
SE +

(
c(Xk+1)
|Xk+1|

)
D

in the last step of Algorithm 3.1.
Next, we concentrate on the crucial property of the SE

algorithm — the built–in splitting mechanism.

A. SE Splitting mechanism

The SE algorithm possesses a built–in splitting mechanism.
The latter can bring enormous variance reduction, [11], [14],
[32], [31].

Consider the “hair brush” tree T in Figure 3 and suppose
that the cost of all vertices is zero except for vn+1, which has
a cost of unity. Our goal is to estimate the cost of this tree,
which obviously satisfies

Cost(T ) = 1.

It will become clear from the following discussion that the
budget parameter B is controlling the SE Algorithm 3.1
splitting capability. We will consider two cases. In particular
we examine the behavior of the SE Algorithm 3.1 with budgets
B = 1 and B = 2 respectively.
• If we set B = 1, the SE Algorithm 3.1 essentially adopts

the behaviour of Knuth’s estimator, [29]. Note that in

v1

v2 v2

v3 v3

v4

vn

vn+1 vn+1

Fig. 3. The hair brush tree.

this case the algorithm reaches the vertex of interest,
vn+1, with probability 1/2n and with D = 2n. In all
other cases, the algorithm terminates with some D′ and
a zero cost node v̄i, i = 2, . . . , n + 1. It follows that
the expectation and variance of the corresponding SE
estimator are

E (CSE) =
1

2n
· 2n · 1 +

2n − 1

2n
·D′ · 0 = 1,

and

E
(
C2

SE

)
=

1

2n
· (2n · 1)

2
+

2n − 1

2n
· (D′ · 0)

2
= 2n ⇒

⇒ Var (CSE) = E
(
C2

SE

)
− E (CSE)

2
= 2n − 1.

• On the other hand, setting B = 2 will force Algorithm
3.1 to reach vn+1 with probability 1. Note that with this
budget and for i = 2, . . . , n, one algorithm trajectory,
(random walk from the tree root), is always disappearing
at v̄i vertices from the left, but the second one is always
split in two new trajectories at the corresponding vi nodes
from the right. Following the execution steps of the SE
Algorithm 3.1 one can verify that at the final iteration
the cost of the hyper node Xn+1 = {v̄n+1, vn+1} is
0 + 1 = 1, so (

c(Xn+1)

|Xn+1|

)
=

1

2
.

In addition, the final value of D is

D = 2 · 1 · · · 1︸ ︷︷ ︸
n−1 times

= 2.

It follows that the expectation and variance of the corre-
sponding SE estimator are

E (CSE) = 1 · 2 · 1

2
= 1,

and

E
(
C2

SE

)
= 1 ·

(
2 · 1

2

)2

= 1 ⇒

⇒ Var (CSE) = E
(
C2

SE

)
− E (CSE)

2
1− 1 = 0.
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By increasing the budget B from 1 to 2 we managed to
achieve remarkable variance reduction, from 2n − 1 to zero.

The above example is the key for understanding the SE
splitting mechanism. Note that to deliver some meaningful
estimator for the tree cost one needs (at least) to reach the
vn+1 vertex. In our example, when B = 1, this happens with
probability 1/2n, so we work under the rare–event setting. For
the sake of simplicity, let us concentrate on the simple problem
of reaching the vertex vn+1. Recall that under the Splitting
framework, we launch B random walks from the root (v1).
Each walk chooses v2 or v̄2 with probability 1/2 respectively;
that is, the walks are divided into “good” (those that reach
v2) and “bad” (those that reach v̄2). Now, we split the “good”
walks such that there will be B of them and continue the
process. Note that the following holds.
• The probability of a single walk (B = 1) to reach the
vn+1 vertex is 1/2n.

• A careful choice of B (which can be a polynomial in tree
height n), will allow us to reach the vertex of interest —
vn+1 with reasonably high probability. In particular, the
following holds.

P(The process reaches vi+1 from vi) = 1− 1/2B .

P(The process reaches the vn+1 vertex) = (1− 1/2B)n.

By choosing (for example) B = log2(n),

P(The process reaches the vn+1 vertex)→ e−1, n ↑ ∞.
Clearly, the probability of e−1 is much better than 1/2n.

The SE algorithm shares similar splitting behavior. The “bad”
walks become extinct and the “good” ones are split to continue
to the next level. The only difference is that SE does not ran-
domly generates next level states but uses the full enumeration
procedure in Steps 2 and 4, thus introducing an additional
variance reduction.

Clearly, we presented an artificial example but it is also
illustrative enough for our purposes. Generally speaking, by
increasing the budget (in a reasonable manner), we cannot ex-
pect to obtain a zero variance estimator for hard approximation
problems, but we do hope to achieve a significant variance
reduction.

B. SE for Network Reliability
To start with, consider the set of all edge permutations.

With these permutations it is possible to build a tree object
that we call the permutation tree, for which each path from
the root to a leaf corresponds to some specific permutation π.
For example, consider the simple graph in Figure 1 and the
corresponding permutation tree that is presented in Figure 4.

Remark 3.1: The exact edge mapping from the leftmost to
the rightmost permutation in Figure 4 is as follows.
{{e1, e2, e3, e4}, {e1, e2, e4, e3}, {e1, e3, e2, e4}, {e1, e3, e4, e2},
{e1, e4, e2, e3}, {e1, e4, e3, e2}, {e2, e1, e3, e4}, {e2, e1, e4, e3},
{e2, e3, e1, e4}, {e2, e3, e4, e1}, {e2, e4, e1, e3}, {e2, e4, e3, e1},
{e3, e1, e2, e4}, {e3, e1, e4, e2}, {e3, e2, e1, e4}, {e3, e2, e4, e1},
{e3, e4, e1, e2}, {e3, e4, e2, e1}, {e4, e1, e2, e3}, {e4, e1, e3, e2},
{e4, e2, e1, e3}, {e4, e2, e3, e1}, {e4, e3, e2, e1}, {e4, e3, e1, e2}}

e3

e4e3e2e1

e2

e1

e2

e3

e4

Fig. 4. The simple graph permutation tree.

By definition, each path from the root to a leaf corresponds
to a unique edge permutation π and each black vertex cor-
responds to this permutation’s anchor, a(π). It is not hard
to see by following the steps of Algorithm 2.1 that step 2(a)
generates a random tree path (π) and step 2(b) finds the anchor
a(π) — the black vertex. Recall that by definition,

fk =
|A(k)|
m!

,

so, we can use Figure 4 to calculate the Spectra. The latter is
accomplished as follows. Note that we have 8 anchor vertices
at level 2 and each such vertex induces two additional paths
to the leaves, so,

f2 =
8 · 2
4!

=
2

3
.

Having in mind that at the third tree level the vertices induce
a single path to the leaf and combining this with the fact that
we have 8 anchor vertices at this level, we conclude that

f3 =
8 · 1
4!

=
1

3
.

The other Spectra components are equal to zero, so by
Definition 2.2,

Sp =

{
0, 0,

2

3
,

1

3
, 0

}
,

that is,

F (0) = 0, F (1) = 0, F (2) =
2

3
, F (3) = 1, F (4) = 1.

With the above Cumulative Spectra we get a full network
characterization and the desired unreliability r(q) can be
calculated for any q using (2).

The above discussion is generalized in Theorem 3.1, which
provides the connection between the number of anchor (black)
nodes at each tree level and the corresponding Spectra.

Theorem 3.1 (Spectra as a function of anchor nodes): Let
T be a permutation tree. Then,

fk =
# of anchor nodes at tree level k

total # of nodes at level k
.
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Proof: Suppose that there are m edges and let L(k) be the set
of anchor nodes at tree level k and consider the path from the
tree root to some v ∈ L(k). Clearly, an anchor node cannot
appear on this path at level j such that j < k or j > k,
because in this case v 6∈ L(k), so,

|A(k)| = |L(k)| · (# of induced paths from v ∈ L(k)) .

Having in mind that each node at level k induces

(m− k)(m− (k + 1)) · · · (m− (m− 1)) = (m− k)!

paths to the leaves, we arrive at

|A(k)| = |L(k)|(m− k)!.

Moreover, the total number of (anchor and non–anchor)
nodes at tree level k is equal to

m(m− 1)(m− 2) · · · (m− k + 1) =
m!

(m− k)!
,

so, from Definition 2.1,

fk =
|A(k)|
m!

=
|L(k)|(m− k)!

m!
=
|L(k)|
m!

(m−k)!
=

=
# of anchor nodes at tree level k

total # of nodes at level k
.

2

All we need to do now is to assign a unit cost to the anchor
nodes and a zero cost to the other nodes. Recall Algorithm 3.1
and note that C(k)

SE for k = 0, . . . ,m is an unbiased estimator
to the cost of level k. Then, from Theorem 3.1 the D–Spectra
is given by

fk = E
(
C

(k)
SE

)/ m!

(m− k)!
.

Theorem 3.1 opens the way for Spectra calculation using
the SE sampling scheme. The algorithm to do so may be
summarized as follows.

Algorithm 3.2 (SE sampling scheme): Given a graph
G(V,E,K) such that |E| = m, the budget B and a sample
size N , execute the following steps.

1) Step 1 (SE): Run the SE Algorithm 3.1 to estimate

Ĉ
(0)
SE , . . . , Ĉ

(h)
SE .

2) Step 2 (Estimate Spectra): Set

f̂k = Ĉ
(k)
SE

/
m!

(m− k)!
for k = 0, . . . ,m.

3) Step 3 (Estimate Cumulative Spectra):

F̂ (k)←−
k∑

i=0

f̂i for k = 0, . . . ,m.

2

It is important to note that the same permutation tree is
used for both Construction and Destruction Spectra except
that the anchor nodes will be placed in a different locations
according to the adopted construction or the destruction setting
respectively. Having this in mind, it follows that Theorem

3.1 is also valid for both D–Spectra and C–Spectra and,
as a consequence, Algorithm 3.2 can be executed in both
(construction/destruction) modes. If one chooses to calculate
the C–Spectra, Step 2 of Algorithm 3.2 should be written as

f̂m−k = Ĉ
(k)
SE

/
m!

(m− k)!
for k = 0, . . . ,m.

Finally, recall the reliability estimation complication in the
context of the highly reliable networks that we reported in
Section II. We showed that the error is due to the PMC
estimation problem of very small probabilities in the leftmost
parts of the D–Spectra. First of all, note that those problematic
components of D–Spectra correspond to the anchor nodes
at the upper tree levels (0, 1, 2, . . .) of the permutation tree
(in the destruction setting) or to the lower levels of the
tree, (m,m − 1,m − 2, . . .) (in the construction setting); see
Corollary 2.1.

The above discussion and the splitting example gives us a
clue of how to use SE for our purposes. The SE’s splitting
mechanism is able to sample rare–event anchor nodes in
the final tree levels. Having this in mind, we will prefer to
work with the C–Spectra and use Corollary 2.1 to obtain the
corresponding D–Spectra. In particular, our numerical results
in Section IV are obtained using the C–Spectra. An additional
technical point that one should be aware of is the structure
of the permutation tree. In particular, note that as soon as
an anchor node is discovered, its induced paths may readily
be ignored. Indeed, there is no point in wasting resources by
continuing to explore such permutations. The corresponding
truncated permutation tree is presented in Figure 5.

e2e1 e3

e4

e1 e3

e2e1 e4

e2 e4

e3e1 e4

e1 e3

e3e2 e4

e2 e4

e3e2e1

Fig. 5. The truncated permutation tree.

IV. NUMERICAL RESULTS

In this section we present a numerical comparison between
the PMC Algorithm 2.1 and the SE Algorithm 3.2 for different
models. The results were obtained using an Intel Core i7
machine with 4 GB of RAM.

Recall that the crucial parameter of the SE algorithm is its
budget B. Clearly, increasing B means an inevitable increase
in computation effort. Nevertheless, it is not very hard to see
that the effort increases linearly in B since at each tree level
we perform B similar computations. In all our examples we
choose B = 10 and repeat the algorithm for 1000 times. We
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found numerically that this parameter selection was sufficient
for reliable estimation of the Spectra. Based on numerous
experiments with different models, our general advise for
choosing the budget is as follows. Start from small budget,
say B 6 5 and increase it gradually. As soon as the rare–
event probability of interest stops to decrease, fix this budget
and perform the main experiment. This follows from the fact
that the SE tends to underestimate the rare–event probabilities.

Model 1: Consider the graph family Ψ(k,m), k ∈ N, m >
2k in Figure 6. Each graph is determined by two numbers k
and m. In particular, this graph has two terminal nodes s and
t, and k special vertices numbered 1, . . . , k such that both
s and t are connected to each of these vertices. In addition,
both terminal vertices are connected to m/2− k non–special
vertices.

es ,1

s t

es ,k e t , k

e t ,1

es ,2

es ,k−1

e t ,2

e t , k−1

1

2

k−1

k

e t , k+1

e t ,m /2−k

es ,k+1

es ,m /2−k

Fig. 6. The Ψ(k,m) graph with m− k + 2 vertices and m edges.

Despite the fact that Ψ(k,m) is fabricated, it will be useful
for our discussion. First of all it is straightforward to calculate
the network unreliability. Clearly, the only edges that can cause
the terminal disconnection are es,1, . . . , es,k, et,1, . . . , et,k. So,
if k is not very large, say less than 25, the graph unreliability
can be obtained by full enumeration of up and down states
because one need only to check 2k possibilities. An additional
nice property is that the f0, . . . , fk−1 are zero and

fk = P (a(Π) = k) ,

can be calculated analytically. To see this, consider a permuta-
tion π = (ei1 , . . . , eim). Clearly, if a(π) = k, then {ei1 , . . . ,
eik} should be a subset of {es,1, . . . , es,k, et,1, . . . , et,k}. The
latter occurs with probability

(
2k
k

)
k!(m− k)!

m!
.

And now, given that {ei1 , . . . , eik} ⊂ {es,1, . . . , es,k, et,1, . . .
, et,k}, we shall decide about the way to pick k edges such that
the terminals will become disconnected. For the first edge there
are 2k possibilities and suppose without loss of generality that
we picked es,1. Now we need to pick the second edge; note
that it cannot be et,1, because if we choose to disconnect it,
there is no way to pick additional k − 2 edges to disconnect

TABLE IV
PMC SPECTRA ESTIMATION FOR Ψ(k,m).

PMC

Ψ(k,m) fk f̂k V̂ar(fk) ̂r (10−4) CPU N

Ψ(10, 20) 5.54 · 10−3 5.62 · 10−3 2.97 · 10−8 1.04 · 10−37 2.48 2.0 · 105

Ψ(10, 40) 1.21 · 10−6 2.01 · 10−6 7.98 · 10−12 1.69 · 10−37 6.49 2.0 · 105

Ψ(10, 60) 1.36 · 10−8 0 — 1.05 · 10−42 23.1 4.0 · 105

Ψ(10, 80) 6.22 · 10−10 0 — 1.00 · 10−47 31.7 4.5 · 105

Ψ(10, 100) 5.92 · 10−11 0 — 2.67 · 10−53 53.3 5.0 · 105

TABLE V
SE SPECTRA ESTIMATION FOR Ψ(k,m).

SE

Ψ(k,m) fk f̂k V̂ar(fk) ̂r (10−4) CPU

Ψ(10, 20) 5.54 · 10−3 5.56 · 10−3 3.26 · 10−8 1.03 · 10−37 2.18

Ψ(10, 40) 1.21 · 10−6 1.19 · 10−6 2.01 · 10−14 1.05 · 10−37 8.69

Ψ(10, 60) 1.36 · 10−8 1.42 · 10−8 1.39 · 10−17 1.11 · 10−37 18.4

Ψ(10, 80) 6.22 · 10−10 6.19 · 10−10 2.55 · 10−20 8.68 · 10−38 31.9

Ψ(10, 100) 5.92 · 10−11 5.51 · 10−11 4.48 · 10−22 1.05 · 10−37 51.1

the terminals. This means that the choice is from 2k − 2
possibilities and so on, so, we end up with

2k(2k − 2) · · · 2(
2k
k

)
k!

and arrive at

fk = P (a(π) = k) =

(
2k
k

)
k!(m− k)!

m!
· 2k(2k − 2) · · · 2(

2k
k

)
k!

=

(4)

=
(2k(2k − 2) · · · 2) (m− k)!

m!
.

Tables IV and V summarize 10 typical runs of PMC
Algorithm 2.1 versus SE Algorithm 3.2 for several Ψ(k,m)
models. We can observe from those tables that PMC is unable
to estimate the Spectra value fk. On the other hand, the
SE is not sensitive to this rare–event probability. For the SE
Algorithm 3.2, we took a budget B = 10 and a sample size
of N = 1000. For the PMC Algorithm 2.1, we adjusted the
sample size such that the CPU is comparable to the one of
SE.

Note that for each Ψ(k,m) model we get the same probabil-
ity of network failure because they share the same parameter
k. In particular, we set q = 10−4 and calculate the exact
unreliability via full enumeration. The analytical probability
of the failure is r

(
10−4

)
= 1.02 · 10−37. The analytical fk

was obtained using (4).

Model 2: It is worth noting that PMC is able to deliver
accurate estimations for small failure probabilities. The pur-
pose of this example is to demonstrate that one can construct
a graph instance such that the Spectra does not have very
small components and show that the PMC can estimate it with
arbitrary q values (in particular for q → 0+).
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TABLE VI
PMC & SE SPECTRA ESTIMATION FOR THE DODECAHEDRON GRAPH.

SE PMC SE PMC

F (1) 0 0 F (16) 7.90 · 10−1 7.91 · 10−1

F (2) 0 0 F (17) 8.48 · 10−1 8.49 · 10−1

F (3) 5.01 · 10−4 4.90 · 10−4 F (18) 8.91 · 10−1 8.93 · 10−1

F (4) 2.22 · 10−3 2.18 · 10−3 F (19) 9.24 · 10−1 9.26 · 10−1

F (5) 6.30 · 10−3 6.33 · 10−3 F (20) 9.49 · 10−1 9.51 · 10−1

F (6) 1.41 · 10−2 1.43 · 10−2 F (21) 9.67 · 10−1 9.68 · 10−1

F (7) 2.90 · 10−2 2.86 · 10−2 F (22) 9.80 · 10−1 9.80 · 10−1

F (8) 5.53 · 10−2 5.45 · 10−2 F (23) 9.89 · 10−1 9.88 · 10−1

F (9) 9.80 · 10−2 9.68 · 10−2 F (24) 9.94 · 10−1 9.94 · 10−1

F (10) 1.65 · 10−1 1.65 · 10−1 F (25) 9.97 · 10−1 9.97 · 10−1

F (11) 2.62 · 10−1 2.60 · 10−1 F (26) 9.99 · 10−1 9.99 · 10−1

F (12) 3.81 · 10−1 3.79 · 10−1 F (27) 1 1

F (13) 5.03 · 10−1 5.03 · 10−1 F (28) 1 1

F (14) 6.19 · 10−1 6.18 · 10−1 F (29) 1 1

F (15) 7.15 · 10−1 7.15 · 10−1 F (30) 1 1

For this experiment we take the dodecahedron graph, the
model that is widely considered for a network reliability
examples. We show that the problem is easy in sense that
there are no rare events involved; that is, we expect both the
PMC and the SE algorithms to report reliable results. We set
the terminal set to be K = {1, 20}.

1

2

3

45

7 8

9

10

11

12

13

14

16

17

18

20

15

19

6

Fig. 7. The dodecahedron graph.

We run the SE algorithm with N = 1000 and B = 10
and the Spectra Algorithm with N = 350000. The running
time for both algorithms is about 4.7 seconds. In this example
the minimal component has the value ≈ 5 · 10−4; so, both
algorithms deliver excellent performances in a reasonable
time. Table VI provides typical values obtained during the
algorithm’s execution, and Table VII summarizes the corre-
sponding probability that the network is DOWN.

TABLE VII
PMC & SE RELIABILITY ESTIMATION FOR THE DODECAHEDRON GRAPH.

SE PMC

q r̂(q) ̂Var (r(q)) r̂(q) ̂Var (r(q))

1.00 · 10−5 2.01 · 10−15 2.20 · 10−32 1.96 · 10−15 1.54 · 10−32

1.00 · 10−4 2.00 · 10−12 2.20 · 10−26 1.96 · 10−12 1.53 · 10−26

1.00 · 10−3 2.01 · 10−9 2.18 · 10−20 1.97 · 10−9 1.48 · 10−20

1.00 · 10−2 2.07 · 10−6 2.02 · 10−14 2.03 · 10−6 1.03 · 10−14

1.00 · 10−1 2.86 · 10−3 1.49 · 10−8 2.84 · 10−3 1.90 · 10−9

2.00 · 10−1 3.48 · 10−2 6.99 · 10−7 3.48 · 10−2 4.28 · 10−8

3.00 · 10−1 1.57 · 10−1 4.67 · 10−6 1.57 · 10−1 1.57 · 10−7

4.00 · 10−1 3.95 · 10−1 1.34 · 10−5 3.95 · 10−1 2.65 · 10−7

5.00 · 10−1 6.61 · 10−1 1.78 · 10−5 6.60 · 10−1 2.73 · 10−7

6.00 · 10−1 8.51 · 10−1 9.70 · 10−6 8.51 · 10−1 1.78 · 10−7

7.00 · 10−1 9.50 · 10−1 2.55 · 10−6 9.49 · 10−1 6.24 · 10−8

8.00 · 10−1 9.88 · 10−1 4.73 · 10−7 9.88 · 10−1 1.13 · 10−8

TABLE VIII
PMC AND SE BASED RELIABILITY ESTIMATIONS FOR H5 GRAPH.

SE PMC

q r̂(q) ̂Var (r(q)) r̂(q) ̂Var (r(q))

1.00 · 10−5 1.94 · 10−25 7.26 · 10−52 2.32 · 10−39 1.15 · 10−48

1.00 · 10−4 1.94 · 10−20 7.24 · 10−42 2.31 · 10−30 1.14 · 10−38

1.00 · 10−3 1.93 · 10−15 7.10 · 10−32 2.20 · 10−21 1.01 · 10−28

1.00 · 10−2 2.05 · 10−10 5.94 · 10−22 1.38 · 10−12 3.45 · 10−19

1.00 · 10−1 1.94 · 10−5 1.28 · 10−12 2.07 · 10−5 1.25 · 10−11

2.00 · 10−1 6.35 · 10−4 8.09 · 10−10 7.09 · 10−4 4.11 · 10−10

3.00 · 10−1 5.16 · 10−3 2.70 · 10−8 5.50 · 10−3 6.46 · 10−9

4.00 · 10−1 2.49 · 10−2 4.92 · 10−7 2.55 · 10−2 3.60 · 10−8

5.00 · 10−1 9.36 · 10−2 4.35 · 10−6 9.43 · 10−2 1.02 · 10−7

6.00 · 10−1 2.93 · 10−1 1.08 · 10−5 2.94 · 10−1 3.19 · 10−7

7.00 · 10−1 6.35 · 10−1 5.73 · 10−6 6.36 · 10−1 3.51 · 10−7

8.00 · 10−1 8.86 · 10−1 5.92 · 10−6 8.86 · 10−1 4.79 · 10−8

Model 3: For our last model we consider the hypercube
graph H5. The hypercube graph Hn is a regular graph with
2n vertices and n2n−1 edges, [35]. In order to construct a
hypercube graph, label every 2n vertices with n-bit binary
numbers and connect two vertices by an edge whenever the
Hamming distance of their labels is 1. We set K = {0, 24};
that is (00000, 11000) in the binary representation.

We run the SE Algorithm 3.2 with N = 1000 and B = 10
and the PMC Algorithm 2.1 with N = 300000. The running
time for both SE and Spectra is 28 seconds. Table VIII
provides the estimated network unreliability with both PMC
and SE algorithms.

Note the difference in the DOWN probabilities for small
values of q. We already saw this problem — the PMC
Algorithm 2.1 cannot estimate rare–event probabilities, hence,
the delivered estimator is an under estimation. Table IX
summarizes the first components of the obtained Spectra
with PMC and SE algorithms respectively. We do not report
F (0), . . . , F (3), because they were evaluated as zero by full
enumeration. With the same procedure, we obtained the exact
value of F (4), which is equal to 8.3195 · 10−8, close (about
7%) to the reported value of 8.93 · 10−8.
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TABLE IX
ESTIMATED SPECTRA COMPONENTS.

Algorithm F (4) F (5) F (6) F (7) F (8) F (9)

SE 8.93 · 10−8 4.96 · 10−7 1.67 · 10−6 4.42 · 10−6 9.60 · 10−6 2.03 · 10−5

PMC 0 0 0 0 1.00 · 10−5 2.67 · 10−5

TABLE X
PMC RELIABILITY ESTIMATION FOR N = 108 .

q r̂(q) ̂Var (r(q))

1.00 · 10−5 1.80 · 10−25 5.80 · 10−51

1.00 · 10−4 1.80 · 10−20 5.74 · 10−41

1.00 · 10−3 1.81 · 10−15 5.18 · 10−31

1.00 · 10−2 1.88 · 10−13 1.85 · 10−21

1.00 · 10−1 2.00 · 10−5 2.66 · 10−14

2.00 · 10−1 6.60 · 10−4 2.81 · 10−12

3.00 · 10−1 5.37 · 10−3 3.40 · 10−11

4.00 · 10−1 2.56 · 10−2 9.55 · 10−10

5.00 · 10−1 9.48 · 10−2 1.29 · 10−10

6.00 · 10−1 2.94 · 10−1 2.670 · 10−10

7.00 · 10−1 6.36 · 10−1 9.13 · 10−10

8.00 · 10−1 8.86 · 10−1 7.23 · 10−10

Next, we run the PMC algorithm 2.1 with sample sizes
106, 107 and 108, respectively. It is not surprising that N =
106 and N = 107 are insufficient to provide a meaningful
estimator for the rare–event probability of 8.3195 ·10−8. Table
X summarizes the results obtained for N = 108. The running
time of PMC is about 9000 seconds and the estimated variance
for the rare–event probabilities is larger than the one obtained
by SE.

V. CONCLUSIONS

In this paper we showed that when using the network sig-
nature method (Spectra), a satisfactory estimation of network
DOWN state probability depends on the accurate evaluation
of all Spectra components. In particular, the leftmost part of
D–Spectra turns out to be critical when dealing with highly re-
liable networks. We showed that under this setting, the simple
PMC algorithm for estimating the network unreliability fails
to provide a reliable answer. To successfully overcome this
issue we introduced an adaptation of new sampling scheme
for tree cost evaluation — Stochastic Enumeration (SE). Our
numerical results indicate that thanks to its built–in splitting
mechanism SE is able to successfully work in the rare event
environment while using a relatively small sample size. Having
in mind that some rare–event estimation problems can be
represented as trees, we conjecture that the SE may be viewed
as a general powerful technique for rare–event probability
estimation and we expect to see its further usage in the future.
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APPENDIX A
IMPORTANCE MEASURES

We present a short introduction for Birnbaum Importance
Measure (BIM) [36] and Joint Reliability Importance (JRI)
[37] measures. Suppose a system consists of n independent
components, and component j has reliability pj , j = 1, . . . , n.
Let the system reliability be

r(p1, . . . , pn).

The BIM of component j is defined by Birnbaum [36] as

BIMj =
∂r(p1, . . . , pn)

∂pj
. (5)

The JRI for two components has been introduced by Hong
and Lie [37] as a measure of how components interact in
determining system reliability. The JRI of components i and
j is defined as

JRI(ij) =
∂2r(p1, . . . , pn)

∂pi∂pj
. (6)

To illustrate the importance of BIM and JRI, suppose that
we can increase pj by ∆pj , j = 1, . . . , n. Then from the
definitions of the partial derivatives (5) and (6), it follows that
the following general recommendation can be applied.

1) If a single component is reinforced, the best result is
achieved by replacing component j which has the largest
value of BIMj ·∆pj .

2) If two components, i and j are subject to the reinforce-
ment, then the total increase of system reliability is

BIMi∆pi + BIMj∆pj + JRI(i,j)pipj .

The expressions for the BIM and JRI in (5) and (6) are
useless in practice since the analytic form of r(p1, . . . , pn)
is not available. This principal difficulty is resolved since we
obtain expressions for them by using combinatorial invariant
— the Spectra, see [27].

Usually, it is sufficient to consider these functions (deriva-
tives) for p1 = p2 = · · · = pn = p = 1 − q, see [27]
for details. In this case, the component importance measures
can be obtained from the network Cumulative Spectra. The
connection is as follows. Recall that F (k) is the probability
that the system is DOWN if k randomly chosen components
are down (and remaining n− k are up). This probability can
be written as

F (k) = F (k; 1j) + F (k; 0j),

where F (k; 1j) and F (k; 0j) stands for the probabilities that
the network is DOWN if k randomly chosen components are
down and component j is among non-failed (for 1j) and
failed (for 0j) components respectively. Similarly, for any two
components i and j, we can write:

F (k) = F (k; 1i, 1j)+F (k; 1i, 0j)+F (k; 0i, 1j)+F (k; 0i, 0j).

It was shown in [27] that the following holds.
1) The expression for BIMj is given by
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BIMj = n!

(
n∑

x=1

F (x; 0j)q
x−1pn−x/x!(n− x)!

−
n∑

x=1

(F (x)− F (x; 1j))q
xpn−x−1/x!(n− x)!

)
.

2) The expression for JRI(ij) is given by

JRI(ij) = n!

(
n∑

x=1

F (x; 1i, 0j)q
xpn−x−1/x!(n− x)!

+

n∑

x=1

F (x; 0i, 1j)q
x−1pn−x−1/x!(n− x)!

−
n∑

x=1

F (x; 0i, 0j)q
x−2pn−x/x!(n− x)!

−
n∑

x=1

F (x; 1i, 1j)q
xpn−x−2/x!(n− x)!

)
.

We conclude this short overview with a crucial obser-
vation. Having a Monte Carlo algorithm for estimat-
ing the Spectra, one can readily get the estimates for
F (k; 1j), F (k; 0j), F (k; 1i, 1j), F (k; 1i, 0j), F (k; 0i, 1j) and
F (k; 0i, 0j), by running the same algorithm while fixing the
given components to the appropriate states. For example,
to calculate F (k; 0i, 1j), one should (prior to running the
algorithm) fix the ith and jth components to down and up
states respectively.

APPENDIX B
PROOF OF SE’S UNBIASEDNESS

To prove the main result we will need the following tech-
nical lemma.

Lemma B.1 (Sum of k-subsets): Let r1, . . . , rn and u be
scalars such that

∀j = 1, . . . , n, rj > 0 and u = 1, . . . , n,

and,
S = {s | s ⊆ {r1, . . . , rn}, |s| = u}.

Then,
∑

s∈S

∑
r∈s r

u
=

(
n
u

)∑
16j6n rj

n

holds.
Proof: Note that there are exactly

(
n−1
u−1
)

subsets in which
each rj (j = 1, . . . , n) appears. We conclude the proof with

∑

s∈S

∑
r∈s r

u
=

(
n−1
u−1
)

u

∑

16j6n

rj =

(n−1)!
(u−1)!(n−u)!

u

∑

16j6n

rj

=

n!
u!(n−u)!

n

∑

16j6n

rj =

(
n
u

)∑
16j6n rj

n
.

2

Recall from Definition 3.1 that for any hyper node v, Tv
denotes the forest rooted at v, and that its cost is Cost(Tv).

Let |v|CSE(Tv) be the corresponding estimator, as returned
by Algorithm 3.1. The following theorem shows that this
estimator is unbiased.

Theorem B.1 (Unbiased Estimator): Let v be a hyper node
and let H(S(v)) = {w1, . . . ,wd} be its set of hyper children.
Then,

E(CSE (Tv)) =
Cost (Tv)

|v| . (7)

Proof: By the recursive structure of Algorithm 3.1, we have

CSE (Tv) =
c(v)

|v| +
|S(v)|
|v| CSE (TW) , (8)

where W is a hyperchild of v selected uniformly at random
from H(S(v)). To show (7) we proceed by induction on the
tree height.

• h = 0:

E (CSE (Tv)) = E
(
c(v)

|v| +
|S(v)|
|v| · 0

)

=
c(v)

|v| =

∑
v∈v c(v)

|v| =
Cost(Tv)

|v| .

• Suppose that the proposition is correct for heights
0, . . . , h− 1. Combining this with (8) we get

E (CSE (Tv)) = E
(
c(v)

|v| +
|S(v)|
|v| CSE (TW)

)

=
c(v)

|v| +
|S(v)|
|v|


1

d

∑

16j6d

CSE

(
Twj

)



=︸︷︷︸
hypothesis

c(v)

|v| +
|S(v)|
|v|


1

d

∑

16j6d

Cost
(
Twj

)

|wj |


 .

Consider now the following two cases.

1) |S(v)| 6 B. Hence, H(S(v)) = {w1}, |S(v)| =
|w1|, and d = 1, so that

c(v)

|v| +
|S(v)|
|v|


1

d

∑

16j6d

Cost
(
Twj

)

|wj |




=
c(v)

|v| +
|S(v)|
|v|

Cost(Tw1
)

|w1|

=
c(v) + Cost(Tw1

)

|v| =
Cost(Tv)

|v| .

2) |S(v)| > B. In this case, there is a set of possible
hyper nodes that will be chosen uniformly at random
from H(S(v)). So, H(S(v)) = {w1, . . . ,wd},
d = |H(S(v))| =

(|S(v)|
B

)
> 1 and |wj | =



IEEE TRANSACTIONS ON RELIABILITY 2014 13

B for all j = 1, . . . , d. We continue with

c(v)

|v| +
|S(v)|
|v|


1

d

∑

16j61

Cost
(
Twj

)

|wj |


 =

c(v)

|v|

+
|S(v)|
|v|



(|S(v)|

B

)−1 ∑

16j6d

Cost
(
Twj

)

B




=︸︷︷︸
(3)

c(v)

|v| +
|S(v)|
|v|

((|S(v)|
B

)−1

∑

16j6d

∑
w∈wj

Cost(Tw)

B




=︸︷︷︸
Lemma (B.1)

c(v)

|v| +
|S(v)|
|v|

((|S(v)|
B

)−1

(|S(v)|
B

)

|S(v)|
∑

w∈S(v)

Cost(Tw)




=
c(v)

|v| +
|S(v)|
|v|


 1

|S(v)|
∑

w∈S(v)

Cost(Tw)




=︸︷︷︸
(3)

c(v)

|v| +
|S(v)|
|v|

(
Cost

(
TS(v)

)

|S(v)|

)

=
c(v) + Cost

(
TS(v)

)

|v| =
Cost(Tv)

|v| .

2

If for the original tree T with root v0 we define v0 =
{v0}, then the forest Tv0

is identical to T and, with |v0| = 1,
Theorem B.1 yields the following corollary.

Corollary B.1 (Unbiased tree estimator): Let T be a tree
rooted at v0, and let v0 = {v0}. Then, SE returns unbiased
estimator for the total tree cost; that is,

E (CSE(Tv0
)) = Cost (T ) .

2

APPENDIX C
SE EXAMPLE

We consider an example run of the SE Algorithm 3.1
while using different budget sizes. The SE algorithm does
not operate on the original tree but rather on the associate
“hyper tree”. This crucial property (what we call tree folding)
may lead to significant variance reduction. One should also
note that the corresponding “tree folding” property is a direct
consequence of the built–in splitting mechanism of the SE,
see the discussion in Section III-A.

Consider a tree T displayed in Figure 8. Suppose that we
wish to count the number of nodes, so c(v) = 1 for all v ∈ T .

1) For B = 1, each run of Algorithm 3.1 will choose one
of possible 5 paths. Below, we consider all the paths, the
obtained estimator and the corresponding probabilities.

1

2 3

5

8

6

9 10

4

7

11

Fig. 8. A tree with 11 nodes.

a) 1− 2, CSE = 1 + 3 = 4, with probability 1/3.
b) 1 − 4 − 7 − 11, CSE = 1 + 3 + 3 + 3 = 10, with

probability 1/3.
c) 1 − 3 − 5 − 8, CSE = 1 + 3 + 6 + 6 = 16, with

probability 1/3 · 1/2 = 1/6.
d) 1 − 3 − 6 − 9, CSE = 1 + 3 + 6 + 12 = 22, with

probability 1/3 · 1/2 · 1/2 = 1/12.
e) 1− 3− 6− 10, CSE = 1 + 3 + 6 + 12 = 22, with

probability 1/3 · 1/2 · 1/2 = 1/12.
It is easy to check that

E (CSE) = 4 · 1/3 + 10 · 1/3 + 16 · 1/6
+ 22 · 1/12 + 22 · 1/12 = 11,

and that

E
(
C2

SE

)
= 42 · 1/3 + 102 · 1/3 + 162 · 1/6 + 222 · 1/12

+ 222 · 1/12 = 162⇒

⇒ Var (CSE) = E
(
C2

SE

)
− E (CSE)

2

= 162− 112 = 41.

2) For B = 2 the SE algorithm starts at the root and finds
that there are 3 child nodes, see Figure 9. Recall that
B = 2, so, we set CSE ← 1 and D ← 3 and continue to
one of the child hyper nodes ({2, 3}, {2, 4} or {2, 3}).
The process continues until reaching the leaves. Note
that near each hyper node X we write its average degree,
|S(X)|/|X|, inside the brackets. For example, the hyper
node {1} has an average degree of 3/1 and the hyper
node {2, 4} has an average degree of 1/2, because in the
original tree the degree of node 2 is zero and the degree
of node 4 is 1, respectively. The folded tree in Figure
9 corresponds to the SE algorithm with B = 2. Each
run of Algorithm 3.1 will also choose one of possible
5 paths. Below, we consider all the paths, the obtained
estimator and the corresponding probabilities.

a) {1}−{2, 3}−{5, 6}, CSE = 1+3+3·1+3·3/2 =
11.5, with probability 1/3.

b) {1}−{2, 4}−{7}, CSE = 1+3+3·1/2+3/2·1 = 7,
with probability 1/3.
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{1}

{2, 3}

{5, 6}

{2, 4}

{7}

{3, 4}

{5, 6} {5, 7} {6, 7}

(3)

(1)
(
1
2

) (
3
2

)

(
3
2

)
(1)

(
3
2

)
(1)

(
3
2

)

Fig. 9. SE folded tree for B = 2.

c) {1}−{3, 4}−{5, 6}, CSE = 1+3+3 ·3/2+9/2 ·
3/2 = 15.25, with probability 1/9.

d) {1}−{3, 4}−{5, 7}, CSE = 1+3+3·3/2+9/2·1 =
13, with probability 1/9.

e) {1}−{3, 4}−{6, 7}, CSE = 1+3+3 ·3/2+9/2 ·
3/2 = 15.25, with probability 1/9.

It is easy to check that

E (CSE) = 11.5 · 1/3 + 7 · 1/3 + 15.25 · 2/9
+ 22 · 1/12 + 13 · 1/9 = 11,

and that

E
(
C2

SE

)
= 11.52 · 1/3 + 72 · 1/3 + 15.252 · 2/9+

22 · 1/12 + 132 · 1/9 = 130.875⇒

⇒ Var (CSE) = E
(
C2

SE

)
− E (CSE)

2

= 130.875− 112 = 9.875.

This example illustrates the power of the SE tree folding.
Recall that the variance for the B = 1 case was equal
to 41, but, despite of the fact that the budget of SE is
only twice as compared to the previous case, (1), the SE
estimator has a variance of 9.875, hence, we obtained
factor 4 variance reduction.

3) For B = 3 there is no tree level such that the number
of nodes in it is greater than B, so the original tree
collapses to a trivial hyper tree where all the hyper node
degrees are equal to 1. This will immediately result in
a zero variance estimator. Consider the folded tree in
Figure 10 that corresponds to the SE algorithm with
B = 3.
Algorithm 3.1 will find a single path {1} − {2, 3, 4} −
{5, 6, 7}, (with probability 1), such that

CSE = 1 + 3 · 1 + 3 + 3 · 1 + 3 · 4/3 = 11

which results in a zero variance estimator.
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